Topology of complements to real affine space line arrangements

Goo Ishikawa and Motoki Oyama

Department of Mathematics, Hokkaido University, Japan

$$
\text { March 22nd } 2019
$$

Special Session on Real and Complex Singularities
Spring Central and Western Joint Sectional Meeting, AMS
University of Hawaii at Manoa, Honolulu, Hawaii, USA

$$
\text { March 22nd-24th } 2019
$$

【 Space line arrangements】

Let $\mathcal{A}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{d}\right\}$ be a real space line arrangement, or a configuration, consisting of affine d-lines in $\mathbf{R}^{n}(n \geq 2)$.

In the above example, $d=5$ and there are one double point and one triple point.

【 Theorem】

Let $t_{i}=t_{i}(\mathcal{A})$ denote the number of multiple points with multiplicity $i, i=2, \ldots, d$. The vector $\left(t_{d}, t_{d-1}, \ldots, t_{2}\right)$ provides a degree of degeneration of the line arrangement \mathcal{A} combinatorially. Set $g:=d+\sum_{i=2}^{d}(i-1) t_{i}$. Then we have:

Theorem. The complement $M(\mathcal{A}):=\mathbf{R}^{n} \backslash\left(\cup_{i=1}^{d} \ell_{i}\right)$ of the real line arrangement \mathcal{A} is diffeomorphic to the interior of n-ball B_{g} with trivially attached g-handles of index $n-2$.

Corollary. $M(\mathcal{A})$ is homotopy equivalent to the bouquet $\bigvee_{k=1}^{g} S^{n-2}$.

$$
n=3
$$

The topology of complements of real space line arrangements is completely determined by the combinational data, $g:=$ $d+\sum_{i=2}^{d}(i-1) t_{i}$, which is given by the number of lines d and the numbers of multiple points $t_{d}, t_{d-1}, \ldots, t_{2}$.

【 Remarks】

The relative classification problem of line arrangements $\left(\mathbf{R}^{n}, \cup_{i=1}^{d} \ell_{i}\right)$ is classical and very difficult. Moreover it has much difference in differentiable category and topological category. In fact even the local classification near multiple points of high multiplicity $i, i \geq n+2$ has moduli in differentiable category while it has no moduli in topological category.

The classification of complements turns out to be easier and simpler.

【 Example】

For the line arrangement

we have $d=5, t_{2}=1, t_{3}=1$ and $g=5+1+2=8$. Therefore the complement is diffeomorphic to interior of 3 -ball B_{8} with trivially attached 8 number of handles of index 1 .

【 Trivial handle attachments 】

The pair $\left(D^{i} \times D^{j}, D^{i} \times \partial\left(D^{j}\right)\right)$ with $i+j=n, 0 \leq i, 0 \leq j$, is called an n-dimensional handle of index j

Let M be a differentiable n-manifold with a connected boundary ∂M.

Let $p \in \partial M$. A coordinate neighbourhood $(U, \psi), \psi$: $U \rightarrow \psi(U) \subset \mathbf{R}^{n-1} \times \mathbf{R}$ around p in M is called adapted if $\psi: U \rightarrow \mathbf{R}^{n}$ is a homeomorphism of U and $\psi(U) \cap\left\{x_{n} \leq 0\right\}$ which maps $U \cap \partial M$ to $\mathbf{R}^{n-1}=\left\{x_{n}=0\right\}$.

A handle attaching map $\varphi: \bigsqcup_{k=1}^{\ell}\left(D_{k}^{i} \times \partial\left(D_{k}^{j}\right)\right) \rightarrow \partial M$ is called trivial if there exist disjoint adapted coordinate neighbourhoods $\left(U_{1}, \psi_{1}\right), \ldots,\left(U_{\ell}, \psi_{\ell}\right)$ on M such that $\varphi\left(D_{k}^{i} \times\right.$ $\left.\partial\left(D_{k}^{j}\right)\right) \subset U_{k}$ and each $\psi_{k} \circ \varphi: D_{k}^{i} \times \partial\left(D_{k}^{j}\right) \rightarrow \mathbf{R}^{n-1} \times \mathbf{R}$ is the "standard" attachment for $k=1, \ldots, \ell$.

Trivial
handle attachments: the cases $n=3, j=1, \ell=1$ and

$$
n=4, j=2, \ell=2
$$

Let $n \geq 2$.

