Jacobian-squared function-germs Takashi Nishimura (Yokohama National University)

REFERENCE

[N] T. N., Jacobian-squared function-germs, Pure and Applied Mathematics Quarterly, 13 (2017), 711-728.

MOTIVATION

The MOTIVATION of the reference is one fact found in the following Mather's prominent paper:

J. Mather, *Generic Projections*, Annals of Mathematics, **98** (1973), 226–245.

In order to explain motivation in detail, let me define several fundamental notions of this talk.

DEFINITION 1

(1)

 $\begin{array}{l} \text{Projection} \\ \Leftrightarrow & \pi: \mathbb{R}^{n+1} \to \mathbb{R}^p \text{ linear surjective} \end{array}$

(2)

$$S^{n} = \left\{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_{i}^{2} = 1 \right\}.$$

(3)

Projection of S^n $\Leftrightarrow \pi|_{S^n} : S^n \to \mathbb{R}^p$ restriction **FACT 1 (J. Mather)** Let n, p be positive integers such that $n + 1 \ge p$. Then,

(1) Any two $\pi_1|_{S^n}, \pi_2|_{S^n}$ are \mathcal{A} -equivalent. More precisely, there exist a rotation $h : S^n \to S^n$ and a linear isomorphism $H : \mathbb{R}^p \to \mathbb{R}^p$ such that

$$\pi_1|_{S^n} = H \circ (\pi_2|_{S^n}) \circ h.$$

(2) Every $\pi|_{S^n}$ is stable. More precisely, the singular point set $\Sigma(\pi|_{S^n})$ is a (p-1)-dimensional sphere consisting of definite fold singular points and

$$\pi|_{\Sigma(\pi|_{S^n})}:\Sigma(\pi|_{S^n})\to\mathbb{R}^p$$

is an embedding.

This fact might be not so profound. But, I wanted to view a projected image of Whitney umbrella inside the unit sphere. So, I wanted to investigate what one can get by projecting a Whitney umbrella inside the unit sphere. In this talk, let me first recover my investigation. From now on, let's concentrate on the case n = p = 3 and the orthogonal projection $\pi : \mathbb{R}^4 \to \mathbb{R}^3$ defined by

 $\pi(X, Y, Z, U) = (X, Y, Z)$

and the restriction of π to

 $S^{3} = \left\{ (X, Y, Z, U) \in \mathbb{R}^{4} \mid X^{2} + Y^{2} + Z^{2} + U^{2} = 1 \right\}.$

Let $\mathcal{W} \in \mathbb{R}^3$ be the open set defined by

$$\mathcal{W} = \left\{ (\theta_1, \theta_2, \theta_3) \in \mathbb{R}^3 \mid -\frac{\pi}{2} < \theta_i < \frac{\pi}{2} \right\}.$$

5

Let $\varphi: \mathcal{W} \to S^3$ be the parametrization defined by

 $X \circ \varphi(\theta_1, \theta_2, \theta_3) = \cos \theta_1 \cos \theta_2 \cos \theta_3,$ $Y \circ \varphi(\theta_1, \theta_2, \theta_3) = \cos \theta_1 \cos \theta_2 \sin \theta_3,$ $Z \circ \varphi(\theta_1, \theta_2, \theta_3) = \cos \theta_1 \sin \theta_2,$ $U \circ \varphi(\theta_1, \theta_2, \theta_3) = \sin \theta_1.$

So, θ_1 is the latitude and θ_2, θ_3 are longitudes.

Then $\pi \circ \varphi(\theta_1, \theta_2, \theta_3)$ is

 $(\cos\theta_1\cos\theta_2\cos\theta_3, \cos\theta_1\cos\theta_2\sin\theta_3, \cos\theta_1\sin\theta_2).$

Set

$$\begin{split} \Psi(\theta_1, \theta_2, \theta_3) &= \left(1 - \theta_1^2, \ \theta_2, \ \theta_3\right), \\ H(X, Y, Z) &= \left(\psi(X) \cos Y \cos Z, \ \psi(X) \cos Y \sin Z, \ \psi(X) \sin Y\right), \\ \text{where } \psi(X) &= 1 - \frac{1}{2!}(1 - X) + \frac{1}{4!}(1 - X)^2 - \frac{1}{6!}(1 - X)^3 + \cdots . \\ \text{Then,} \end{split}$$

$$\psi(1-\theta_1^2) = 1 - \frac{1}{2!}\theta_1^2 + \frac{1}{4!}\theta_1^4 - \frac{1}{6!}\theta_1^6 + \dots = \cos\theta_1.$$

