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【 Space line arrangements 】
Let A = {ℓ1, ℓ2, . . . , ℓd} be a real space line arrangement,

or a configuration, consisting of affine d-lines in Rn (n ≥ 2).

In the above example, d = 5 and there are one double point

and one triple point.
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【 Theorem 】

Let ti = ti(A) denote the number of multiple points with

multiplicity i, i = 2, . . . , d. The vector (td, td−1, . . . , t2) pro-

vides a degree of degeneration of the line arrangement A
combinatorially. Set g := d+

∑d
i=2(i− 1)ti. Then we have:

Theorem. The complementM(A) := Rn\(∪d
i=1ℓi) of the

real line arrangement A is diffeomorphic to the interior of

n-ball Bg with trivially attached g-handles of index n− 2.

Corollary. M(A) is homotopy equivalent to the bouquet∨g
k=1 S

n−2.
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n = 3

...g
...g~~

The topology of complements of real space line arrangements

is completely determined by the combinational data, g :=

d +
∑d

i=2(i − 1)ti, which is given by the number of lines d

and the numbers of multiple points td, td−1, . . . , t2.
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【 Remarks 】

The relative classification problem of line arrangements

(Rn,∪d
i=1ℓi) is classical and very difficult. Moreover it has

much difference in differentiable category and topological

category. In fact even the local classification near multi-

ple points of high multiplicity i, i ≥ n + 2 has moduli in

differentiable category while it has no moduli in topological

category.

The classification of complements turns out to be easier

and simpler.
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【 Example 】

For the line arrangement

we have d = 5, t2 = 1, t3 = 1 and g = 5+1+2 = 8. Therefore

the complement is diffeomorphic to interior of 3-ball B8 with

trivially attached 8 number of handles of index 1.
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【 Trivial handle attachments 】

The pair (Di×Dj , Di×∂(Dj)) with i+j = n, 0 ≤ i, 0 ≤ j,

is called an n-dimensional handle of index j

Let M be a differentiable n-manifold with a connected

boundary ∂M .

Let p ∈ ∂M . A coordinate neighbourhood (U,ψ), ψ :

U → ψ(U) ⊂ Rn−1 ×R around p in M is called adapted if

ψ : U → Rn is a homeomorphism of U and ψ(U)∩ {xn ≤ 0}
which maps U ∩ ∂M to Rn−1 = {xn = 0}.
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A handle attaching map φ :
⊔ℓ

k=1(D
i
k × ∂(Dj

k)) → ∂M

is called trivial if there exist disjoint adapted coordinate

neighbourhoods (U1, ψ1), . . . , (Uℓ, ψℓ) onM such that φ(Di
k×

∂(Dj
k)) ⊂ Uk and each ψk ◦ φ : Di

k × ∂(Dj
k) → Rn−1 ×R is

the “standard” attachment for k = 1, . . . , ℓ.

Trivial

handle attachments: the cases n = 3, j = 1, ℓ = 1 and

n = 4, j = 2, ℓ = 2
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Let n ≥ 2.

We consider line arrangements in Rn or more generally consider

a subset X in Rn which is a union of finite number of closed line

segments and half lines. Then X may be regarded as a finite graph

(with non-compact edges) embedded as a closed set in Rn.

Take a generic hight function h : Rn → R. After a rotation of

Rn, we may suppose h(x) = xn.

Set M = Rn \X and, for any c ∈ R,

M≤c := {x ∈ M | xn ≤ c}, M<c := {x ∈ M | xn < c}.

Let V ⊂ X be the totality of vertices of X.

Set V = {u1, u2, . . . , ur}, ci = h(ui) and

C = h(V ) = {c1, c2, . . . , cr} with c1 < c2 < · · · < cr.
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s

r
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Lemma (Topological bifurcation). Let u be a vertex of X and

let c = h(u). Let s = s(u) denote the number of edges of X which

are adjacent to u from above with respect to h.

Then, for a sufficiently small ε > 0, the open set M<c+ε is

diffeomorphic to the interior of M≤c−ε
∪

φ(
⊔s−1

i=1 (D
2
i × Dn−2

i )),

obtained by an attaching map

φ :

s−1⊔
i=1

D2×∂(Dn−2) −→ h−1(c−ε)\X = ∂(M≤c−ε) ⊂ M≤c−ε,

of (s−1) number of trivial handles of index n−2, provided s ≥ 1.

In particular M<c+ε is diffeomorphic to M<c−ε if s = 1.

If s = 0 then M<c+ε is diffeomorphic to the interior

of M≤c−ε
∪

φ(D
1 × Dn−1) obtained by an attaching map

φ : D1 × ∂(Dn−1) → h−1(c− ε) \X of a (not necessarily trivial)

handle of index n− 1.
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s = 2, r = 0

~~

“Digging a tunnel is same as bridging for the topology of ground”.
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The same argument works for any r. Note that comple-

ments to “X” and “H” are diffeomorphic.

~~ ~~

The case s = 2, r = 2.
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In general, for any s ≥ 2, the topological change is obtained

by attaching trivial s− 1 handles of index n− 2.

~~ ~~

s

r

s 1

The case s = 3, r = 2.
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In the case s = 0, contrarily to above, the change of diffeo-

morphism type is obtained by an attaching not necessarily

trivial handle.

Topological change in the case s = 0.
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【 Proof of Theorem 】

For a c ∈ R with c≪ 0, M≤c (resp. M<c) is diffeomorphic

to the half space {xn ≤ c} (resp. {xn < c} deleted d number

of half lines. By passing a multiple point of multiplicity i,

M≤c is obtained by attaching i− 1 number of trivial handles

of index n − 2. After passing all multiple points, M≤c is

diffeomorphic to the space obtained by attaching
∑d

i=2(i −
1)ti number of trivial handles of index n−2 to the half space

deleted d number of half lines. Then M<c is diffeomorphic

to the interior of Bg. For a c ∈ R with 0 ≪ c, M<c is

diffeomorphic to M(A). Hence we have Theorem. 2
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