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New way to compute Segre classes of subschemes of projective
space.

Motivation: Segre classes are key ingredients in intersection theory,
and have applications to e.g., singularity theory.

Milnor number/classes, Chern-Schwartz-MacPherson classes of
singular varieties may be expressed in terms of Segre classes.
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L introduction
|—Summary

In fact, aim to compute a Segre zeta function (;(t) for any
collection I = {fy, ..., f,} of homogeneous polynomials with
coefficients in (e.g.) C.

C/(t) = Z U;ti

i>0

such that for all n

> aiH [P = s(X(,P7)
i=0

where H = hyperplane class, X(") defined by ideal generated by /.
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Newton-Okounkov bodies and Segre classes
L Introduction

L Kushnirenko's theorem

Consider the system of equations

a10x + ayxy + ey’ + -+ + azsx’y® =0
blOX + b11Xy + b02y2 + -+ b33X3y3 -0

where the coefficients a;; and bj; are general.

Question: # solutions with nonzero coordinates?

Answer: 11.

Theorem (Kushnirenko)

# solutions with nonzero coordinates

= ‘normalized’ volume of Newton polytope N

= n!'Vol,(N) in dimension n
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L introduction

|—Segre classes

Proof?
Allegedly, Khovanskii knows about 15 different proofs (as of 2007).
I may know one he does not know, using Segre classes.

Crash course on Segre classes:

m s(Z,V) € A.Z; often convenient to push-forward to A, V.

m 7V — V proper birational: 7, s(7 1(Z), V) = s(Z, V)
(‘birational invariance')

m Z = regularly embedded in V ~ s(Z, V) = c¢(NzV)™1n[Z].

These are enough to determine s(Z, V) in general!
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m Birational invariance
m Z = regularly embedded in V ~ s(Z, V) = ¢(NzV)™1n[Z].

For ZC V, letm:V =BlzV =V,
E = m71(Z) = exceptional divisor. Then

E

s(Z,V) = ms(E, V) = m(c(NgV) L N[E]) = T E

= (E—-E*+E3—...)

There are algorithms implementing this definition, for subschemes
of (e.g.) P".
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Example of computation: Z = Veronese surface in P°.

Z = image of Veronese embedding v : P? — P5.
h, H hyperplane classes in P2 P resp.: v*(H) = 2h.

c(TP® v*e(TPS 1+42h)0
s c(NzP®) = <) = C((TW)) - <(1+h)>3 — 1+ 9h+ 30K2.

s(Z,P%) = (14+9h+30n?)" 1N [Z] = (1 — 9h + 51h*) N [Z].
Remark: 51 - 64 = 3264, a famous number.

(= number of smooth conics tangent to 5 smooth conics in
general position)
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Fulton-MacPherson intersection theory:

m Want to intersect X, Y in V.
Assume X — V is a regular embedding, normal bundle N.

m Construct the fiber diagram:

XNY —Y

d

X————V

m Then X .Y = {C(g*N) N S(X M Y, Y)}dimX+dim Y —dim V-
m The key ingredient here is the Segre class.
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L introduction
|—Segre classes

XY ={c(g"N)Ns(XNY,Y)}dimX+dim Y—dim V-

If ZC XNY isa connected component, the contribution of Z to
X-Yis {c(g"N)Ns(Z,Y)}dimX+dim Y—dim V-

Applications:

m Enumerative geometry.
E.g.: How many curves of degree d are tangent to d(d + 3)/2
general lines in the plane?
> Segre class of scheme of nonreduced plane curves.
(Open! for d > 5)
Many open problems in enumerative geometry may be
translated into Segre class computations.
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Newton-Okounkov bodies and Segre classes
L introduction
|—Segre classes

m Combinatorics:
The characteristic polynomial of a hyperplane arrangement
may be written in terms of a Segre class.

m Several invariants of singularities are encoded in Segre classes.
E.g.: Donaldson-Thomas invariants.
E.g.: Milnor data. Code to compute topological Euler
characteristic of projective varieties is based on Segre classes.
X: hypersurface in nonsingular compact V, £ = O(X). Then

x(X) = /c(TV)ﬂ(c(L)_l NIX]+ (L)~ (s(UX, V)Y v L))

Recent: Generalization of this formula to arbitrary schemes
embeddable in a nonsingular variety. (arXiv:1805.11116)
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We had a system of equations

a10x + a11y + a02y® + a1x°y + a129” + 231y + anx’y’ + apxy’ + agzx’y’ = 0
{ biox + buixy + booy® + barx®y + biaxy® + bax’y + baax®y? + bipx®y® + byax®y® = 0
where the coefficients a;; and b;; are general.
Kushnirenko's theorem computes the number of solutions with
nonzero coordinates:
# = n!'Vol,(N)
S 13/3r  PaoloAluffi  Newton-Okounkov bodies and Segre classes
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L introduction

LSegre classes
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Newton polygon spanned by monomials in xi,. .., Xx,.

