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Today’s objects: piecewise-C2 hypersurfaces in Rn+1

Today’s subject: variational problem of anisotropic surface energy

Main references:

[1] M. Koiso. Uniqueness of stable closed non-smooth hypersurfaces

with constant anisotropic mean curvature, preprint. arXiv:1903.03951

[math.DG]

[2] Y. Jikumaru and M. Koiso. Non-uniqueness of closed em-

bedded non-smooth hypersurfaces with constant anisotropic mean

curvature, preprint. arXiv:1903.03958 [math.DG]

2 Anisotropic surface energy
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Formulation of piecewise-C2 hypersurface

Let M = [k
i=1Mi be an n-dimensional oriented compact connected

C1 manifold, where each Mi is an n-dimensional connected compact

submanifold of M with piecewise-C1 boundary, and Mi\Mj = @Mi\
@Mj, (i, j 2 {1, · · · , k}, i 6= j). We call a map X : M ! Rn+1 a

piecewise-C2 weak immersion (or a piecewise-C2 hypersurface) if X

satisfies the following conditions (A1) - (A3) for i = 1, · · · , k.
(A1) X is continuous, and each Xi := X|Mi : Mi ! Rn+1 is of C2.

(A2) The restriction X|Mo
i

of X to the interior M o
i of Mi is a

C2-immersion.

(A3) The unit normal vector field ⌫i : M o
i ! Sn along Xi|Mo

i
can

be extended to a C1-mapping ⌫i : Mi ! Sn. Here the orientation of

⌫i is determined so that, if (u1, · · · , un) is a local coordinate system

in Mi, {⌫i, @/@ u1, · · · , @/@ un} gives the canonical orientation in Rn+1.
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Let Sn = {⌫ 2 Rn+1 ; |⌫| = 1} be an n-dimensional round sphere,

� : Sn ! R�0 a continuous function, (energy density function),

M = [k
i=1Mi, n-dimensional C1 manifold,

X : M ! Rn+1 a piecewise-C2 hypersurface,

⌫ : unit normal to each Mi.

The anisotropic (surface) energy F�(X) of X is defined as follows:

F�(X) :=
kX

i=1

Z

Mi

�(⌫(p)) dA.

p
ν(p)

q

ν(q)M
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Theorem A (J. E. Taylor, 1978) Assume � : Sn ! R>0 is positive

and continuous. Let V > 0. Among all closed hypersurfaces in

Rn+1 enclosing the same (n + 1)-dimensional volume V , there exists

a unique absolute minimizer W�(V ) of F� =
R

�(⌫)dA. And W�(V ) is

a homothety of the Wul↵ shape W�.

Here, W� := @

 

\⌫2Sn

n
X 2 Rn+1 | hX,⌫ i  �(⌫)

o!

.

Hence, the Wul↵ shape is the solution (the minimizer) of the isoperi-

metric problem for the anisotropic surface energy F� =
Z

�(⌫)dA.

Remark 2.1 (i) � ⌘ 1 =) W� is the unit sphere. (i.e. W1 = Sn(1).)

(ii) W� is a closed convex hypersurface. It is not smooth in general.
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Example 2.1 Recall the anisotropic surface energy is F� =
Z

�(⌫)dA.

(i) For � ⌘ 1, the Wul↵ shape W� is the unit sphere.

(ii) If �(⌫) = �(⌫1, · · · , ⌫n+1) =
n+1X

i=1

|⌫i|, (⌫ 2 Sn), W� is the cube {x =

(x1, · · · , xn+1) 2 Rn+1 | max{|x1|, · · · , |xn+1|} = 1}.

(iii) If r > 0, h > 0, and �(⌫) = r
q

⌫2
1 + · · · + ⌫2

n + h|⌫n+1|, then

W� is the cylinder with radius r and height 2h.
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3 Parallel surfaces and (wave) fronts

parallel curves f t(s) := f(s) + t N(s) -1.0 -0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

singular points appear at 9t.

Similarly, for parallel surfaces f t(u, v) := f(u, v) + t N(u, v), singular

points appear at 9t. These surfaces are called (wave) fronts.

