
Jacobian-squared

function-germs
Takashi Nishimura

(Yokohama National University)



REFERENCE

[N] T. N., Jacobian-squared function-germs, Pure and

Applied Mathematics Quarterly, 13 (2017), 711-

728.

1



MOTIVATION

The MOTIVATION of the reference is one fact found

in the following Mather’s prominent paper:

J. Mather, Generic Projections, Annals of
Mathematics, 98 (1973), 226–245.

In order to explain motivation in detail, let me define

several fundamental notions of this talk.
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DEFINITION 1

(1)

Projection

⇔ π : Rn+1 → Rp linear surjective

(2)

Sn =

(x1, . . . , xn+1) ∈ Rn+1

∣∣∣∣∣∣
n+1∑
i=1

x2i = 1

 .
(3)

Projection of Sn

⇔ π|Sn : Sn → Rp restriction
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FACT 1 (J. Mather) Let n, p be positive integers such

that n+1 ≥ p. Then,

(1) Any two π1|Sn, π2|Sn are A-equivalent. More pre-

cisely, there exist a rotation h : Sn → Sn and a

linear isomorphism H : Rp → Rp such that

π1|Sn = H ◦ (π2|Sn) ◦ h.

(2) Every π|Sn is stable. More precisely, the singular

point set Σ(π|Sn) is a (p − 1)-dimensional sphere

consisting of definite fold singular points and

π|Σ(π|Sn) : Σ(π|Sn) → Rp

is an embedding.
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This fact might be not so profound. But, I wanted to
view a projected image of Whitney umbrella inside the
unit sphere. So, I wanted to investigate what one can
get by projecting a Whitney umbrella inside the unit
sphere. In this talk, let me first recover my investi-
gation. From now on, let’s concentrate on the case
n = p = 3 and the orthogonal projection π : R4 → R3

defined by

π(X,Y, Z, U) = (X,Y, Z)

and the restriction of π to

S3 =
{
(X,Y, Z, U) ∈ R4

∣∣∣ X2 + Y 2 + Z2 + U2 = 1
}
.

Let W ∈ R3 be the open set defined by

W =
{
(θ1, θ2, θ3) ∈ R3

∣∣∣∣ −π2 < θi <
π

2

}
.
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Let φ : W → S3 be the parametrization defined by

X ◦ φ(θ1, θ2, θ3) = cos θ1 cos θ2 cos θ3,

Y ◦ φ(θ1, θ2, θ3) = cos θ1 cos θ2 sin θ3,

Z ◦ φ(θ1, θ2, θ3) = cos θ1 sin θ2,

U ◦ φ(θ1, θ2, θ3) = sin θ1.

So, θ1 is the latitude and θ2, θ3 are longitudes.
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Then π ◦ φ(θ1, θ2, θ3) is

(cos θ1 cos θ2 cos θ3, cos θ1 cos θ2 sin θ3, cos θ1 sin θ2) .

Set

Ψ(θ1, θ2, θ3) =
(
1− θ21, θ2, θ3

)
,

H(X,Y, Z) = (ψ(X) cosY cosZ, ψ(X) cosY sinZ, ψ(X) sinY ) ,

where ψ(X) = 1− 1
2!
(1−X) + 1

4!
(1−X)2 − 1

6!
(1−X)3 + · · · .

Then,

ψ(1− θ21) = 1−
1

2!
θ21 +

1

4!
θ41 −

1

6!
θ61 + · · · = cos θ1.
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Thus, we have

H ◦Ψ(θ1, θ2, θ3)

= (cos θ1 cos θ2 cos θ3, cos θ1 cos θ2 sin θ3, cos θ1 sin θ2)

= π ◦ φ(θ1, θ2, θ3).

holds. Moreover, H : (R3, (1,0,0)) → (R3, (1,0,0)) is

clearly a germ of C∞ diffeomorphism and Thus, π ◦ φ :

(W, 0) → (R3, (1,0,0)) is L-equivalent to Ψ : (W, 0) →
(R3, (1,0,0)).
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Next, let V ⊂ R2 be a small open neighborhood of 0

and let f : V → R2 be defined by

f(x, y) =
(
1

3
x3 + xy, y

)
.

Any map-germ g : (R2, 0) → (R2, 0) A-equivalent to f

is called a plane-to-plane cusp singularity. Notice that

the Jacobian determinant |Jf | is x2 + y for our f .

Let F : V → R× R2 be defined by

F (x, y) = (|Jf |(x, y), f(x, y))

=
(
x2 + y,

1

3
x3 + xy, y

)
Any map-germ G : (R2, 0) → (R3, 0) A-equivalent to F

is called a Whitney umbrella.
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Assume V is sufficiently small so that

F (V) ⊂ W =
{
(θ1, θ2, θ3) ∈ R3

∣∣∣ −π
2 < θi <

π
2

}
.

Let’s calculate π ◦ φ ◦ F : V → R3.

