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Newton-Okounkov bodies and Segre classes

Introduction

Reference: arXiv:1809.07344

Also relevant:

—D. N. Bernstein, The number of roots of a system of equations,
Funct. Anal. Appl. 9 (1975), 183–185.

—R. Lazarsfeld, M. Mustaţă, Convex bodies associated to linear
series, Ann. Sci. Éc. Norm. Supér. (4), 42(5):783–835, 2009.

—K. Kaveh, K. Khovanskii, Newton-Okounkov bodies, semigroups
of integral points, graded algebras and intersection theory, Ann. of
Math. (2), 176(2):925–978, 2012.

—P. Aluffi, Segre classes as integrals over polytopes,
J. Eur. Math. Soc. 18(12):2849–2863, 2016.

—P. Aluffi, The Segre-zeta function of an ideal, Adv. Math.
320:1201–1226, 2017.
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Introduction

Summary

Summary

New way to compute Segre classes of subschemes of projective
space.

Motivation: Segre classes are key ingredients in intersection theory,
and have applications to e.g., singularity theory.
Milnor number/classes, Chern-Schwartz-MacPherson classes of
singular varieties may be expressed in terms of Segre classes.
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Introduction

Summary

In fact, aim to compute a Segre zeta function ζI (t) for any
collection I = {f0, . . . , fr} of homogeneous polynomials with
coefficients in (e.g.) C.

ζI (t) =
∑
i≥0

σi t
i

such that for all n

n∑
i=0

σiH
i ∩ [Pn] = s(X (n),Pn)

where H = hyperplane class, X (n) defined by ideal generated by I .
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Introduction

Kushnirenko’s theorem

x

y2

yx

yx
3 3

3N

Consider the system of equations{
a10x + a11xy + a02y

2 + · · ·+ a33x
3y3 = 0

b10x + b11xy + b02y
2 + · · ·+ b33x

3y3 = 0

where the coefficients aij and bij are general.

Question: # solutions with nonzero coordinates?

Answer: 11.

Theorem (Kushnirenko)

# solutions with nonzero coordinates

= ‘normalized’ volume of Newton polytope N

= n! Voln(N) in dimension n
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Introduction

Segre classes

Proof?
Allegedly, Khovanskii knows about 15 different proofs (as of 2007).
I may know one he does not know, using Segre classes.

Crash course on Segre classes:

s(Z ,V ) ∈ A∗Z ; often convenient to push-forward to A∗V .

π : Ṽ → V proper birational: π∗s(π−1(Z ), Ṽ ) = s(Z ,V )

(‘birational invariance’)

Z = regularly embedded in V  s(Z ,V ) = c(NZV )−1 ∩ [Z ].

These are enough to determine s(Z ,V ) in general!
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Introduction

Segre classes

Segre classes

Birational invariance

Z = regularly embedded in V  s(Z ,V ) = c(NZV )−1 ∩ [Z ].

For Z ( V , let π : Ