Outer metric Lipschitz classification of definable surface singularities

Andrei Gabrielov, Purdue University

Joint work with Lev Birbrair, Alexandre Fernandes, Rodrigo Mendes (Fortaleza, Brazil)

All sets and maps are definable in a polynomially bounded o-minimal structure over \mathbb{R} with the filed of exponents \mathbb{F}, e.g. semialgebraic or subanalytic with $\mathbb{F}=\mathbb{Q}$.

A surface singularity is a germ $(X, 0)$ of a two-dimensional set in \mathbb{R}^{n} with outer metric $\operatorname{dist}_{o}(x, y)=|y-x|$.

Two germs $(X, 0)$ and $(Y, 0)$ are Lipschitz equivalent if there is a bi-Lipschitz homeomorphism $(X, 0) \rightarrow(Y, 0)$.

Classification is a canonical decomposition of a germ ($X, 0$) into normally embedded Hölder triangles T_{j}, with some additional data, that define a complete discrete invariant (no moduli) of its Lipschitz equivalence class.

An arc γ is a germ of a map $\gamma:[0, \epsilon) \rightarrow X$ such that $|\gamma(t)|=t$. Tangency order $\kappa=\operatorname{tord}\left(\gamma, \gamma^{\prime}\right) \in \mathbb{F} \cup\{\infty\}$ of γ and γ^{\prime} is the smallest exponent in $\left|\gamma-\gamma^{\prime}\right|=c t^{\kappa}+\cdots$.

Let \tilde{X} be the space of all arcs. A zone is a set $Z \subset \tilde{X}$ such that for $\gamma, \gamma^{\prime} \in Z$ any arc in the Hölder triangle $T_{\gamma \gamma^{\prime}}$ bounded by γ and γ^{\prime} is in Z.

The order $\operatorname{ord}(Z)$ of a zone Z is the minimal tangency order of arcs in Z.

An arc $\gamma \in Z$ is generic if there are $\operatorname{arcs} \gamma^{\prime}, \gamma^{\prime \prime}$ in Z such that $\gamma \in T_{\gamma^{\prime} \gamma^{\prime \prime}}$ and $\operatorname{tord}\left(\gamma, \gamma^{\prime}\right)=\operatorname{tord}\left(\gamma, \gamma^{\prime \prime}\right)=\operatorname{ord}(Z)$.

A zone Z is perfect if each $\gamma \in Z$ is generic.

Special case: pizza. Let X be the union of a β-Hölder triangle T in the $x y$-plane and a graph $\{z=f(x, y)\}$ in \mathbb{R}^{3} of a continuous function over $T, f(0,0)=0$.

For $\gamma \subset T$, define $\operatorname{ord}_{\gamma} f=\operatorname{tord}\left(\gamma, \gamma^{\prime}\right)$ where $\gamma^{\prime}=(\gamma, f(\gamma))$. Let $Q(T) \subset \mathbb{F} \cup\{\infty\}$ be the set of $q=\operatorname{ord}_{\gamma} f$ for all $\gamma \subset T$.
T is elementary if $Z_{q}=\left\{\gamma \subset T\right.$, $\left.\operatorname{ord}_{\gamma} f=q\right\}$ is a zone for any $q \in Q(T)$. The width function on $Q(T)$ is defined as $\mu(q)=\operatorname{ord}\left(Z_{q}\right)$.
T is a pizza slice either if $Q(T)$ is a single point, or if $\mu(q)=a q+b$ is affine, where $a \in \mathbb{F} \backslash\{0\}$ and $b \in \mathbb{F}$. The side γ of T where μ is maximal is its base side.

A pizza is a partition of T into Hölder triangles T_{j}, each of them a pizza slice, with the toppings: exponent β_{j} of $T_{j}, Q_{j}=Q\left(T_{j}\right)$, width function $\mu_{j}(q)$ on Q_{j}, base side γ_{j} of T_{j}, sign s_{j} of f on T_{j}.

Theorem (Birbrair et al, 2017). The minimal pizza exists and is unique, up to bi-Lipschitz equivalence, for the Lipschitz contact equivalence class of f.

For a Lipschitz function f, its Lipschitz contact equivalence class is the same as Lipschitz equivalence class of the union of its graph and the $x y$-plane with respect to the outer metric.