π ◦ φ ◦ F (x, y) = H ◦Ψ
(
x2 + y,

1

3
x3 + xy, y

)
= H

(
1−

(
x2 + y

)2
,
1

3
x3 + xy, y

)
and H was a germ of C∞ diffeomorphism.
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Therefore, π ◦ φ ◦ F is L-equivalent to

F̃ (x, y) =
(
(x2 + y)2,

1

3
x3 + xy, y

)
= (|Jf |2(x, y), f(x, y)).

The function |Jf |2 is called

the Jacobian-squared function of f .

Thus, in order to view the shape of projected image of

Whitney umbrella inside S3, it is sufficient to view the

image of F̃
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F̃ (x, y) =

(
(x2 + y)2,

1

3
x3 + xy, y

)
=

(
x4 +2x2y+ y2,

1

3
x3 + xy, y

)
.

Set H1(X, Y, Z) = (X − Z2, Y, Z). Then, H1 is a C∞

diffeomorphism and we have

H1 ◦ F̃ (x, y) =
(
x4 +2x2y,

1

3
x3 + xy, y

)
.

Set H2(X, Y, Z) = (3X, −12Y, 6Z). Then, H2 is a

C∞ diffeomorphism and we have

H2 ◦H1 ◦ F̃ (x, y) =
(
3x4 +6x2y, −4x3 − 12xy, 6y

)
.
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Finally, set h1(x, y) =
(
x, 1

6y
)
. Then,

H2 ◦H1 ◦ F̃ ◦ h1(x, y) =
(
3x4 + x2y, −4x3 − 2xy, y

)
,

which is well-known as the normal form of swallowtail.

Thus, we confirmed that the image of Whitney umbrella

inside S3 by the canonical projection π : S3 → R3 is

nothing but a swallowtail.

This is the motivation of my study on Jacobian-squared

function germs.
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What is the role of Jacobian-squared

function-germs ?

Before stating my answer, let me explain several no-

tions.

DEFINITION 2 A C∞ map-germ G : (Rn, 0) → (Rn+ℓ, 0)
is called a frontal if there exist vector fields Φ1, . . . ,Φℓ :

(Rn, 0) → TRn+ℓ along G such that the three conditions

in the next slide are satisfied.
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(1) ϕi(x) · tG(ξ)(x) = 0 for any i (1 ≤ i ≤ ℓ) and any

ξ ∈ θ(n), where Φi(x) = (G(x), ϕi(x)) and the dot

in the center stands for the scalar product of two

vectors in TG(x)Rn+ℓ.

(2) ϕi(0) ̸= 0 for any i (1 ≤ i ≤ ℓ).

(3) ϕ1(0), . . . , ϕℓ(0) are linearly independent.
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DEFINITION 3 Let f = (f1, . . . , fn) : (Rn,0) → (Rn,0)
be an equidimensional map-germ.

(1) Let Ω1
n denote the En-module of 1-forms on (Rn,0).

Then, the En-module generated by dfi (i = 1, . . . , n)

in Ω1
n is called the Jacobi module of f and is denoted

by Jf , where dh for a function-germ h : (Rn,0) → R
stands for the exterior differential of h.

(2) The ramification module of f (denoted by Rf) is de-

fined as the f∗ (En)-module consisting of all function-

germs φ such that dφ belongs to Jf .
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THEOREM 1 Let f : (Rn,0) → (Rn,0) be an equidi-

mensional map-germ. Then, the following inclusion

holds:

|Jf |Ω1
n ⊂ Jf .
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Since d(µ|Jf |2) = |Jf |(|Jf |dµ+ 2µ d|Jf |) ∈ |Jf |Ω1
n for

any µ ∈ En, the following corollary can be obtained from

Theorem 1.

COROLLARY 1 Let f : (Rn,0) → (Rn,0) be an equidi-

mensional map-germ. For any i (1 ≤ i ≤ ℓ), let µi :

(Rn,0) → R be a function-germ. Then, the map-germ

F : (Rn,0) → Rn+ℓ defined by

F =
(
f, µ1|Jf |2, . . . , µℓ|Jf |2

)
is always a frontal.
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There are several advantages of Corollary 1.

(1) Construction of non-trivial frontals is very easy.

(2) Similarly as in the case of swallowtail, well-known

frontals can be easily constructed by Theorem 1.

(3) (At least for me), normal forms of famous frontals

(especially coefficients of them) are not easy to

memorize. On the other hand, construction by us-

ing Jacobian-squared function-germs provides very

simple forms.
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EXAMPLE 1 (Open Swallowtail) Normal form of Open

Swallowtail: Φ =
(
x3 + xy, y, x4 + 2

3x
2y, x5 + 5

9x
3y, 0, . . . ,0

)
.

By using Theorem 1, Φ is constructed as follows:

Materials: f(x, y) =
(
x3 + xy, y

)
,

µ1(x, y) = 1, µ2(x, y) = x,

µi(x, y) = 0 (3 ≤ i ≤ ℓ).