7

Thus, we have

 $H \circ \Psi(\theta_1, \theta_2, \theta_3)$

= $(\cos \theta_1 \cos \theta_2 \cos \theta_3, \cos \theta_1 \cos \theta_2 \sin \theta_3, \cos \theta_1 \sin \theta_2)$ = $\pi \circ \varphi(\theta_1, \theta_2, \theta_3).$

holds. Moreover, $H : (\mathbb{R}^3, (1,0,0)) \to (\mathbb{R}^3, (1,0,0))$ is clearly a germ of C^{∞} diffeomorphism and Thus, $\pi \circ \varphi$: $(\mathcal{W}, \mathbf{0}) \to (\mathbb{R}^3, (1,0,0))$ is \mathcal{L} -equivalent to $\Psi : (\mathcal{W}, \mathbf{0}) \to (\mathbb{R}^3, (1,0,0))$. Next, let $\mathcal{V} \subset \mathbb{R}^2$ be a small open neighborhood of 0 and let $f: \mathcal{V} \to \mathbb{R}^2$ be defined by

$$f(x,y) = \left(\frac{1}{3}x^3 + xy, y\right).$$

Any map-germ $g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ \mathcal{A} -equivalent to f is called a *plane-to-plane cusp singularity*. Notice that the Jacobian determinant |Jf| is $x^2 + y$ for our f.

Let $F:\mathcal{V}\rightarrow\mathbb{R}\times\mathbb{R}^2$ be defined by

$$F(x,y) = (|Jf|(x,y), f(x,y)) = \left(x^2 + y, \frac{1}{3}x^3 + xy, y\right)$$

Any map-germ $G : (\mathbb{R}^2, \mathbf{0}) \to (\mathbb{R}^3, \mathbf{0})$ \mathcal{A} -equivalent to F is called a *Whitney umbrella*.

Assume \mathcal{V} is sufficiently small so that $F(\mathcal{V}) \subset \mathcal{W} = \left\{ (\theta_1, \theta_2, \theta_3) \in \mathbb{R}^3 \mid -\frac{\pi}{2} < \theta_i < \frac{\pi}{2} \right\}.$ Let's calculate $\pi \circ \varphi \circ F : \mathcal{V} \to \mathbb{R}^3.$

$$\pi \circ \varphi \circ F(x,y) = H \circ \Psi \left(x^2 + y, \frac{1}{3}x^3 + xy, y \right)$$
$$= H \left(1 - \left(x^2 + y \right)^2, \frac{1}{3}x^3 + xy, y \right)$$

and H was a germ of C^{∞} diffeomorphism.

Therefore, $\pi \circ \varphi \circ F$ is \mathcal{L} -equivalent to

$$\widetilde{F}(x, y) = \left((x^2 + y)^2, \frac{1}{3}x^3 + xy, y \right) = (|Jf|^2(x, y), f(x, y)).$$

The function $|Jf|^2$ is called
the *Jacobian*-squared function of f .

Thus, in order to view the shape of projected image of Whitney umbrella inside $S^3,$ it is sufficient to view the image of \widetilde{F}

$$\widetilde{F}(x, y) = \left((x^2 + y)^2, \frac{1}{3}x^3 + xy, y \right) = \left(x^4 + 2x^2y + y^2, \frac{1}{3}x^3 + xy, y \right).$$

Set $H_1(X, Y, Z) = (X - Z^2, Y, Z)$. Then, H_1 is a C^{∞}
diffeomorphism and we have

$$H_1 \circ \widetilde{F}(x, y) = \left(x^4 + 2x^2y, \frac{1}{3}x^3 + xy, y\right).$$

Set $H_2(X, Y, Z) = (3X, -12Y, 6Z)$. Then, H_2 is a C^{∞} diffeomorphism and we have

$$H_2 \circ H_1 \circ \widetilde{F}(x, y) = (3x^4 + 6x^2y, -4x^3 - 12xy, 6y).$$

Finally, set $h_1(x, y) = \left(x, \frac{1}{6}y\right)$. Then,

 $H_2 \circ H_1 \circ \widetilde{F} \circ h_1(x, y) = (3x^4 + x^2y, -4x^3 - 2xy, y),$

which is well-known as the normal form of *swallowtail*.

Thus, we confirmed that the image of Whitney umbrella inside S^3 by the canonical projection $\pi : S^3 \to \mathbb{R}^3$ is nothing but a swallowtail.

This is the motivation of my study on Jacobian-squared function germs.

What is the role of Jacobian-squared function-germs ?

Before stating my answer, let me explain several notions.

