Paolo Aluffi

Florida State University

Special Session on Real and Complex Singularities, Honolulu, March 24th, 2019

1 Introduction

- Summary
- Kushnirenko's theorem
- Segre classes
- Plan for the rest of the talk
- 2 Segre classes of monomial schemes: integral formula
- 3 Kaveh-Khovanskii: volumes of Newton-Okounkov bodies
- 4 Newton-Okounkov bodies and Segre classes

Reference: arXiv:1809.07344

Also relevant:

—D. N. Bernstein, *The number of roots of a system of equations,* Funct. Anal. Appl. 9 (1975), 183–185.

---R. Lazarsfeld, M. Mustață, *Convex bodies associated to linear series,* Ann. Sci. Éc. Norm. Supér. (4), 42(5):783-835, 2009.

---K. Kaveh, K. Khovanskii, *Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory,* Ann. of Math. (2), 176(2):925–978, 2012.

-P. Aluffi, Segre classes as integrals over polytopes,

J. Eur. Math. Soc. 18(12):2849-2863, 2016.

-P. Aluffi, *The Segre-zeta function of an ideal*, Adv. Math. 320:1201–1226, 2017.

Summary

New way to compute Segre classes of subschemes of projective space.

Motivation: Segre classes are key ingredients in intersection theory, and have applications to e.g., singularity theory. Milnor number/classes, Chern-Schwartz-MacPherson classes of singular varieties may be expressed in terms of Segre classes.

In fact, aim to compute a Segre zeta function $\zeta_I(t)$ for any collection $I = \{f_0, \ldots, f_r\}$ of homogeneous polynomials with coefficients in (e.g.) \mathbb{C} .

$$\zeta_I(t) = \sum_{i \ge 0} \sigma_i t^i$$

such that for all n

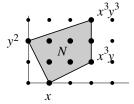
$$\sum_{i=0}^n \sigma_i H^i \cap [\mathbb{P}^n] = s(X^{(n)}, \mathbb{P}^n)$$

where H = hyperplane class, $X^{(n)}$ defined by ideal generated by I.

Introduction

Kushnirenko's theorem

Consider the system of equations



$$\begin{cases} a_{10}x + a_{11}xy + a_{02}y^2 + \dots + a_{33}x^3y^3 = 0\\ b_{10}x + b_{11}xy + b_{02}y^2 + \dots + b_{33}x^3y^3 = 0 \end{cases}$$

where the coefficients a_{ij} and b_{ij} are general.

Question: # solutions with nonzero coordinates? Answer: 11.

Theorem (Kushnirenko)

solutions with nonzero coordinates

= 'normalized' volume of Newton polytope N = $n! \operatorname{Vol}_n(N)$ in dimension n

Proof?

Allegedly, Khovanskii knows about 15 different proofs (as of 2007). I may know one he does not know, using Segre classes.

Crash course on Segre classes:

- s(Z, V) ∈ A_{*}Z; often convenient to push-forward to A_{*}V.
 π : V → V proper birational: π_{*}s(π⁻¹(Z), V) = s(Z, V) ('birational invariance')
- Z =regularly embedded in $V \rightsquigarrow s(Z, V) = c(N_Z V)^{-1} \cap [Z].$

These are enough to determine s(Z, V) in general!

Segre classes

Birational invariance

 \sim

• Z =regularly embedded in $V \rightsquigarrow s(Z, V) = c(N_Z V)^{-1} \cap [Z].$

For
$$Z \subsetneq V$$
, let $\pi : V = B\ell_Z V \to V$,
 $E = \pi^{-1}(Z) = \text{exceptional divisor. Then}$
 $s(Z, V) = \pi_* s(E, \widetilde{V}) = \pi_* (c(N_E \widetilde{V})^{-1} \cap [E]) = \pi_* \frac{E}{1+E}$
 $= \pi_* (E - E^2 + E^3 - \cdots)$

There are algorithms implementing this definition, for subschemes of (e.g.) \mathbb{P}^n .

Example of computation: Z = Veronese surface in \mathbb{P}^5 .