N

CtC0

Cuspidal Edge, Swallow Tail, Cuspidal Butterfly.　 N is smooth.
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Definition 3.1 Let r � 2 be an integer. A mapping X : M ! Rn+1 is

called a Cr (wave) front if there exists a Cr�1 mapping ⌫ : M ! Sn

such that the following (i) and (ii) hold.

(i) h⌫(p), X⇤(u)i = 0 for all p 2 M and u 2 TpM .

(ii) The mapping (X,⌫ ) : M ! Rn+1 ⇥ Sn is an immersion.

N

CtC0

Cuspidal Edge, Swallow Tail, Cuspidal Butterfly.　 N is smooth.
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4 Cahn-Ho↵man map and the Wul↵ shape

How to represent the Wul↵ shape? Let � : Sn ! R�0 be of C2.

Definition 4.1 The Cahn-Ho↵man map ⇠� is defined as

⇠ := ⇠� : Sn ! Rn+1, ⇠�(⌫) := D�(⌫) + �(⌫)⌫, 8⌫ 2 Sn.

Remark 4.1 (i) ⇠ is a front (§3). (ii) � is the support function of

⇠(Sn). That is, in the picture below, ! := ⇠(⌫), and |OQ| = �(⌫).

(ii) ⌫ is the unit normal to ⇠(Sn) at ! := ⇠(⌫). (iii) W� ⇢ ⇠(Sn).

S1

Q
O

ων
ν

O
ξ 

ξ( S1)~
W:=
Tω
~W

ω＝ξ(ν)
|OQ|=γ(ν)
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Example 4.1 Let n = 1. For ⌫ = (⌫1, ⌫2) 2 S1 ⇢ R2, define �(⌫) :=

4⌫3
1 � 3⌫1 + 2. The image of the Cahn-Ho↵man map

⇠ : Sn ! Rn+1, ⇠(⌫) := D�(⌫) + �(⌫)⌫, 8⌫ 2 Sn.

is given by the central picture below.

S1
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ν
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ξ 

ξ( S1)
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Fact 4.1 The Wul↵ shape W� is the unique convex subset of ⇠�(Sn)

s.t. the origin 0 2 Rn+1 is inside of the domain bounded by W�.

12



5 Convex integrand

The homogeneous extension of � : Sn ! R>0 is defined as follows.

� : Rn+1 ! R�0, �(rX) := r�(X), 8X 2 Sn, 8r � 0.

| � is called a convex integrand if and only � is a convex function

(that is, �(X + Y )  �(X) + �(Y )).

~ Assume � is of C1. Then, � is a convex integrand. () ⇠(Sn) = W�.

Example 5.1 (i) (convex) For �(⌫) =
n+1X

i=1

|⌫i|, W� is a cube.

(ii) (non-convex) Let n = 1. For ⌫ = (⌫1, ⌫2) 2 S1, define �(⌫) :=

4⌫3
1 � 3⌫1 + 2. ⇠(S1) is given by the picture below. W� is the convex

red curve.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

⇠(Sn) = W� for (i)
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6 Cahn-Ho↵man field and Euler-Lagrange equations

Assume � 2 C2(Sn). We will compare the shape of an arbitrary

piecewise-C2 hypersurface X with the Cahn-Ho↵man map.

In order to do it, we introduce the “Cahn-Ho↵man field” (or the

anisotropic Gauss map) of X. The Cahn-Ho↵man field (⇠-vector)

was developed by Ho↵man and Cahn (1972, 1974) in order to de-

scribe surface energy anisotropy in a first order phase transition

represented by a sharp interface.
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Definition 6.1 Let X :M!Rn+1 be a piecewise-C2 hypersurface with

unit normal ⌫. The map G := ⇠ � ⌫ = D� + �(⌫)⌫ :M! Rn+1 is called

the anisotropic Gauss map (or the Cahn-Ho↵man field) of X.

(Remark: In the picture below, ! := ⇠(⌫) = D�(⌫) + �(⌫)⌫,⌫ 2 Sn.)
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Remark 6.1 (i) Denote by µ1, · · · , µn the principal curvatures of ⇠�(⌫(p)).