Have n general elements in the linear system spanned by these
monomials after homogeneization.

Base locus of linear system: solutions with some coordinate
=0.

# of ‘good’ solutions = Bézout number — contribution of
base locus. This contribution is evaluated by a Segre class.

In the example: need Segre class of subscheme Z C P?
defined by

5 .4 2_4 2 3 2.3 3.2 222 .3.2_ .33
(x2°,xyz", y°z" xyz°> , xy“z> , x°yz°, x“y° 2%, Xy z,x°y°)

There are algorithms computing Segre classes, implemented in
Macaulay 2: s(Z,P?) = 25[pt].
Kushnirenko's number = 6% — 25 = 11.
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Newton-Okounkov bodies and Segre classes
L introduction
LPlan for the rest of the talk

Take-away: Kushnirenko’s theorem would follow from results on
Segre classes of subschemes defined by monomial ideals.
Rest of the talk:

m (1) Explain computation of Segre classes of monomial ideals
— Generalization of Kushnirenko's theorem.

m (2) Explain Kaveh-Khovanskii generalization of Kushnirenko's
theorem to arbitrary ideals. (Newton-Okounkov bodies.)

m (3) Fill the diagram

: ======== #’ Kaveh—Khovanskii‘

; ﬂ

Segre classes of monomial schemes‘:> Kushnirenko
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Newton-Okounkov bodies and Segre classes

I—Segre classes of monomial schemes: integral formula

Integral formula for Segre zeta of a monomial ideal.

16 /37

Example
Say we want the Segre class of the subscheme X(") defined by
I =(y3 x%y2)inP", n>0.

Implementations for Segre class computations in Macaulay?2
(—, Eklund-Jost-Petersen, Helmer, Harris. . .)
essentially implementing the definition:

s(XM PT) = (2H—2H?*—10H>+94H*—538 H>4+-2638 H® —12010H ) N[P’]
This says

Ci(t) = 2t — 2t — 10t + 94t* — 5385 + 2638t° — 12010t + - - -
(Not clear how to get the other terms!)
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Different approach—Associate a Newton-like region to the ideal:
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I—Segre classes of monomial schemes: integral formula

3
R . 0220 .
. o)
S
1
-S2c . N

Get a rational function from each simplex, and add up the results

6t2 2t 2t(1+6¢t)

(11301 +40) T (1+40) (1440

Fact:

2t(1 + 6t)

=2t — 2t% — 10t3 + 94t* — 538¢> + 2638t° — 12010¢’
(1+4¢)

+ 524148 — 222778t° + 930478t — 3840010t + - - -
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This is nontrivial!
General statement:

m /=set of monomials in x1,...,Xxp;

m determine Newton region N in Euclidean n-space,
coordinates as, ..., an;

m then

n't"da; - - - da,

G(t) = /N (14 (a1 + -+ an)t) 1
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I—Segre classes of monomial schemes: integral formula

Example

212da; d
/ R 2t 262 — 1065 + 94t* — 538L° + -
n (L4 (a1 + a2)t)

Fact: Integral may be evaluated by sums over simplices.

() 0y,

Contribution of simplex S with vertices (a;”,. .., an

n!Vol,(S)t"
L+ @0+ 4+ ai)e)
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I—Segre classes of monomial schemes: integral formula
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Proof of the theorem:

Is independent of Kushnirenko's theorem.

Full statement of the theorem is more precise: get Segre class
in the Chow group, not just after push-forward.

Also: It works for ‘generalized monomial’ subschemes in any
variety.

Ordinary monomials: from components of a divisor with
simple normal crossings. ‘Generalized’ monomials: from
components of a divisor with ‘regular crossings’ (much weaker
requirement).

Using: principalization of generalized monomial schemes

(C. Harris).

Main tool: birational invariance of Segre classes, behavior of
Newton polytopes under blow-ups. ]
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Newton-Okounkov bodies and Segre classes

I—Segre classes of monomial schemes: integral formula

Claim: Previous theorem implies Kushnirenko’s theorem.

‘Proof’: Volumes of Newton polytopes

— Segre classes of monomial subschemes

— evaluation of contribution of base loci to linear systems
— intersection numbers

— Kushnirenko's theorem.

