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Cuspidal edge

• f : Σ → R3; C∞ map, Σ ⊂ (R2; u, v); domain.
• f has a cuspidal edge at p ∈ Σ

def.⇐⇒ ∃ϕ : R2 → Σ; (local) diffeo., ∃Φ : R3 → R3; (local) diffeo. s.t.
Φ ◦ f ◦ ϕ−1(u, v) = (u, v2, v3)(= fC(u, v)) (i.e., f ∼A fC).

Figure: Surfaces with cuspidal edges
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• f at p; cuspidal edge ⇒ rank dfp = 1 and
∃U ⊂ Σ; nbd. of p, ∃γ : (−ϵ , ϵ) → U regular curve (p = γ(0)).
s.t. γ((−ϵ , ϵ)) = S(f ) ∩ U (S(f ); singular set of f ).
γ; singular curve of f , γ̂ = f ◦ γ; singular locus.
Moreover, ∃η; non-zero vector field on U s.t. df (η) = 0 on S(f ).
η; null vector field.

Fact (Kokubu-Rossman-Saji-Umehara-Yamada 2005)
f at p is a cuspidal edge ⇒ det(γ′(t), η(t)) , 0 (′ = d/dt, η(t) = η(γ(t))).

• Further, ∃ν : U → S2 s.t.
⟨
dfq(X), ν(q)

⟩
= 0 (∀q ∈ U, ∀X ∈ TqU)

ν; the Gauss map of f , ν̂ = ν ◦ γ.
Note: ν might have singularities at p (i.e., rank dνp < 2),
but the pair (f , ν) : U → R3 × S2; immersion.
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For cuspidal edges, several geometrical invariants are known:
κs; singular curvature, κν; limiting normal curvature,
κc(, 0); cuspidal curvature, κt ; cusp-directional torsion,
Note: κs is an intrinsic invariant (Saji-Umehara-Yamada 2009).
Note: ν has a singularity at p ⇐⇒ κν(p) = 0 (Martins-Saji-Umehara-Yamada
2016, T.).

Figure: Cuspidal edges with positive κs (left) and negative κs (right).
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In general, the Gaussian curvature K given by K =
det(νu, νv , ν)
det(fu, fv , ν) is

unbounded near a cuspidal edge.
However, the following assertion is known.

Fact (Saji-Umehara-Yamada 2009, Martins-Saji-Umehara-Yamada 2016)
The Gaussian curvature K is bounded (K , 0) near a cuspidal edge
⇐⇒ det(νu, νv , ν)(γ(t)) = 0 ⇐⇒ κν(γ(t)) = 0.

This implies that the set of singular point of ν coincides with the set of singular
point of f at least locally.

7 / 25



For a cuspidal edge with bounded Gaussian curvature, the following holds.

Fact (Saji-Umehara-Yamada 2009)
K is bounded and K > 0 near a cuspidal edge p ⇒ κs(p) < 0.

Remark: If K < 0, κs > 0 is NOT true in general.
∵ If p = γ(0) is not a cuspidal edge satisfying det(γ′, η)(0) = 0, and γ(t) is
cuspidal edges (t , 0), then the singular curvature κs behaves
limt→0 κs(γ(t)) = −∞.
Thus for a negative Gaussian curvature surface with a singular point p = γ(0)
satisfying det(γ′, η)(0) = 0, the singular curvature κs is negative near p.

Question 1
When does the following statement hold: if K < 0 near a cuspidal edge p, then
κs(p) > 0?
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On the other hand, the Gauss map ν : U → S2 of a cuspidal edge with
bounded Gaussian curvature has singularity.
Typical singularities of ν:
fold: (u, v) 7→ (u, v2), Whitney cusp: (u, v) 7→ (u,±uv + v3).
ν at p; fold (resp. Whitney cusp)
⇒ ∃σ : (−δ, δ) → U; regular curve (σ(0) = p)
s.t. σ((−δ, δ)) = S(ν) ∩ U (S(ν); singular set of ν),
ν̌ = ν ◦ σ; spherical regular curve (resp. curve with 3/2-cusp (t 7→ (t2, t3))).

