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Assume that mfd’'s are C°° & have no 9 unless otherwise noted.

Here, f : N — P : proper :< VK C P : compact, f_l(K) : compact
a function is a C°°—mapping to R (i.e. P = R).



$ Plan of the talk

§.1 Introduction (definitions & background)

§.2 Main Result

§.3 Applications




§.1 Introduction

& Notations
e C°(N,P):={f: N— P : C*>mapping}
We endow C°°(N, P) w/ Whitney C°°—topology

e Diff(N) C C°°(N, N) : set of self-diffeomorphisms

e 3(f):={x € N | rank(dfy) < dim P} for f € C°°(N, P)
A(f) := f(X(f)) : discriminant of f

e I'(E) : set of sections of E : vect. bdl. over N
I'(E)g : set of germs of sections of E at S C N : finite set



& Various notions of stability (1/2)
o f € C°(N,P) : stable
<= dU C C°°(N, P) : neighborhood of f
3(0,0) : U — Diff(N) x Diff(P) : map
s.t. Vg eU,0(g) ogoBO(g) = f.

o f € C°°(N,P) : strongly stable
<= JdU C C°°(N, P) : neighborhood of f
3(0,0) : U — Diff(N) x Diff(P) : continuous map
s.t. Vg eU,0(g) ogoBO(g) = f.



& Various notions of stability (2/2)
e f € C°°(N, P) : infinitesimally stable
:=T(f*TP) = tf(T(TN)) + wf(L(TP)), where
tf :T(T'N) — L(f*TP), tf(§) =df o&,
wf :T(TP) - T(f*TP), wf(n) =nof.

o f € C°°(N,P) : locally stable
= Vy € A(F),VS C f~1(y) : finite,
L(f*TP)g =tf(I'(T'N)g) + wf(L(TP)g,1).



& Stability of proper mappings
e f : proper = all the stabilities are equivalent (Mather).

(f : proper :<= VK C P : compact, f~1(K) C N : compact)

e In general, it is (relatively) easy to check local stability (Mather).

e.g. f: N — R : (not necessarily proper) function is locally stable

& f - Morse function, that is,

0 f
— Va € 3(f), det (6 8wj(m)>. .;é 0

w .
t 1,7

— f|2(f) > inj.

Thus, it is easy to check stability of proper mappings!!



& Motivating problem 1

Problem 1

How can we detect (strong) stability of non-proper functions?
e.g. Is f(x,y) = x? — y? stable? (due to Ichiki)
Note that f is NOT strongly stable!! (will be seen later)




$ Remarks on problem 1

Problem 1

How can we detect (strong) stability of non-proper functions?
e.g. Is f(x,y) = x? — y? stable? (due to Ichiki)

e f :inf. stable & f : loc. stable & f|2(f) . proper (Mather).

In particular, infinitesimal stability is easily checked.

(since it is easy to check local stability.)

However, it is in general difficult to check (strong) stability!



$ Remarks on problem 1

Problem 1

How can we detect (strong) stability of non-proper functions?
e.g. Is f(x,y) = x? — y? stable? (due to Ichiki)

e (Dimca) f € C*°(R,R) : stable
< f : locally stable & A(f) N (S(f) U L(f)) = 0, where

7

L(f) = {v €|y = Jim f@)or lim f(a)]

T —r OO

5(f) = { lim f(a;) e ® \{wi} =

 2—00

sequence in 3(f) without }
accumulation points

Thus, it is (somewhat) easy to check stability of f € C°°(R, R).



Example f:R — R, f(x) := exp(x) sinx.

k
Since £%)(z) = 2F/2 exp(x) sin (:1: + Tﬂ-) it is easy to see:

(4n + 3)7
4

oZ(f):{ ER‘nEZ},
e f : Morse func. (i.e. f|2(f) inj. & Ve € X(f), f(z)(:c) #+0).
Furthermore, S(f) = L(f) = {0} & 0 & A(f) = f : stable

On the other hand, (f|xs(f))~'([—1,1]) : infinite discrete set

= f : NOT infinitesimally stable (.. f|s(y) : not proper).



o Motivating problem 2
Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable = infinitesimally stable?




$ Remarks on problem 2
Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable = infinitesimally stable?

e f : strongly stable = f : stable (obvious).
e f : stable = f : locally stable (Mather).

e f :inf. stable & f : loc. stable & f|2(f) . proper (Mather).



$ Remarks on problem 2
e f : strongly stable = f : quasi-proper (du Plessis-VVosegaard)

f : quasi-proper :< dV C P : neighborhood of A(f) s.t.
flp-1(vy : f~1(V) = V : proper

e Using the results we have explained, we can show:

stable| 5 [P
AL A
locally |€ inf.

stable |77~~~ > | stable




& Motivating problems (Summary)
1. detecting (strong) stability of non-proper functions.
e.g. Q. (due to Ichiki) : Is f(z,y) = x* — y? stable?
Note that f : NOT quasi-proper (thus NOT strongly stable).