This gives the bottom of the diagram shown earlier:

Segre classes of monomial schemes‘:> Kushnirenko

View as a generalization of Kushnirenko: not only computing
intersection numbers, rather whole Segre class.
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Newton-Okounkov bodies and Segre classes

L Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Volumes of Newton-Okounkov bodies

There is a completely different generalization of Kushnirenko's
theorem, due to Kiumars Kaveh and Askold Khovanskii.

Kushnirenko: Monomial linear systems
KK: Any linear system.
L: linear system on (not nec. compact) V, dimV = n.

[L,...,L]: 'intersection index'.
[L,..., L] = # points of intersection of n general sections of L,
away from base locus.

Kushnirenko: For monomial L,
[L,...,L] = n!'Vol,(Newton polytope).
KK: For arbitrary L, same! but using Newton-Okounkov body.
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Newton-Okounkov bodies and Segre classes
L Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Newton-Okounkov body of a linear system L: depends on the
choice of a valuation.
Geometric version:
m Fix a flag of nonsingular subvarieties
V=Vy2 Vo122 Vo, dimVi=1;
m For f € L, f #0, associate n-tuple of integers:

m my = order of vanishing of f along V,,_1;

m If g =0 is the equation of V,_1, then f; :== fg=™|\, does not
vanish identically along V,_1;

m my := order of vanishing of f; along V,_»;

m etc. ~ v(f)=(mq,..., my,).

m Get set v(L) of tuples, from all nonzero f € L.
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Linear system Lon V;flagV =V, 2D V12 --- 2 Vo, dimV; =
~ set v(L) C Z".

Example: v(x(™ - x/") = (my,..., m,)
for the flag: Vi ={xy =+ = x,_; = 0}.
For V=P2_ . flagP? 2Pl ={x=0} 2P = {x=y=0},

— /vD w4 24 2.3 2,3 3,2 2. 2.2 3 2 3,,3\.
L= (xz>,xyz", y°z*, x*yz°, xy* 2>, x°yz*, x*y* 2%, x°y*z, x°y):

Note: Trivially in this case, #v(L) = dim L.
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L Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Fact: For ‘all' L, ‘all’ flags, #v(L) = dim L.
Idea: The growth of v(LK) as k — oo gives information about the
growth of dim(L¥), hence Hilbert polynomial-type information.

Definition
Newton-Okounkov body of L:

1
NO(L) := « closed convex hull of U EV(Lk)
k>0
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NO(L) := {closed convex hull of Ugso %V(Lk)}

Example: Again with the standard flag, and

L= (xz5 xyz*, y2z*% x?yz3,xy? 23, x3yz?, x?y? 2%, x3y%z, x3y3):




NO(L) := {closed convex hull of Ugso %V(Lk)}

Example: Again with the standard flag, and

L= (xz5 xyz*, y2z*% x?yz3,xy? 23, x3yz?, x?y? 2%, x3y%z, x3y3):

L2
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L Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

1
NO(L) := { closed convex hull of Ugsg ;v(Lk)

Example: Again with the standard flag, and

L = (xz°,xyz*, y?z* x?yz3 xy?23, x3yz?, x?y? 22, x3y?z, x3y3):
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NO(L) := {closed convex hull of Ugso %V(Lk)}

Example: Again with the standard flag, and

L= (xz5 xyz*, y2z*% x?yz3,xy? 23, x3yz2, x?y? 2%, x3y%z, x3y3):

NO(L)
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L Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Fact: Although NO(L) depends on the flag, its volume does not!
Theorem (Kaveh-Khovanskii)

[L,...,L] = n!Vol,(NO(L))

(Rough version; the actual result is more precise.)

If L is monomial, this is again Kushnirenko's theorem. This is the
rightmost arrow in the earlier diagram:

’ Kaveh-Khovanskii ‘

M
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I—Newton—Okounkov bodies and Segre classes

Newton-Okounkov bodies and Segre classes

[7]= = = = = = = = = >[ Kaveh-Khovanskii

Il
I ﬂ
V
Segre classes of monomial schemes‘:>

The task: Obtain an integral formula for Segre classes of arbitrary

projective schemes, in the style of the result for monomial schemes
presented earlier.

Natural expectation: It should work in the same way, with the
Newton polytope replaced by a suitable Newton-Okounkov body.

29/37 Paolo Aluffi Newton-Okounkov bodies and Segre classes
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LNewton—Okounkov bodies and Segre classes

I C C[xo, - .., Xn]: homogeneous ideal
P =V, DV, 122 V flag, dim V; = i.

We will construct a ‘Newton-Okounkov body' NO(/) C R"*! for
which the following will hold.