Let wii be the normal curvature of X at p for the principal direction

of µi. Then the anisotropic mean curvature ⇤ of X is

⇤ =
1

n

⇣w11

µ1
+ · · · + wnn

µn

⌘
.

(ii) When � ⌘ 1, ⇤ = H : the mean curvature of X.

(iii) The anisotropic mean curvature of the Cahn-Ho↵man map

⇠� : Sn ! Rn+1, (⇠�(⌫) = D�(⌫) + �(⌫)⌫,⌫ 2 Sn) is �1 for the normal ⌫.

Proposition 6.1 [Euler-Lagrange equations, K2018] A piecewise-C2

hypersurface X: M =[Mi ! Rn+1 is a critical point of the anisotropic

energy F�(X) =
Z

M
�(⌫)dA for (n+1)-dimensional volume-preserving

variations if and only if

(i) ⇤ ⌘ constant on M , and

(ii) (G|Mi �G|Mj)(⇣) 2 T⇣(@Mi\ @Mj) at 8⇣ 2 @Mi\ @Mj. (G = ⇠ � ⌫.)
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Example 6.1 Set � : S2 ! R as �(⌫) :=
q
|⌫2

3 � ⌫2
1 � ⌫2

2 |. A CAMC

surface is a CMC surface in R3
1 = (R3, dx2 + dy2 � dt2). For a graph

t = f(x, y), ⇤ and the mean curvature HL as a surface in R3
1 satisfy

⇤|1� f 2
x � f 2

y |3/2 = (1� f 2
y )fxx + 2fxfyfxy + (1� f 2

x)fyy, ⇤ = HL.

Hence, the equation ⇤ ⌘ constant is

(a) elliptic on “space-like parts”, i.e. 1� f2
x � f 2

y > 0.

(b) hyperbolic on “time-like parts”, i.e. 1� f 2
x � f 2

y < 0.

(a) ⇤ = 0 (b) ⇤ = 0

The image of the Cahn-Ho↵man map is the elliptic hyperboloid of

two sheets (one sheet) for the space-like (time-like) part (Honda-

K-Tanaka ’13).
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7 Uniqueness and non-uniqueness for closed equilibria

Is a closed CAMC hypersurface only the Wul↵ shape?

The answer is “No!” in general. However,

if a � : Sn ! R>0 is of C1 and strictly convex, then any closed CAMC

hypersurface in Rn+1 without self-intersection is a homothety of the

Wul↵ shape! (For � ⌘ 1: Alexandrov 1962. For general �: He-Li-

Ma-Ge 2009.)

How about the case of weaker convexity of � and lower regularity

of hypersurfaces?

Theorem 7.1 (Jikumaru-K) There exists C1 functions � : Sn ! R>0

s.t. there exist closed embedded CAMC hypersurfaces for � which

are not (any homotheties or translations of) the Wul↵ shape.
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Example 7.1 Define � :S1 ! R>0 as �(⌫1, ⌫2):= ⌫6
1 + ⌫6

2 . The image of

the Cahn-Ho↵man map is the picture below left. Simple closed red

curve and black curves are CAMC!

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

� � � � � � � � � � � � � � � � � � � � �

� � � �

� � � �

� � � �

� � �

� � �

� � �

� � � � � � � � � � � � � �

� � � �

� � � �

� � �

� � �

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-0.2 0.2 0.4 0.6 0.8 1.0
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We can get higher dimensional examples by rotation. For example,

define �1 : S2 ! R>0 by �1(⌫1, ⌫2, ⌫3) = (⌫2
1 + ⌫2

2)
3 + ⌫6

3 . The image of the

Cahn-Ho↵man map is the picture below left. The black surface is

the Wul↵ shape. Yellow surfaces are CAMC!
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8 Application to the anisotropic mean curvature flow

Let � : Sn ! R>0 be of C2 with Cahn-Ho↵man map ⇠� : Sn !Rn+1.

One-parameter family of hypersurfaces Xt : M ! Rn+1 that satis-

fies @
@t Xt = ⇤t⇠� � ⌫t. is called the anisotropic mean curvature flow.