In this case, our frontal F has the form

F (x, y) =
(
f(x, y), µ1(x, y)|Jf |2(x, y), . . . , µℓ(x, y)|Jf |2(x, y)

)
=

(
x3 + xy, y, (3x2 + y)2, x(3x2 + y)2,0, . . . ,0

)
=

(
x3 + xy, y, 9x4 +6x2y+ y2,

9x5 +6x3y+ xy2,0, . . . ,0
)
.
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Set

H1(X,Y, U1, U2, U3, . . . , Uℓ) = (X, Y, U1−Y 2, U2−XY, U3, . . . , Uℓ).

H2(X,Y, U1, U2, U3, . . . , Uℓ) =
(
X, Y,

1

9
U1,

1

9
U2, U3, . . . , Uℓ

)
.

Then,

H1 ◦ F (x, y) =
(
x3 + xy, y, 9x4 +6x2y,

9x5 +5x3y,0, . . . ,0
)
.

H2 ◦H1 ◦ F (x, y)

=
(
x2 + xy, y, x4 +

2

3
x2y, x5 +

5

9
x3y,0, . . . ,0

)
= Φ(x, y).

Since H1, H2 are C∞ diffeomorphisms, F and Φ are L-
equivalent.
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Proof of Theorem 1

Let J̃f be the cofactor matrix of the Jacobian ma-

trix Jf . Then, notice that J̃fJf = |Jf |En where En is

the n × n unit matrix. For any 1-form α =
∑n
i=1 aidxi,

we have the following:

|Jf |α = (a1, . . . , an) J̃fJf

 dx1
...
dxn


= (a1, . . . , an) J̃f

 df1
...
dfn

 ∈ Jf .

This completes the proof. 2
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Is any frontal germ constructed in

this way ?

PROPOSITION 1 (Ishikawa) For any frontal germ

F : (Rn,0) → (Rn+ℓ,0), there exist germs of diffeo-

morphism h : (Rn,0) → (Rn,0) and H : (Rn+ℓ,0) →
(Rn+ℓ,0), an equidimensional map-germ f : (Rn,0) →
(Rn,0) and elements ψ1, . . . , ψℓ of Rf such that the fol-

lowing equality holds:

H ◦ F ◦ h = (f, ψ1, . . . , ψℓ).
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Based on Proposition 1, it is natural to ask the converse

of Corollary 1. However, if dimRQ(f) > 3, then there

exist counterexamples against the converse of Corollary

1. Thus, we ask the converse of Corollary 1 in the case

dimRQ(f) ≤ 3.

24



THEOREM 2 Let F : (Rn,0) → (Rn+ℓ,0) be a frontal

germ. Suppose that there exist germs of diffeomor-

phism h : (Rn,0) → (Rn,0) and H : (Rn+ℓ,0) → (Rn+ℓ,0),
an equidimensional map-germ f : (Rn,0) → (Rn,0) with

dimRQ(f) ≤ 3 and elements ψ1, . . . , ψℓ of Rf such that

the following equality holds:

H ◦ F ◦ h = (f, ψ1, . . . , ψℓ).

Then, the following holds:⟨
|Jf |2

⟩
En

+ f∗ (En) = Rf .
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COROLLARY 2 Let F : (Rn,0) → (Rn+ℓ,0) be a

frontal germ. Suppose that there exist germs of dif-

feomorphism h : (Rn,0) → (Rn,0) and H : (Rn+ℓ,0) →
(Rn+ℓ,0), an equidimensional map-germ f : (Rn,0) →
(Rn,0) with dimRQ(f) ≤ 3 and elements ψ1, . . . , ψℓ of

Rf such that the following equality holds:

H ◦ F ◦ h = (f, ψ1, . . . , ψℓ).

Then, there exist a germ of diffeomorphism H̃ : (Rn+ℓ,0) →
(Rn+ℓ,0) and function-germs µi : (Rn,0) → R (1 ≤ i ≤
ℓ) such that

H̃ ◦H ◦ F ◦ h = (f, µ1|Jf |2, . . . , µℓ|Jf |2).
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QUESTION 1 Let f : (Rn,0) → (Rn,0) be an equidi-

mensional map-germ. Then, does there exist a finitely

generated En-module A such that the following holds ?

A+ f∗ (En) = Rf .

Notice that by Ishikawa, it is known if “f is finite and

of corank one” or “it is A-equivalent to a finite ana-

lytic map-germ”, then there exists a finitely generated

f∗ (En)-module B satisfying the equality:

B+ f∗ (En) = Rf .
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Notice also that in the case of Mather’s Ae tangent

space for a map-germ g : (Rn,0) → (Rp,0), the cor-

responding En-module is nothing but tg(θ(n)). Thus,

Question 1 asks whether or not the ramification mod-

ule Rf has a similar structure as TAe(g).
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Thank you
for your kind attention!
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