DEFINITION 2 A C^{∞} map-germ $G : (\mathbb{R}^n, \mathbf{0}) \to (\mathbb{R}^{n+\ell}, \mathbf{0})$ is called a *frontal* if there exist vector fields $\Phi_1, \ldots, \Phi_\ell$: $(\mathbb{R}^n, \mathbf{0}) \to T\mathbb{R}^{n+\ell}$ along G such that the three conditions in the next slide are satisfied.

- (1) $\phi_i(x) \cdot tG(\xi)(x) = 0$ for any i $(1 \le i \le \ell)$ and any $\xi \in \theta(n)$, where $\Phi_i(x) = (G(x), \phi_i(x))$ and the dot in the center stands for the scalar product of two vectors in $T_{G(x)}\mathbb{R}^{n+\ell}$.
- (2) $\phi_i(0) \neq 0$ for any $i \ (1 \leq i \leq \ell)$.
- (3) $\phi_1(0), \ldots, \phi_\ell(0)$ are linearly independent.

DEFINITION 3 Let $f = (f_1, \ldots, f_n) : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ be an equidimensional map-germ.

- (1) Let Ω_n^1 denote the \mathcal{E}_n -module of 1-forms on $(\mathbb{R}^n, 0)$. Then, the \mathcal{E}_n -module generated by df_i (i = 1, ..., n)in Ω_n^1 is called the *Jacobi module* of f and is denoted by \mathcal{J}_f , where dh for a function-germ $h: (\mathbb{R}^n, 0) \to \mathbb{R}$ stands for the exterior differential of h.
- (2) The ramification module of f (denoted by \mathcal{R}_f) is defined as the $f^*(\mathcal{E}_n)$ -module consisting of all functiongerms φ such that $d\varphi$ belongs to \mathcal{J}_f .

THEOREM 1 Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be an equidimensional map-germ. Then, the following inclusion holds:

 $|Jf|\Omega_n^1 \subset \mathcal{J}_f.$

Since $d(\mu|Jf|^2) = |Jf|(|Jf|d\mu + 2\mu \ d|Jf|) \in |Jf|\Omega_n^1$ for any $\mu \in \mathcal{E}_n$, the following corollary can be obtained from Theorem 1.

COROLLARY 1 Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be an equidimensional map-germ. For any i $(1 \le i \le \ell)$, let μ_i : $(\mathbb{R}^n, 0) \to \mathbb{R}$ be a function-germ. Then, the map-germ $F : (\mathbb{R}^n, 0) \to \mathbb{R}^{n+\ell}$ defined by

$$F = \left(f, \mu_1 |Jf|^2, \dots, \mu_\ell |Jf|^2\right)$$

is always a frontal.

There are several advantages of Corollary 1.

- (1) Construction of non-trivial frontals is very easy.
- (2) Similarly as in the case of swallowtail, well-known frontals can be easily constructed by Theorem 1.
- (3) (At least for me), normal forms of famous frontals (especially coefficients of them) are not easy to memorize. On the other hand, construction by using Jacobian-squared function-germs provides very simple forms.

EXAMPLE 1 (Open Swallowtail) Normal form of Open Swallowtail: $\Phi = \left(x^3 + xy, y, x^4 + \frac{2}{3}x^2y, x^5 + \frac{5}{9}x^3y, 0, \dots, 0\right).$

By using Theorem 1, Φ is constructed as follows: Materials: $f(x,y) = (x^3 + xy, y)$, $\mu_1(x,y) = 1$, $\mu_2(x,y) = x$, $\mu_i(x,y) = 0$ ($3 \le i \le \ell$). In this case, our frontal F has the form

$$F(x,y) = (f(x,y), \mu_1(x,y)|Jf|^2(x,y), \dots, \mu_\ell(x,y)|Jf|^2(x,y))$$

= $(x^3 + xy, y, (3x^2 + y)^2, x(3x^2 + y)^2, 0, \dots, 0)$
= $(x^3 + xy, y, 9x^4 + 6x^2y + y^2, 9x^5 + 6x^3y + xy^2, 0, \dots, 0).$

Set

 $H_1(X, Y, U_1, U_2, U_3, \dots, U_\ell) = (X, Y, U_1 - Y^2, U_2 - XY, U_3, \dots, U_\ell).$ $H_2(X, Y, U_1, U_2, U_3, \dots, U_\ell) = \left(X, Y, \frac{1}{9}U_1, \frac{1}{9}U_2, U_3, \dots, U_\ell\right).$ Then,

$$H_1 \circ F(x, y) = \left(x^3 + xy, \ y, \ 9x^4 + 6x^2y, \\ 9x^5 + 5x^3y, 0, \dots, 0 \right).$$

$$H_2 \circ H_1 \circ F(x, y) = \left(x^2 + xy, \ y, \ x^4 + \frac{2}{3}x^2y, x^5 + \frac{5}{9}x^3y, 0, \dots, 0\right) = \Phi(x, y).$$

Since H_1, H_2 are C^{∞} diffeomorphisms, F and Φ are \mathcal{L} -equivalent.