Example. Let $f(x, y)=y^{2}-x^{3}$. Then $f=0$ on arcs $\gamma_{+}=\left\{x \geq 0, y=x^{3 / 2}\right\}$ and $\gamma_{-}=\left\{x \geq 0, y=-x^{3 / 2}\right\}$. Each of these two arcs is a "singular" zone of order ∞. There are six other boundary zones associated with the critical exponents $q=2$ and $q=3$ of f :

The set of all arcs γ such that $\operatorname{ord}_{\gamma} f=3$ consists of four zones. Three of them, Z_{+}, Z_{-}and Z_{0}, are in the right half-plane, above γ_{+}, below γ_{-}, and between γ_{+}and γ_{-}, respectively. The fourth is Z_{0}^{\prime} in the left half-plane. Each of these zones is perfect of order 3/2.

The set of all arcs γ such that $\operatorname{ord}_{\gamma} f=2$ consists of two zones, Z_{+}^{\prime} and Z_{-}^{\prime}, in the upper and lower half-planes. Each of them is perfect of order 1.

A minimal pizza for f consists of eight slices obtained by partitioning the $x y$-plane by the arcs γ_{+}, γ_{-}, and any arc selected in each of the six other boundary zones.

Multi-pizza. If there are several functions $z_{\nu}=f_{\nu}(x, y)$ defined on T, we can partition T into triangles T_{j} each of them a pizza slice for each f_{ν}, with affine width function $\mu_{\nu, j}(q)$. In addition, we may assume that the base side of T_{j} (where $\mu_{\nu, j}$ is maximal) is the same for all ν. This is called multi-pizza.

Abnormal zones are some new phenomena for general surfaces, which do not appear for graphs of functions.

An arc $\gamma \subset X$ is abnormal if there are two normally embedded Hölder triangles T and T^{\prime} in X such that $\gamma=T \cap T^{\prime}$ and $T \cup T^{\prime}$ is not normally embedded. A zone $Z \subset \tilde{X}$ is abnormal if it consists of abnormal arcs.

Example. A curve $a a^{\prime}$ in the Figure below represents β-Hölder triangle T, which is not normally embedded. The boundary arcs γ and γ^{\prime} of T represented by the points a and a^{\prime} have tangency order $\alpha>\beta$. "Generic" arcs in T are abnormal, and form an abnormal zone $Z \subset \tilde{T}$.

General surface X strategy:

A pair (T, T^{\prime}) of normally embedded Hölder triangles is transversal if $T \cup T^{\prime}$ is a subset of a normally embedded triangle. A non-transversal pair is coherent if it is biLipschitz equivalent to a slice of pizza and a graph of a Lipschitz function over it.

Using critical exponents of the distance function, we identify boundary zones in the space \tilde{X} of arcs in X and show that minimal by inclusion boundary zones are perfect. Any singular curve in X is a boundary zone.

Placing arbitrary arcs in minimal boundary zones (more than one may be needed in an abnormal zone) we decompose X into isolated arcs and normally embedded Hölder triangles so that each pair is either coherent or transversal.

Main Theorem. For a germ $(X, 0)$ of a surface with outer metric, there is a canonical (up to combinatorial equivalence) decomposition of X into isolated arcs and Hölder triangles, such that any two Hölder triangles are either coherent or transversal, with coherent triangles arranged into multi-pizza clusters.

Two such decompositions are combinatorially equivalent if there is one-to-one correspondence between their arcs and triangles, preserving all adjacency relations, tangency exponents between all isolated arcs and the boundary arcs of triangles, and all the multi-pizza parameters for the clusters of coherent triangles.

Two surface germs are outer Lipschitz equivalent if and only if their canonical decompositions are combinatorially equivalent.

Example: a complex curve. Let p and q be relatively prime, $p<q$. Then the set \tilde{X} of arcs in a germ $(X, 0)$ of the irreducible complex curve $w^{p}=z^{q}$, considered as a surface in \mathbb{R}^{4}, is a single abnormal zone.

Its canonical partition is defined by $3 p$ arcs $\gamma_{i j}$ where $1 \leq i \leq 3$ and $1 \leq j \leq p$, such that $\operatorname{tord}\left(\gamma_{i j}, \gamma_{k l}\right)=1$ for $i \neq k$ and $\operatorname{tord}\left(\gamma_{i j}, \gamma_{i k}\right)=q / p$ for $j \neq k$.

The partition consists of three groups of Hölder triangles, with p triangles in each group.

Each group is equivalent to a multi-pizza. Any two triangles in the same group are coherent with $Q=\{q / p\}$ (a single point) and $\mu=1$, and any two triangles in different groups are transversal.