9 / 25



For cuspidal edge with bounded Gaussian curvature, the following assertion
holds.

Fact (Saji-Umehara-Yamada 2012)
When the Gaussian curvature K is bounded and K , 0, and ν has fold along
γ, then

κs(t)|γ̂′(t)| = sgn(K )κ#(t)|ν̂′(t)|,

where κ#; geodesic curvature of ν̂ = ν ◦ γ.
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On the other hand, when the Gauss map ν has a Whitney cusp at p, one can
define the cuspidal curvature µν for ν̌ which measures a kind of wideness of
cusps.

Definition

p; positive (resp. negative) cusp of ν
def.⇐⇒ µν > 0 (resp. µν < 0).

Note: µν > 0 (resp. µν < 0) ⇒ ν̌; right-turning (resp. left-turning) cusp.

Figure: Positive cusp (left) and negative cusp (right).

Question 2
What relation between the signs of cusps of ν and geometric invariants of a
cuspidal edge hold?
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Characterization by geometric invariants
f : (U; u, v) → R3; C∞ map with cuspidal edge p ∈ U.
ν : U → S2; Gauss map of f .
Set functions λ,Λ : U → R by

λ(u, v) = det(fu, fv , ν)(u, v), Λ(u, v) = det(νu, νv , ν)(u, v).

Then λ−1(0) = S(f ) and Λ−1(0) = S(ν).
Assume that p is also a singular point of ν, i.e., Λ(p) = 0 ( ⇐⇒ κν(p) = 0).
Then p; non-degenerate singular point of ν

def.⇐⇒ (Λu(p),Λv(p)) , (0, 0).
Note: folds and Whitney cusps are non-degenerate singular points of ν.

Proposition
p; a non-degenerate singular point of ν
⇐⇒ κ′ν(p) , 0 or 4κt(p)2 + κs(p)κc(p)2 , 0.

When K = Λ/λ is bounded near p, κν(γ(t)) = 0, and hence non-degeneracy is
equivalent to 4κt(p)2 + κs(p)κc(p)2 , 0.
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We give characterizations of folds and cusps appearing on ν.

Proposition

f : U → R3; C∞ map with cuspidal edge p. ν : U → S2; Gauss map of f .
Assume that the Gaussian curvature K of f is bounded near p. Then

1 ν at p; fold ⇐⇒ κt(p)(4κt(p)2 + κs(p)κc(p)2) , 0,
2 ν at p; Whitney cusp ⇐⇒ κt(p) = 0, κ′t (p) , 0 and κs(p) , 0

By this proposition, we have the following.

Corollary
Under the same assumption as in the above proposition,
p is a non-degenerate singular point of ν which is NOT a fold
⇐⇒ κt(p) = 0 and κs(p) , 0.
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Signs of Gaussian curvature

We consider the sign of the Gaussian curvature K which is bounded near a
cuspidal edge p.
It is known that K at p can be written as

4K (p) = −(4κt(p)2 + κs(p)κc(p)2) · (positive constant).

Thus we have the following.

Theorem 1
f : Σ → R3; C∞ map, p; cuspidal edge of f , ν : Σ → S2; its Gauss map.
Suppose that the Gaussian curvature K of f is bounded on a sufficiently small
neighborhood U of p.
When p; a non-degenerate singular point of ν other than a fold,
K > 0 (resp. K < 0) on U ⇐⇒ κs(p) < 0 (resp. κs(p) > 0).

In particular, when ν at p is a Whitney cusp, the assertion holds.
This theorem gives an answer of the first question.
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Example
Let us consider the surface parametrized by

f (u, v) =
(
sin u cos v, sin u sin v, cos u + log

(
tan

(u
2

)))
,

where (u, v) ∈ (0, π) × [0, 2π).
This is a pseudo-sphere, and f has cuspidal edges on S(f ) = {u = π/2}.
Thus the singular curve γ is γ(v) = (π/2, v).
It is well known that the Gaussian curvature K is constant K = −1.
The Gauss map ν of f is given by

ν(u, v) = (− cos u cos v,− cos u sin v, sin u).