Proof of Theorem 1

Let Jf be the cofactor matrix of the Jacobian matrix Jf. Then, notice that $\widetilde{Jf}Jf = |Jf|E_n$ where E_n is the $n \times n$ unit matrix. For any 1-form $\alpha = \sum_{i=1}^n a_i dx_i$, we have the following:

$$Jf|\alpha = (a_1, \dots, a_n) \widetilde{Jf} Jf \begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix}$$
$$= (a_1, \dots, a_n) \widetilde{Jf} \begin{pmatrix} df_1 \\ \vdots \\ df_n \end{pmatrix} \in \mathcal{J}_f$$

This completes the proof.

Is any frontal germ constructed in this way ?

PROPOSITION 1 (Ishikawa) For any frontal germ $F : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^{n+\ell}, 0)$, there exist germs of diffeomorphism $h : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ and $H : (\mathbb{R}^{n+\ell}, 0) \rightarrow (\mathbb{R}^{n+\ell}, 0)$, an equidimensional map-germ $f : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ and elements $\psi_1, \ldots, \psi_\ell$ of \mathcal{R}_f such that the following equality holds:

$$H \circ F \circ h = (f, \psi_1, \ldots, \psi_\ell).$$

Based on Proposition 1, it is natural to ask the converse of Corollary 1. However, if $\dim_{\mathbb{R}} Q(f) > 3$, then there exist counterexamples against the converse of Corollary 1. Thus, we ask the converse of Corollary 1 in the case $\dim_{\mathbb{R}} Q(f) \leq 3$. **THEOREM 2** Let $F : (\mathbb{R}^n, 0) \to (\mathbb{R}^{n+\ell}, 0)$ be a frontal germ. Suppose that there exist germs of diffeomorphism $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and $H : (\mathbb{R}^{n+\ell}, 0) \to (\mathbb{R}^{n+\ell}, 0)$, an equidimensional map-germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ with $\dim_{\mathbb{R}} Q(f) \leq 3$ and elements $\psi_1, \ldots, \psi_\ell$ of \mathcal{R}_f such that the following equality holds:

$$H \circ F \circ h = (f, \psi_1, \ldots, \psi_\ell).$$

Then, the following holds:

$$\left\langle |Jf|^2 \right\rangle_{\mathcal{E}_n} + f^*\left(\mathcal{E}_n\right) = \mathcal{R}_f.$$

COROLLARY 2 Let $F : (\mathbb{R}^n, 0) \to (\mathbb{R}^{n+\ell}, 0)$ be a frontal germ. Suppose that there exist germs of diffeomorphism $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and $H : (\mathbb{R}^{n+\ell}, 0) \to (\mathbb{R}^{n+\ell}, 0)$, an equidimensional map-germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ with $\dim_{\mathbb{R}} Q(f) \leq 3$ and elements $\psi_1, \ldots, \psi_\ell$ of \mathcal{R}_f such that the following equality holds:

 $H \circ F \circ h = (f, \psi_1, \ldots, \psi_\ell).$

Then, there exist a germ of diffeomorphism $\widetilde{H} : (\mathbb{R}^{n+\ell}, 0) \rightarrow (\mathbb{R}^{n+\ell}, 0)$ and function-germs $\mu_i : (\mathbb{R}^n, 0) \rightarrow \mathbb{R}$ $(1 \le i \le \ell)$ such that

$$\widetilde{H} \circ H \circ F \circ h = (f, \mu_1 | Jf|^2, \dots, \mu_\ell | Jf|^2).$$

QUESTION 1 Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be an equidimensional map-germ. Then, does there exist a finitely generated \mathcal{E}_n -module A such that the following holds ?

$$A + f^*\left(\mathcal{E}_n\right) = \mathcal{R}_f.$$

Notice that by Ishikawa, it is known if "f is finite and of corank one" or "it is \mathcal{A} -equivalent to a finite analytic map-germ", then there exists a finitely generated $f^*(\mathcal{E}_n)$ -module B satisfying the equality:

 $B + f^*\left(\mathcal{E}_n\right) = \mathcal{R}_f.$

Notice also that in the case of Mather's \mathcal{A}_e tangent space for a map-germ $g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, the corresponding \mathcal{E}_n -module is nothing but $tg(\theta(n))$. Thus, Question 1 asks whether or not the ramification module \mathcal{R}_f has a similar structure as $T\mathcal{A}_e(g)$.

Thank you for your kind attention!