 $Z = \text{image of Veronese embedding } \nu : \mathbb{P}^2 \to \mathbb{P}^5.$ $h, H \text{ hyperplane classes in } \mathbb{P}^2, \mathbb{P}^5 \text{ resp.: } \nu^*(H) = 2h.$ $\rightsquigarrow c(N_Z \mathbb{P}^5) = \frac{c(T\mathbb{P}^5|_Z)}{c(TZ)} = \frac{\nu^* c(T\mathbb{P}^5)}{c(T\mathbb{P}^2)} = \frac{(1+2h)^6}{(1+h)^3} = 1 + 9h + 30h^2.$ $s(Z, \mathbb{P}^5) = (1 + 9h + 30h^2)^{-1} \cap [Z] = (1 - 9h + 51h^2) \cap [Z].$ Remark: $51 \cdot 64 = 3264$, a famous number. (= number of smooth conics tangent to 5 smooth conics in general position)

Segre classes—Applications

Fulton-MacPherson intersection theory:

- Want to intersect X, Y in V. Assume $X \hookrightarrow V$ is a regular embedding, normal bundle N.
- Construct the fiber diagram:

$$\begin{array}{c} X \cap Y \longrightarrow Y \\ g \\ \downarrow & & \downarrow \\ X \longrightarrow V \end{array}$$

- Then $X \cdot Y = \{c(g^*N) \cap s(X \cap Y, Y)\}_{\dim X + \dim Y \dim V}$.
- The key ingredient here is the Segre class.

$$X \cdot Y = \{c(g^*N) \cap s(X \cap Y, Y)\}_{\dim X + \dim Y - \dim V}.$$

If $Z \subseteq X \cap Y$ is a connected component, the *contribution* of Z to $X \cdot Y$ is $\{c(g^*N) \cap s(Z, Y)\}_{\dim X + \dim Y - \dim V}$.

Applications:

Enumerative geometry.

E.g.: How many curves of degree d are tangent to d(d+3)/2general lines in the plane? \leftrightarrow Segre class of scheme of nonreduced plane curves.

(Open! for $d \ge 5$)

Many open problems in enumerative geometry may be translated into Segre class computations.

Combinatorics:

The characteristic polynomial of a hyperplane arrangement may be written in terms of a Segre class.

Several invariants of singularities are encoded in Segre classes.
 E.g.: Donaldson-Thomas invariants.

E.g.: *Milnor data.* Code to compute topological Euler characteristic of projective varieties is based on Segre classes. *X*: hypersurface in nonsingular compact *V*, $\mathcal{L} = \mathcal{O}(X)$. Then

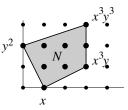
$$\chi(X) = \int c(TV) \cap \left(c(\mathcal{L})^{-1} \cap [X] + c(\mathcal{L})^{-1} \left(s(JX, V)^{\vee} \otimes_{V} \mathcal{L}\right)\right)$$

Recent: Generalization of this formula to arbitrary schemes embeddable in a nonsingular variety. (arXiv:1805.11116)

Introduction

Segre classes

Back to Kushnirenko



We had a system of equations

$$\begin{aligned} \hat{f} &= a_{11}xy + a_{02}y^2 + a_{21}x^2y + a_{12}xy^2 + a_{31}x^3y + a_{22}x^2y^2 + a_{32}x^3y^2 + a_{33}x^3y^3 = 0 \\ \hat{f}_{10}x + \hat{f}_{11}xy + \hat{f}_{02}y^2 + \hat{f}_{21}x^2y + \hat{f}_{12}xy^2 + \hat{f}_{31}x^3y + \hat{f}_{22}x^2y^2 + \hat{f}_{32}x^3y^2 + \hat{f}_{33}x^3y^3 = 0 \end{aligned}$$

where the coefficients a_{ij} and b_{ij} are general.

Kushnirenko's theorem computes the number of solutions with nonzero coordinates:

 $\# = n! \operatorname{Vol}_n(N)$

Newton-Okounkov bodies and Segre classes
Introduction
Segre classes

- Newton polygon spanned by *monomials* in x_1, \ldots, x_n .
- Have *n* general elements in the linear system spanned by these monomials after homogeneization.
- Base locus of linear system: solutions with some coordinate = 0.
- # of 'good' solutions = Bézout number contribution of base locus. This contribution is evaluated by a Segre class.
- \blacksquare In the example: need Segre class of subscheme $Z\subseteq \mathbb{P}^2$ defined by

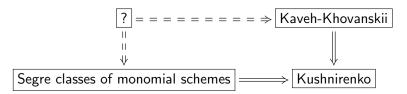
$$(xz^5, xyz^4, y^2z^4, x^2yz^3, xy^2z^3, x^3yz^2, x^2y^2z^2, x^3y^2z, x^3y^3)$$

- There are algorithms computing Segre classes, implemented in Macaulay 2: s(Z, P²) = 25[pt].
- Kushnirenko's number $= 6^2 25 = 11$.

Take-away: Kushnirenko's theorem would follow from results on Segre classes of subschemes defined by *monomial* ideals.

Rest of the talk:

- (1) Explain computation of Segre classes of monomial ideals
 → Generalization of Kushnirenko's theorem.
- (2) Explain Kaveh-Khovanskii generalization of Kushnirenko's theorem to arbitrary ideals. (*Newton-Okounkov bodies.*)
- (3) Fill the diagram



Segre classes of monomial schemes: integral formula

Integral formula for Segre zeta of a monomial ideal.

Example

Say we want the Segre class of the subscheme $X^{(n)}$ defined by $I = (y^3, x^2y^2)$ in \mathbb{P}^n , $n \ge 0$.

Implementations for Segre class computations in Macaulay2 (---, Eklund-Jost-Petersen, Helmer, Harris...) essentially implementing the definition:

$$s(X^{(n)}, \mathbb{P}^7) = (2H - 2H^2 - 10H^3 + 94H^4 - 538H^5 + 2638H^6 - 12010H^7) \cap [\mathbb{P}^7]$$

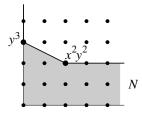
This says

$$\zeta_I(t) = 2t - 2t^2 - 10t^3 + 94t^4 - 538t^5 + 2638t^6 - 12010t^7 + \cdots$$

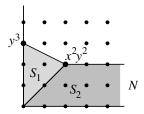
(Not clear how to get the other terms!)

Segre classes of monomial schemes: integral formula

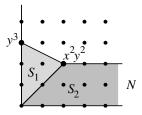
Different approach—Associate a Newton-like region to the ideal:



Subdivide *N* into 'generalized simplices':



Segre classes of monomial schemes: integral formula



Get a rational function from each simplex, and add up the results

$$\frac{6t^2}{(1+3t)(1+4t)} + \frac{2t}{(1+4t)} = \frac{2t(1+6t)}{(1+4t)}$$

Fact:

$$\frac{2t(1+6t)}{(1+4t)} = 2t - 2t^2 - 10t^3 + 94t^4 - 538t^5 + 2638t^6 - 12010t^7 + 52414t^8 - 222778t^9 + 930478t^{10} - 3840010t^{11} + \cdots$$

This is nontrivial! General statement:

- *I*=set of monomials in x_1, \ldots, x_n ;
- determine Newton region N in Euclidean n-space, coordinates a₁,..., a_n;

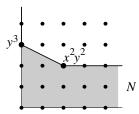
then

Theorem (-, 2013)

$$\zeta_I(t) = \int_N \frac{n! t^n da_1 \cdots da_n}{(1 + (a_1 + \cdots + a_n)t)^{n+1}}$$

Segre classes of monomial schemes: integral formula

Example



$$\int_{N} \frac{2!t^2 da_1 da_2}{(1+(a_1+a_2)t)^3} = 2t - 2t^2 - 10t^3 + 94t^4 - 538t^5 + \cdots$$

Fact: Integral may be evaluated by sums over simplices. Contribution of simplex S with vertices $(a_1^{(i)}, \ldots, a_n^{(i)})$:

$$\frac{n!\operatorname{Vol}_n(S)t^n}{\prod_i(1+(a_1^{(i)}+\cdots+a_n^{(i)})t)}$$

Proof of the theorem:

- Is independent of Kushnirenko's theorem.
- Full statement of the theorem is more precise: get Segre class in the Chow group, not just after push-forward.
- Also: It works for 'generalized monomial' subschemes in any variety.
- Ordinary monomials: from components of a divisor with simple normal crossings. 'Generalized' monomials: from components of a divisor with 'regular crossings' (much weaker requirement).
- Using: principalization of generalized monomial schemes (C. Harris).
- Main tool: birational invariance of Segre classes, behavior of Newton polytopes under blow-ups.