2. strongly stable = infinitesimally stable?

The other implications are known to be True/False as follows:

stable] €75 "ae.
A F A

$ \“;}' :

locally [& inf.

stable | =777~ 2| stable




§.2 Main result

Theorem (H.)

f € C°>°(N,R) : Morse function.
7(f):={y € R | f: “end-trivial” at y}.
(the definition of end-triviality will be given soon...)
1. A(f) C 7(f) = f : stable.

2. f : strongly stable & f . quasi-proper

f : quasi-proper :<< 3V C P : neighborhood of A(f) s.t.
fly—1vy s F7H(V) — V : proper



& Remarks on the main result
e As we explained, f : strongly stable = f : quasi-proper
for f € C°°(N, P) (du Plessis-Vosegaard)

We indeed show the converse of it for the case P = R.

e Dimca’'s condition (A(f) N (S(f)U L(f)) =0) is
equivalent to ours (A(f) C 7(f)). Indeed,
7(f) = R\ (8(f) U L(f)) for f € C(R,R), where

(

L(f)—<y€R|y— lim_f(z) o lim ()}

r—ro0

5(f) = { lim f(a;) e ® |{wz-} =

 2— 00

sequence in 3(f) without }
accumulation points |



¢ End-triviality
V C N : neighborhood of the end:< N \ V : compact

Definition f € C°°(NN,P), y € P.
f is end-trivial at y if VK C N : compact set,
dW C P : neighborhood of v,
3V C N : open neighborhood of the end with V C N \ K s.t.
e f—1(y) NV contains no critical points of f,
e 3% : (f (Y NV)x W = f~L(W)NV : diffeomorphism
st. fo®d=pa:(fHy)NV)Xx W — W : projection




f is end-trivial at y if VK C N : compact set, AW C P : nbh. of y,
JV C N : open nbh. of the end with V. C N \ K s.t.

e f—1(y) NV contains no critical points of f,
e 1% : (fl(y) NV)x W = f~1(W) NV : diffeomorphism
st. fo® =py: (fF 1 (y)NV)x W — W : projection

S Remarks on end-triviality
e Roughly, end-triviality at y implies that f is the projection
“around the end of f=1(nbh. of y) (or f~1(W))".

e Arbitrariness of K merely guarantees that we can take V

“as small as we want” (see the blue parts).



W C P : nbh. of y, V C N : open nbh. of the end s.t.
e f~1(y) NV contains no critical points of f,
e 3 : (f(y)NV)x W = f~1{(W) NV : diffeomorphism
st. fo®d=po: (f T (y)NV)x W — W : projection

Example The fig. is contours of f(x,y) := x? — y? in R?.
Blue : outside of (sufficiently large) disk
(which is V with K C N\ V)

Red : preimage of nbh. of 0 € R

(which is f=1(W) for y = 0)

One can regard f = p2 on BlueNRed.
(i.e. d® with the desired property)
Thus, f is end-trivial at 0.




& Main result (Again)

Theorem (H.)

f € C°°(N,R) : Morse function.

7(f) := {y €R | f : end-trivial at y}.
1. A(f) C 7(f) = f : stable.

2. f . strongly stable < f : quasi-proper

f : quasi-proper :<< 3V C P : neighborhood of f(Crit(f)) s.t.
fly—1vy : F7H(V) — V : proper



§.3 Applications

O detecting stability

Example f:R? - R, f(x,y) = z? — y2.

A(f) = {0} and 0 € 7(f) (as we checked) = f is stable.

In general...

Corollary 1 (H.)

f € C>*°(R"™,R) : Morse & Nash function
(e.g. polynomial function)

Vf:R"™ — R" : gradient of f.

Suppose that A{x;} : sequence in R™ w/0 accumulation points

s.t. lim Vf(x;) =0. Then f is stable.

1— 00




Corollary 2 (H.)
f : R™ — R : Nash function (not necessarily locally stable)

33 C R™ : Lebesgue measure zero set s.t.
V(ai,...,an) € R™\ X the function

fa(@1y - osxn) = f(x1,-- 5 fn) + ) @iy

IS stable.

The proof relies on Corollary |1 and Ichiki's result on transversality

of generic linear perturbations of mappings (arXiv:1607.03220).



O strong & infinitesimal stability
Corollary 3 (H.)

The function f(x) = exp(—x?) sinx is strongly stable but
NOT infinitesimally stable.

We indeed show that f : Morse function, quasi-proper
& f|2(f) : NOT proper.

(f € C°°(N,R) : inf. stable & f : Morse & f|2(f) . proper (Mather))



$ Summary (what we gave)

e a sufficient condition for (strong) stability of f € C°°(IN,R).

e the answer to the following questions:

1. Is f(x,y) = x? — y? stable? Yes!

2. strongly stable = infinitesimally stable? NoO!

Thank you for your attention!!