We consider line arrangements in \mathbf{R}^{n} or more generally consider a subset X in \mathbf{R}^{n} which is a union of finite number of closed line segments and half lines. Then X may be regarded as a finite graph (with non-compact edges) embedded as a closed set in \mathbf{R}^{n}.

Take a generic hight function $h: \mathbf{R}^{n} \rightarrow \mathbf{R}$. After a rotation of \mathbf{R}^{n}, we may suppose $h(x)=x_{n}$.

Set $M=\mathbf{R}^{n} \backslash X$ and, for any $c \in \mathbf{R}$,

$$
M_{\leq c}:=\left\{x \in M \mid x_{n} \leq c\right\}, \quad M_{<c}:=\left\{x \in M \mid x_{n}<c\right\} .
$$

Let $V \subset X$ be the totality of vertices of X.
Set $V=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}, c_{i}=h\left(u_{i}\right)$ and
$C=h(V)=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ with $c_{1}<c_{2}<\cdots<c_{r}$.

Lemma (Topological bifurcation). Let u be a vertex of X and let $c=h(u)$. Let $s=s(u)$ denote the number of edges of X which are adjacent to u from above with respect to h.

Then, for a sufficiently small $\varepsilon>0$, the open set $M_{<c+\varepsilon}$ is diffeomorphic to the interior of $M_{\leq c-\varepsilon} \bigcup_{\varphi}\left(\bigsqcup_{i=1}^{s-1}\left(D_{i}^{2} \times D_{i}^{n-2}\right)\right)$, obtained by an attaching map
$\varphi: \bigsqcup_{i=1}^{s-1} D^{2} \times \partial\left(D^{n-2}\right) \longrightarrow h^{-1}(c-\varepsilon) \backslash X=\partial\left(M_{\leq c-\varepsilon}\right) \subset M_{\leq c-\varepsilon}$,
of $(s-1)$ number of trivial handles of index $n-2$, provided $s \geq 1$.
In particular $M_{<c+\varepsilon}$ is diffeomorphic to $M_{<c-\varepsilon}$ if $s=1$.
If $s=0$ then $M_{<c+\varepsilon}$ is diffeomorphic to the interior of $M_{\leq c-\varepsilon} \bigcup_{\varphi}\left(D^{1} \times D^{n-1}\right)$ obtained by an attaching map $\varphi: D^{1} \times \partial\left(D^{n-1}\right) \rightarrow h^{-1}(c-\varepsilon) \backslash X$ of a (not necessarily trivial) handle of index $n-1$.
$s=2, r=0$

"Digging a tunnel is same as bridging for the topology of ground".

The same argument works for any r. Note that complements to "X" and "H" are diffeomorphic.

The case $s=2, r=2$.

In general, for any $s \geq 2$, the topological change is obtained by attaching trivial $s-1$ handles of index $n-2$.

The case $s=3, r=2$.

In the case $s=0$, contrarily to above, the change of diffeomorphism type is obtained by an attaching not necessarily trivial handle.

Topological change in the case $s=0$.

【 Proof of Theorem】

For a $c \in \mathbf{R}$ with $c \ll 0, M_{\leq c}$ (resp. $M_{<c}$) is diffeomorphic to the half space $\left\{x_{n} \leq c\right\}$ (resp. $\left\{x_{n}<c\right\}$ deleted d number of half lines. By passing a multiple point of multiplicity i, $M_{\leq c}$ is obtained by attaching $i-1$ number of trivial handles of index $n-2$. After passing all multiple points, $M_{\leq c}$ is diffeomorphic to the space obtained by attaching $\sum_{i=2}^{d}(i-$ 1) t_{i} number of trivial handles of index $n-2$ to the half space deleted d number of half lines. Then $M_{<c}$ is diffeomorphic to the interior of B_{g}. For a $c \in \mathbf{R}$ with $0 \ll c, M_{<c}$ is diffeomorphic to $M(\mathcal{A})$. Hence we have Theorem.

For details, please see the preprint:
Goo Ishikawa, Motoki Oyama, Topology of complements to real affine space line arrangements, http://www.math.sci.hokudai.ac.jp/~ishikawa/preprint.html or
arXiv:1811.01521 [math.DG].

Thank you for your attention.