Claim: Previous theorem implies Kushnirenko's theorem.

'Proof': Volumes of Newton polytopes

- \rightarrow Segre classes of monomial subschemes
- \rightarrow evaluation of contribution of base loci to linear systems
- \rightarrow intersection numbers
- \rightarrow Kushnirenko's theorem.

This gives the bottom of the diagram shown earlier:

Segre classes of monomial schemes \implies Kushnirenko

View as a generalization of Kushnirenko: not only computing intersection numbers, rather whole Segre class.

Volumes of Newton-Okounkov bodies

There is a completely different generalization of Kushnirenko's theorem, due to Kiumars Kaveh and Askold Khovanskii.

Kushnirenko: *Monomial* linear systems KK: *Any* linear system.

L: linear system on (not nec. compact) V, dim V = n.

 $[L, \ldots, L]$: 'intersection index'.

[L, ..., L] = # points of intersection of *n* general sections of *L*, *away* from base locus.

Kushnirenko: For monomial L,

 $[L, \ldots, L] = n! \operatorname{Vol}_n(\operatorname{Newton polytope}).$

KK: For arbitrary *L*, same! but using Newton-Okounkov body.

Newton-Okounkov body of a linear system *L*: depends on the choice of a *valuation*.

Geometric version:

- Fix a flag of nonsingular subvarieties $V = V_n \supseteq V_{n-1} \supseteq \cdots \supseteq V_0$, dim $V_i = i$;
- For $f \in L$, $f \neq 0$, associate *n*-tuple of integers:
 - $m_1 :=$ order of vanishing of f along V_{n-1} ;
 - If g = 0 is the equation of V_{n-1} , then $f_1 := fg^{-m_1}|_{V_1}$ does not vanish identically along V_{n-1} ;
 - $m_2 :=$ order of vanishing of f_1 along V_{n-2} ;
 - etc. $\rightsquigarrow v(f) = (m_1, \ldots, m_n).$
- Get set v(L) of tuples, from all nonzero $f \in L$.

Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Linear system L on V; flag $V = V_n \supseteq V_{n-1} \supseteq \cdots \supseteq V_0$, dim $V_i = i$ \rightsquigarrow set $v(L) \subseteq \mathbb{Z}^n$. Example: $v(x_1^{m_1} \cdots x_n^{m_n}) = (m_1, \dots, m_n)$ for the flag: $V_i = \{x_1 = \cdots = x_{n-i} = 0\}$. For $V = \mathbb{P}^2_{(x; y; z)}$, flag $\mathbb{P}^2 \supseteq \mathbb{P}^1 = \{x = 0\} \supseteq \mathbb{P}^0 = \{x = y = 0\}$, $L = \langle xz^5, xvz^4, y^2z^4, x^2yz^3, xy^2z^3, x^3yz^2, x^2y^2z^2, x^3y^2z, x^3y^3 \rangle;$

Note: Trivially in this case, $\#v(L) = \dim L$.

Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Fact: For 'all' L, 'all' flags,
$$\#v(L) = \dim L$$
.

Idea: The growth of $v(L^k)$ as $k \to \infty$ gives information about the growth of dim (L^k) , hence Hilbert polynomial-type information.

Definition

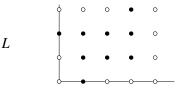
Newton-Okounkov body of *L*:

$$NO(L) := \left\{ \text{closed convex hull of } \bigcup_{k>0} \frac{1}{k} v(L^k) \right\}$$

Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

$$NO(L) := \left\{ \text{closed convex hull of } \cup_{k>0} \frac{1}{k} v(L^k) \right\}$$

Example: Again with the standard flag, and $L = \langle xz^5, xyz^4, y^2z^4, x^2yz^3, xy^2z^3, x^3yz^2, x^2y^2z^2, x^3y^2z, x^3y^3 \rangle$:

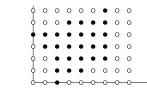


Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

$$NO(L) := \left\{ \text{closed convex hull of } \cup_{k>0} \frac{1}{k} v(L^k) \right\}$$

Example: Again with the standard flag, and $L = \langle xz^5, xyz^4, y^2z^4, x^2yz^3, xy^2z^3, x^3yz^2, x^2y^2z^2, x^3y^2z, x^3y^3 \rangle$:

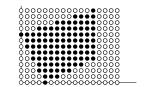
 L^2



Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

$$NO(L) := \left\{ \text{closed convex hull of } \cup_{k>0} \frac{1}{k} v(L^k) \right\}$$

Example: Again with the standard flag, and $L = \langle xz^5, xyz^4, y^2z^4, x^2yz^3, xy^2z^3, x^3yz^2, x^2y^2z^2, x^3y^2z, x^3y^3 \rangle$:



Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

$$NO(L) := \left\{ \text{closed convex hull of } \cup_{k>0} \frac{1}{k} v(L^k) \right\}$$

Example: Again with the standard flag, and $L = \langle xz^5, xyz^4, y^2z^4, x^2yz^3, xy^2z^3, x^3yz^2, x^2y^2z^2, x^3y^2z, x^3y^3 \rangle$:

 L^{∞}

Fact: Although NO(L) depends on the flag, its volume does not!

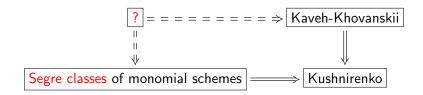
Theorem (Kaveh-Khovanskii)

$$[L,\ldots,L]=n!\operatorname{Vol}_n(NO(L))$$

(Rough version; the actual result is more precise.)

If L is monomial, this is again Kushnirenko's theorem. This is the rightmost arrow in the earlier diagram:

Newton-Okounkov bodies and Segre classes



The task: Obtain an integral formula for Segre classes of *arbitrary* projective schemes, in the style of the result for monomial schemes presented earlier.

Natural expectation: It should work in the same way, with the Newton polytope replaced by a suitable Newton-Okounkov body.

 $I \subseteq \mathbb{C}[x_0, \dots, x_n]: \text{ homogeneous ideal}$ $\mathbb{P}^n = V_n \supsetneq V_{n-1} \supsetneq \dots \supsetneq V_0 \text{ flag, dim } V_i = i.$

We will construct a 'Newton-Okounkov body' $NO(I) \subseteq \mathbb{R}^{n+1}$ for which the following will hold.

Theorem (-, 2018)

$$\zeta_{I}(t) = \int_{N} \frac{(n+1)! t^{n+1} da_{0} \cdots da_{n}}{(1 + (a_{0} + \cdots + a_{n})t)^{n+2}}$$

where N = complement of NO(1) in positive orthant.

- *I* monomial, standard flag: Then recover computation of Segre class for monomial schemes
- For arbitrary *I*, use Segre classes to evaluate contribution of base locus: Then recover Kaveh-Khovanskii.

(However, Kaveh-Khovanskii is used in the proof of main theorem!)

Construction of Newton-Okounkov body of an ideal

---Essentially a special case of a construction of Lazarsfeld-Mustață, 'global Newton-Okounkov body'.

I: homogeneous ideal, so $I = \bigoplus_{s \ge 0} I_s$.

Each I_s determines a linear system $\rightsquigarrow NO(I_s)$, constructed as before.

Theorem (—, 2018; but really Lazarsfeld-Mustață)

Let $\delta : \mathbb{R}^{n+1} \to \mathbb{R}$, $(a_0, \ldots, a_n) \mapsto a_0 + \cdots + a_n$. There is a naturally defined convex body in \mathbb{R}^{n+1} , NO(1), such that for $s \gg 0$ integer, $\delta^{-1}(s) \cap NO(1) = NO(l_s)$.

To define NO(I):

- Dehomogenize I (e.g., set $x_0 = 1$);
- Fix flag, corresponding valuation v on $\mathbb{C}[x_1, \ldots, x_n]$;

• $\Sigma(U_I) = \text{closed convex cone generated by } U_I;$

•
$$\Delta(I) = \Sigma(U_I) \cap \{t = 1\} \subseteq \mathbb{R}^n \times \mathbb{R}^1;$$

•
$$NO(I) := \text{image of } \Delta(I) \text{ in } \mathbb{R}^{n+1} \text{ via}$$

 $(a_1, \ldots, a_n, s) \mapsto (s - (a_1 + \cdots + a_n), a_1, \ldots, a_n).$

Then $NO(I) \cap \delta^{-1}(s) = \Delta(I) \cap (\mathbb{R}^n \times \{s\}) = NO(I_s)$ for $s \ge \max$ degree of generator of I.