Anisotropic mean curvature flow diminishes the energy if ⇤t 6= 0:

dF�(Xt)

dt
�
Z

M
n⇤2

t �(⌫t) dAt  0.

Closed surfaces in the picture below are self-similar solutions Xt :=q
2(c� t) ⇠� of the aniso. mean curvature flow for n=2, �(⌫1, ⌫2, ⌫3) =

(⌫2
1 + ⌫2

2)
3 + ⌫6

3 .

Remark! S2 is the only closed embedded self-similar shrinking solu-

tion of mean curvature flow in R3 with genus zero (Brendle 2016).
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9 Future works

(I) Weaken the assumption “� 2 C2(Sn)”.

If � is of C2, the Wul↵ shape W� has no straight line segments and

hence no flat faces because of the following results.

Assume � : Sn ! R>0 is convex. Then,

F. Morgan 1991: � 2 C1,1 if and only if W� is uniformly convex．
H. Han-T. Nishimura 2017: � 2 C1 if and only if W� is strictly

convex．
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(II) Classify the singular points of CAMC hypersurfaces.

For example, we observed the following: For � :S2 ! R defined by

�(⌫) :=
q
|⌫2

3 � ⌫2
1 � ⌫2

2 |, CAMC surfaces in R3 are CMC surfaces in

R3
1 = (R3, dx2 + dy2 � dt2). [Honda-K-Saji, 2018] proved: Space-like

piecewise-smooth CMC surfaces can have (2, 5)-cuspidal edges. (lo-

cally, X(2,5)(u, v) = (u, v2, v5).) On the other hand, any space-like zero

mean curvature surface (figure below) does not have (2, 5)-cuspidal

edges.

Vol. 56 (2009) Maximal Surfaces with Arbitrary Genus 43

Figure 2. An associated surface of the Lorentzian helicoid, with
Weierstrass data (G,η ) = (z, eπi/4z−2dz).

Figure 3. A weakly complete triply-periodic maxface with cone-
like singular points corresponding to the Schwarz P-surface;
see [13] for details.

the limiting tangent plane (that is, the Lorentzian orthogonal complement of the
normal vector) at each singular point contains a lightlike direction. For the global
study of maximal surfaces, the following terminology given in [32] is useful:

Definition I. A maxface (or more generally, a generalized maximal surface) f : M
→ R3

1 is called complete if there exists a symmetric 2-tensor T which vanishes
outside a compact set in M , such that ds2 + T is a complete Riemannian metric
on M , where ds2 is the induced metric by f . If f is complete, the set of singular
points is compact in M . On the other hand, a maxface is called weakly complete (in
the sense of [32]), if its null holomorphic lift into C3 (see Section 1) has complete
induced metric with respect to the canonical Hermitian metric on C3.

As shown in [32, Lemma 4.3], completeness implies weak completeness. Con-
versely, a weakly complete maxface is complete if and only if the singular set is com-
pact and each end is conformally equivalent to a punctured disc (see [33]). A typical
well-known complete maxface is the Lorentzian catenoid (see [20], see also [1] in
which it is called the Lorentzian elliptic catenoid ; Figure 1, left), which has a

(Figure from “Fujimori-Rossman-Umehara-

Yamada-Yang, Spacelike mean curvature one surfaces in de Sitter

3-space, Comm. Anal. Geom. 17 (2009), 383-427. ”)
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Appendix. Is a closed CAMC hypersurface only the Wul↵ shape?

regularity n=2, genus 0 8n, stable 8n, embedded

� ⌘ 1 smooth ○ ○Barbosa- ○Alexandrov

(W = Sn) Hopf ’51 do Carmo’84 ’62

�,W� 2 C1, smooth ○’10 K-Palmer ○ 1998 ○He-Li-Ma-

D2� + �1 > 0 2012 Ando Palmer Ge, 2009

� 2 C2 piecewise

�:convex C2, ? ○ 2018 Koiso ?
non-flat

� 2 C0 Lip can have ? ? ?
�:convex flat faces n = 1 ○’05 Morgan

� 2 C1 piecewise × ×
non-convex smooth, Jikumaru-K ? Jikumaru-K

non-flat 2018 2018
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