Since Λ(u, v) = det(νu, νv , ν)(u, v) = − cos u, S(f ) = S(ν) holds.
By direct calculations, we have

κs = 1 > 0, κν = κt = 0

along γ.
In this case, γ is a curvature line of f (cf. Izumiya-Saji-Takeuchi 2017).
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Example (continue)
Moreover, the singular locus of ν degenerates to a point (0, 0, 1).
We call such a singular point a cone like singular point.
We note that similar phenomena occur in the case of flat fronts in H3 and their
∆1-dual fronts in S3

1 (cf. Saji-T.)

Figure: Pseudo-sphere (left) and image of its Gauss map (right).
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In general, we have the following assertion.

Proposition

f : U → R3; C∞ map with cuspidal edge p ∈ U.
ν : U → S2; the Gauss map of f .
γ(t); singular curve of f through p.
Suppose that K ; bounded near p,
p; non-degenerate singular point of ν and γ(t); line of curvature
⇒ p; cone like singular point of ν, i.e., ν(γ(t)) degenerates to a point.
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Signs of cuspidal curvature µν

We consider signs of cuspidal curvature µν for ν.
f : U → R3; C∞ map, p ∈ U; cuspidal edge of f .
ν : U → S2; the Gauss map of f .
Suppose that K is bounded near p, K , 0, and ν at p is a Whitney cusp.
Note: ν̂′′ , 0 at p.
Then µν is given by

µν =
det(Dt ν̂

′, DtDt ν̂
′, ν̂)

|Dt ν̂′ |5/2

�����
t=0

,

where Dt ν̂
′ = ν̂′′ − ⟨ν̂′′, ν̂⟩ ν̂, ν̂(t) = ν ◦ γ(t) and p = γ(0).

Lemma

µν =
2κs(p)√
|κ′t (p)|

· (positive constant).
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By the previous lemma, we have the following.

Theorem 2
f : U → R3; C∞ map, p; cuspidal edge of f , ν; Gauss map of f .
Suppose that K is bounded near p, K , 0, and ν at p is a cusp.
Then p; positive cusp (resp. negative cusp) of ν
⇐⇒ κs(p) > 0 (resp. κs(p) < 0).

By this theorem, we have the following.

Corollary
Under the same assumptions as in Theorem 2,
if K > 0 (resp. K < 0), then p; negative cusp (resp. positive cusp) of ν.
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Example

Let f : R2 → R3 be a C∞ map defined by

f (u, v) =
(
u, 3u2 +

v2

2
,

v3

3
+ u4 + u2v2

)
.

This map has a cuspidal edge at the origin and S(f ) = {v = 0}.
The Gauss map ν of f is given by

ν(u, v) =
(
8u3 − 2uv(v − 3),−2u2 − v, 1

)√
1 + (v + 2u2)2 + (8u3 − 2uv(v − 3))2

.

By direct calculations, we have

κν(u) ≡ 0,

κs(u) =
6
(
1 + 24u4 + 64u6)

√
1 + 4u2 + 64u6 (1 + 36u2 + 16u6)3/2

, κt(u) =
4u

1 + 4u2 + 64u4 .
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Example(continue)
Thus we have κs(0) = 1 > 0, κt(0) = 0 and κ′t (0) = 4 , 0.
∴ ν at the origin is a cusp.
Moreover, the Gaussian curvature K is bounded near the origin and K < 0.
In fact, K is written as

K =
2
(
−3 − 8u2 + v

)(
1 + 64u6 + v2 + u4

(
4 + 96v − 32v2

)
+ 4u2v

(
1 + 9v − 6v2 + v3

) )2

and especially K < 0 on sufficiently small neighborhood of the origin.
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Example(continue)
On the other hand, the singular locus ν̌(u) = ν(u, 0) is

ν̌(u) =
(
8u3,−2u2, 1

)
√

1 + 4u4 + 64u6
.

This has an ordinary cusp at u = 0, and the cuspidal curvature µν at u = 0 is

µν = 6 =
2κs(0)√
|κ′t (0)|

> 0.

Thus (0, 0) is a positive cusp of ν.
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Thank you for your
attention!
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