(Proof: Techniques from Lazarsfeld-Mustață.)

$\mathsf{Construction} \implies \mathsf{main} \ \mathsf{theorem}$

$$\begin{array}{l} \Delta(I) \subseteq \mathbb{R}^n \times \mathbb{R}^1 \mapsto \mathbb{R}^1, \ (\underline{a}, s) \mapsto s. \\ \Delta_r := \text{fiber over } r. \\ \text{Also: Define } \sigma_j \in \mathbb{Z} \text{ by } \sum_{j=0}^n \sigma_j [\mathbb{P}^{n-j}] = [\mathbb{P}^n] - s(X, \mathbb{P}^n), \\ \text{where } X = \text{subscheme defined by } I. \end{array}$$

Lemma

For $r \in \mathbb{R}$, r > max degree of a generator,

$$\operatorname{Vol}_n(\Delta_r) = \sum_{i=0}^n \binom{n}{i} \sigma_{n-i} r^i$$

Main theorem follows from this: The integral extracts the coefficients σ_j . (+ technicalities to get the whole $\zeta_I(t)$.)

Proof of the lemma.

- Kaveh-Khovanskii $\rightsquigarrow Vol(\Delta_s)$ for $s \gg 0$ integer;
- Formula reduced to showing $[I_s, \ldots, I_s] = \sum_{j=0}^n \sigma_j s^{n-j}$ for $s \in \mathbb{Z}$, $s \gg 0$;
- For this: I_s determines a rational map $\varphi_s : \mathbb{P}^n \dashrightarrow \mathbb{P}(I_s^{\vee}) = \mathbb{P}^{N_s}; \rightsquigarrow \Gamma_s \subseteq \mathbb{P}^n \times \mathbb{P}^{N_s}$, graph of φ_s ;
- $[\Gamma_s] = g_0^{(s)} H^{N_s} + \dots + g_n^{(s)} h^n H^{N_s n}$, where h, H = hyperplane classes in $\mathbb{P}^n, \mathbb{P}^{N_s}$;
- Fact (--, 2003; essentially straightforward): the g_i^(s) may be expressed in terms of the Segre class of X in Pⁿ;

$$\bullet [I_s,\ldots,I_s] = g_n^{(s)}.$$

Technicalities to get whole Segre zeta function:

Define $\sum_{i\geq 0} \rho_i t^i = \int_{NO(I)} \frac{(n+1)! t^{n+1} da_0 \cdots da_n}{(1+(a_0+\cdots+a_n)t)^{n+2}} \in \mathbb{Z}[[t]]$

Then $s(X, \mathbb{P}^n) = (1 - \sum_{i=0}^n \rho_i h^i) \cap [\mathbb{P}^n]$, X defined by I in \mathbb{P}^n ;

- In particular, coefficients ρ₀,..., ρ_n are independent of the chosen flag; need to deal with ρ_i, i > n;
- Key point: If I' = extension of I to C[x₀,..., x_n, x_{n+1}], then may choose flags so that NO(I') = NO(I) × ℝ^{≥0}.
- For such flags,

$$\int_{NO(l')} \frac{(n+2)! t^{n+2} da_0 \cdots da_{n+1}}{(1+(a_0+\cdots+a_{n+1})t)^{n+3}} \equiv \int_{NO(l)} \frac{(n+1)! t^{n+1} da_0 \cdots da_n}{(1+(a_0+\cdots+a_n)t)^{n+2}} \mod t^{n+2}$$

Inductively, extend to $\equiv \mod t^N$ for all N, done.

Last comments about the proof:

- The proof depends on Kaveh-Khovanskii, and this comes at a price, e.g., the result is 'numerical'. Possible improvements?
- It would be desirable to get $s(X, \mathbb{P}^n)$ as a class in A_*X .
- It would also be desirable to allow more general ambient spaces: get s(X, Y) for arbitrary subschemes X of arbitrary varieties Y.

(Both points OK for monomial ideals.)

- Blueprint for a stronger result? Extend strategy working for monomial ideals: Use birational invariance, induction on # blow-ups needed to principalize a given ideal.
- Main difficulty: Understand behavior of new Newton-Okounkov body under blow-ups. This seems very difficult.

-Newton-Okounkov bodies and Segre classes

Thank you for your attention!