Stability of non-proper functions

Kenta Hayano (Keio University)

24, March 2019, AMS meeting@University of Hawaii

(cf. arXiv:1809.02332)

Assume that mfd's are C^{∞} & have no ∂ unless otherwise noted.

Here, $f: N \to P$: proper : $\Leftrightarrow \forall K \subset P$: compact, $f^{-1}(K)$: compact

a function is a C^{∞} -mapping to \mathbb{R} (i.e. $P = \mathbb{R}$).

 \diamondsuit Plan of the talk

§.1 Introduction (definitions & background)

§.2 Main Result

§.3 Applications

§.1 Introduction

♦ Notations

- $C^\infty(N,P):=\{f:N o P:C^\infty- ext{mapping}\}$ We endow $C^\infty(N,P)$ w/ Whitney $C^\infty- ext{topology}$
- $\operatorname{Diff}(N) \subset C^\infty(N,N)$: set of self-diffeomorphisms
- $\Sigma(f) := \{x \in N \mid \operatorname{rank}(df_x) < \dim P\}$ for $f \in C^{\infty}(N, P)$ $\Delta(f) := f(\Sigma(f))$: discriminant of f
- $\Gamma(E)$: set of sections of E : vect. bdl. over N $\Gamma(E)_S$: set of germs of sections of E at $S \subset N$: finite set

- \diamond Various notions of stability (1/2)
- $f \in C^\infty(N,P)$: stable

 $\begin{aligned} :\Leftrightarrow \exists \mathcal{U} \subset C^{\infty}(N,P) : \text{neighborhood of } f \\ \exists (\Theta,\theta) : \mathcal{U} \to \text{Diff}(N) \times \text{Diff}(P) : \text{map} \\ \text{s.t. } \forall g \in \mathcal{U}, \theta(g) \circ g \circ \Theta(g) = f. \end{aligned}$

• $f \in C^{\infty}(N, P)$: strongly stable : $\Leftrightarrow \exists \mathcal{U} \subset C^{\infty}(N, P)$: neighborhood of f $\exists (\Theta, \theta) : \mathcal{U} \to \text{Diff}(N) \times \text{Diff}(P)$: continuous map s.t. $\forall g \in \mathcal{U}, \theta(g) \circ g \circ \Theta(g) = f$.

\diamond Various notions of stability (2/2)

- $f \in C^\infty(N, P)$: infinitesimally stable
 - $: \Leftrightarrow \Gamma(f^*TP) = tf(\Gamma(TN)) + \omega f(\Gamma(TP))$, where

$$tf: \Gamma(TN) o \Gamma(f^*TP)$$
, $tf(\xi) = df \circ \xi$

$$\omega f: \Gamma(TP)
ightarrow \Gamma(f^*TP)$$
, $\omega f(\eta) = \eta \circ f$.

• $f \in C^{\infty}(N, P)$: locally stable : $\Leftrightarrow \forall y \in \Delta(f), \forall S \subset f^{-1}(y)$: finite, $\Gamma(f^*TP)_S = tf(\Gamma(TN)_S) + \omega f(\Gamma(TP)_{\{y\}}).$

♦ Stability of proper mappings

• f : proper \Rightarrow all the stabilities are equivalent (Mather).

 $(f: ext{proper}: \Leftrightarrow orall K \subset P: ext{compact}, \ f^{-1}(K) \subset N: ext{compact})$

- In general, it is (relatively) easy to check local stability (Mather).
 - e.g. $f: N \to \mathbb{R}$: (not necessarily proper) function is locally stable $\Leftrightarrow f$: Morse function, that is, $- \forall x \in \Sigma(f), \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{i,j} \neq 0$ $- f|_{\Sigma(f)}$: inj.

Thus, it is easy to check stability of proper mappings!!

♦ Motivating problem 1

Problem 1

How can we detect (strong) stability of non-proper functions? e.g. Is $f(x,y) = x^2 - y^2$ stable? (due to Ichiki) Note that f is **NOT** strongly stable!! (will be seen later)

♦ Remarks on problem 1

Problem 1

How can we detect (strong) stability of non-proper functions? e.g. Is $f(x,y)=x^2-y^2$ stable? (due to Ichiki)

• f : inf. stable \Leftrightarrow f : loc. stable & $f|_{\Sigma(f)}$: proper (Mather).

In particular, infinitesimal stability is easily checked.

(since it is easy to check local stability.)

However, it is in general difficult to check (strong) stability!

Remarks on problem 1

Problem 1

How can we detect (strong) stability of non-proper functions? e.g. Is $f(x,y)=x^2-y^2$ stable? (due to Ichiki)

• (Dimca) $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$: stable $\Leftrightarrow f$: locally stable & $\Delta(f) \cap (\mathcal{S}(f) \cup L(f)) = \emptyset$, where $L(f) = \left\{ y \in \mathbb{R} \mid y = \lim_{x \to \infty} f(x) \text{ or } \lim_{x \to -\infty} f(x) \right\}$ $\mathcal{S}(f) = \left\{ \lim_{i \to \infty} f(x_i) \in \mathbb{R} \mid \{x_i\} : \begin{array}{l} \text{sequence in } \Sigma(f) \text{ without} \\ \text{accumulation points} \end{array} \right\}$

Thus, it is (somewhat) easy to check stability of $f \in C^{\infty}(\mathbb{R},\mathbb{R})$.

Example $f:\mathbb{R} o\mathbb{R},\;f(x):=\exp(x)\sin x.$

Since
$$f^{(k)}(x) = 2^{k/2} \exp(x) \sin\left(x + rac{k\pi}{4}
ight)$$
, it is easy to see:

$$ullet$$
 $\Sigma(f)=iggl\{rac{(4n+3)\pi}{4}\in\mathbb{R}\ \Big|\ n\in\mathbb{Z}iggr\}$,

• f : Morse func. (i.e. $f|_{\Sigma(f)}$: inj. & $orall x \in \Sigma(f)$, $f^{(2)}(x)
eq 0$).

Furthermore, $\mathcal{S}(f) = L(f) = \{0\} \& 0 \not\in \Delta(f) \Rightarrow f$: stable

On the other hand, $(f|_{\Sigma(f)})^{-1}([-1,1])$: infinite discrete set

 $\Rightarrow f$: NOT infinitesimally stable (: $f|_{\Sigma(f)}$: not proper).

♦ Motivating problem 2

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable \Rightarrow infinitesimally stable?

♦ Remarks on problem 2

Problem 2

How are the four stabilities related for non-proper functions? In particular, strongly stable \Rightarrow infinitesimally stable?

- f : strongly stable \Rightarrow f : stable (obvious).
- f : stable \Rightarrow f : locally stable (Mather).
- f : inf. stable \Leftrightarrow f : loc. stable & $f|_{\Sigma(f)}$: proper (Mather).

♦ Remarks on problem 2

• f : strongly stable \Rightarrow f : quasi-proper (du Plessis-Vosegaard)

f: quasi-proper : $\Leftrightarrow \exists V\subset P$: neighborhood of $\Delta(f)$ s.t. $f|_{f^{-1}(V)}:f^{-1}(V) o V$: proper

• Using the results we have explained, we can show:

♦ Motivating problems (Summary)

- 1. detecting (strong) stability of non-proper functions. e.g. <u>Q</u>. (due to Ichiki) : Is $f(x, y) = x^2 - y^2$ stable? Note that f : NOT quasi-proper (thus NOT strongly stable).
- 2. strongly stable \Rightarrow infinitesimally stable?

The other implications are known to be True/False as follows:

§.2 Main result

Theorem (H.)

 $f \in C^\infty(N,\mathbb{R})$: Morse function.

 $au(f):=\{y\in \mathbb{R}\mid f:$ "end-trivial" at $y\}.$

(the definition of end-triviality will be given soon...)

1.
$$\Delta(f) \subset \tau(f) \Rightarrow f$$
 : stable.

2. f : strongly stable \Leftrightarrow f : quasi-proper

f : <code>quasi-proper</code> : $\Leftrightarrow \exists V \subset P$: neighborhood of $\Delta(f)$ s.t.

$$f|_{f^{-1}(V)}:f^{-1}(V)
ightarrow V$$
 : proper

♦ Remarks on the main result

- As we explained, f : strongly stable $\Rightarrow f$: quasi-proper for $f \in C^{\infty}(N, P)$ (du Plessis-Vosegaard) We indeed show the converse of it for the case $P = \mathbb{R}$.
- Dimca's condition $(\Delta(f) \cap (\mathcal{S}(f) \cup L(f)) = \emptyset)$ is equivalent to ours $(\Delta(f) \subset \tau(f))$. Indeed, $\tau(f) = \mathbb{R} \setminus (\mathcal{S}(f) \cup L(f))$ for $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$, where $L(f) = \left\{ y \in \mathbb{R} \mid y = \lim_{x \to \infty} f(x) \text{ or } \lim_{x \to -\infty} f(x) \right\}$, $\mathcal{S}(f) = \left\{ \lim_{i \to \infty} f(x_i) \in \mathbb{R} \mid \{x_i\} : \frac{\text{sequence in } \Sigma(f) \text{ without }}{\text{accumulation points}} \right\}$.

♦ End-triviality

 $V \subset N$: neighborhood of the end: $\Leftrightarrow N \setminus V$: compact

Definition $f \in C^{\infty}(N, P)$, $y \in P$.

f is end-trivial at y if $orall K \subset N$: compact set,

 $\exists W \subset P$: neighborhood of y,

 $\exists V \subset N$: open neighborhood of the end with $V \subset N \setminus K$ s.t.

- $f^{-1}(y) \cap V$ contains no critical points of f,
- $\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V$: diffeomorphism

s.t. $f \circ \Phi = p_2 : (f^{-1}(y) \cap V) \times W \to W$: projection

f is end-trivial at y if $\forall K \subset N$: compact set, $\exists W \subset P$: nbh. of y,

 $\exists V \subset N$: open nbh. of the end with $V \subset N \setminus K$ s.t.

- $f^{-1}(y) \cap V$ contains no critical points of f,
- $\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V$: diffeomorphism
 - s.t. $f \circ \Phi = p_2: (f^{-1}(y) \cap V) imes W o W$: projection

♦ Remarks on end-triviality

- Roughly, end-triviality at y implies that f is the projection "around the end of $f^{-1}(\operatorname{nbh.}$ of y) (or $f^{-1}(W)$)".
- Arbitrariness of K merely guarantees that we can take V "as small as we want" (see the blue parts).

 $W \subset P$: nbh. of y, $V \subset N$: open nbh. of the end s.t.

• $f^{-1}(y) \cap V$ contains no critical points of f,

• $\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V$: diffeomorphism s.t. $f \circ \Phi = p_2 : (f^{-1}(y) \cap V) \times W \to W$: projection

Example The fig. is contours of $f(x,y) := x^2 - y^2$ in \mathbb{R}^2 .

Blue : outside of (sufficiently large) disk (which is V with $K \subset N \setminus V$)

Red : preimage of nbh. of $0 \in \mathbb{R}$ (which is $f^{-1}(W)$ for y=0)

One can regard $f = p_2$ on Blue \cap Red. (i.e. $\exists \Phi$ with the desired property)

Thus, f is end-trivial at 0.

♦ Main result (Again)

Theorem (H.)

 $f \in C^\infty(N, \mathbb{R})$: Morse function.

$$au(f):=\{y\in \mathbb{R}\mid f: ext{ end-trivial at }y\}.$$

1.
$$\Delta(f)\subset au(f) \Rightarrow f$$
 : stable.

2. f : strongly stable \Leftrightarrow f : quasi-proper

f: quasi-proper : $\Leftrightarrow \exists V\subset P$: neighborhood of $f(\mathrm{Crit}(f))$ s.t. $f|_{f^{-1}(V)}:f^{-1}(V)\to V \text{ : proper}$

§.3 Applications

♦ detecting stability

Example $f: \mathbb{R}^2 o \mathbb{R}$, $f(x,y) = x^2 - y^2$.

 $\Delta(f) = \{0\}$ and $0 \in \tau(f)$ (as we checked) $\Rightarrow f$ is stable. In general...

 $\begin{array}{l} \textbf{Corollary 1 (H.)} \\ f \in C^{\infty}(\mathbb{R}^n,\mathbb{R}) : \text{Morse \& Nash function} \\ & (\text{e.g. polynomial function}) \end{array} \\ \nabla f: \mathbb{R}^n \to \mathbb{R}^n : \text{gradient of } f. \\ \text{Suppose that } \mathcal{A}\{x_i\} : \text{sequence in } \mathbb{R}^n \text{ w/o accumulation points} \\ \text{s.t. } \lim_{i \to \infty} \nabla f(x_i) = 0. \text{ Then } f \text{ is stable.} \end{array}$

Corollary 2 (H.) $f: \mathbb{R}^n \to \mathbb{R}$: Nash function (not necessarily locally stable) $\exists \Sigma \subset \mathbb{R}^n$: Lebesgue measure zero set s.t. $\forall (a_1, \dots, a_n) \in \mathbb{R}^n \setminus \Sigma$ the function $f_a(x_1, \dots, x_n) = f(x_1, \dots, f_n) + \sum_{i=1}^n a_i x_i$ is stable.

The proof relies on Corollary 1 and Ichiki's result on transversality of generic linear perturbations of mappings (arXiv:1607.03220).

♦ strong & infinitesimal stability

Corollary 3 (H.)

The function $f(x) = \exp(-x^2) \sin x$ is strongly stable but

NOT infinitesimally stable.

We indeed show that f : Morse function, quasi-proper

& $f|_{\Sigma(f)}$: NOT proper.

 $(f\in C^\infty(N,\mathbb{R})$: inf. stable $\Leftrightarrow f$: Morse & $f|_{\Sigma(f)}$: proper (Mather))

♦ Summary (what we gave)

- a sufficient condition for (strong) stability of $f \in C^\infty(N,\mathbb{R})$.
- the answer to the following questions:

1. Is
$$f(x,y) = x^2 - y^2$$
 stable? Yes!

2. strongly stable \Rightarrow infinitesimally stable? No!

Thank you for your attention!!