Theorem (—, 2018)

B (n+ 1)!1t"dag - - - dap,
G(t) _/ (14 (a0 + -~ + an)t)"*?

where N = complement of NO(I) in positive orthant.

e | monomial, standard flag: Then recover computation of Segre
class for monomial schemes

e For arbitrary /, use Segre classes to evaluate contribution of base
locus: Then recover Kaveh-Khovanskii.

(However, Kaveh-Khovanskii is used in the proof of main theorem!)
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LNewton—Okounkov bodies and Segre classes

Construction of Newton-Okounkov body of an ideal
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—Essentially a special case of a construction of
Lazarsfeld-Mustat3, ‘global Newton-Okounkov body'.

I: homogeneous ideal, so | = ®s>0ls.

Each /s determines a linear system ~» NO(Is), constructed as
before.

Theorem (—, 2018; but really Lazarsfeld-Mustatd)

Let § : R™ - R, (ag,...,an) — ap + -+ ap.
There is a naturally defined convex body in R™1, NO(I), such
that for s > 0 integer, 5~ %(s) N NO(I) = NO(Is).
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I—Newton—Okounkov bodies and Segre classes

To define NO(/):

m Dehomogenize | (e.g., set xp = 1);

Fix flag, corresponding valuation v on C[xy, ..., xp];

U= {(a,s,t) eR"xR?|s € 220t € Z20,a € v((I*)s) };
Y (U) = closed convex cone generated by Uj;
A(l)=2(U)Nn{t=1} CR" x RY;

NO(1) := image of A(/) in R™! via

(a1,...,an,s) =~ (s—(ar+---+an)a1,...,an).

Then NO(1)Nd=1(s) = A(J) N (R" x {s}) = NO(Is) for s > max
degree of generator of /.

(Proof: Techniques from Lazarsfeld-Mustata.)
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I—Newton—Okounkov bodies and Segre classes

Construction == main theorem

A(l) CR" x R+ RY, (a,8) — s.

A, := fiber over r.

Also: Define o; € Z by 3 7 o;[P"] = [P"] — s(X,P"),
where X = subscheme defined by /.

Lemma

For r € R, r > max degree of a generator,

Voln(A,) = zn: <7> Tnil’

i=0

Main theorem follows from this: The integral extracts the
coefficients ;. (4 technicalities to get the whole (;(t).)
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LNewton—Okounkov bodies and Segre classes

Proof of the lemma.

m Kaveh-Khovanskii ~ Vol(As) for s > 0 integer;
m Formula reduced to showing [fs,..., 5] = > 7, o;s" for
seZ, s>0;
m For this: /s determines a rational map
P - P(Y) = PNe.os T, C P" x PNs, graph of ¢s;
[ [I's] = HNS + - +g,,s)h”HNs_”, where h, H = hyperplane
classes |n Pr, PN

m Fact (—, 2003; essentially straightforward): the g,-(s) may be
expressed in terms of the Segre class of X in P”;

[, ) = &5,
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I—Newton—Okounkov bodies and Segre classes

Technicalities to get whole Segre zeta function:

D)t dag - - - da,

Define S pit’ _/ 1(”+ N a0 dan gy

>0 no(ry (L + (a0 + -+ + an)t)
Then s(X,P") = (1 — Y7, pih") N [P"], X defined by / in P";

m In particular, coefficients pog, ..., p, are independent of the
chosen flag; need to deal with p;, i > n;

m Key point: If I’ = extension of | to C[xo, ..., Xp, X,+1], then
may choose flags so that NO(I') = NO(/) x R=°.
m For such flags,

/- (n+2)!1t"2dag - - - dapy1 - (n+ )1t"dag - - - da, 4 g2
= m
no(1') (L4 (ag + - - - + apg1)t)"t3 no(1) (1+ (ap + - - - + ap)t)"+2 ©
m Inductively, extend to = mod tV for all N, done. O
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I—Newton—Okounkov bodies and Segre classes

Last comments about the proof:

m The proof depends on Kaveh-Khovanskii, and this comes at a
price, e.g., the result is ‘numerical’. Possible improvements?

m It would be desirable to get s(X,P") as a class in A, X.

m It would also be desirable to allow more general ambient
spaces: get s(X, Y) for arbitrary subschemes X of arbitrary
varieties Y.

(Both points OK for monomial ideals.)

m Blueprint for a stronger result? Extend strategy working for
monomial ideals: Use birational invariance, induction on #
blow-ups needed to principalize a given ideal.

m Main difficulty: Understand behavior of new
Newton-Okounkov body under blow-ups.
This seems very difficult.
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Thank you for your attention!
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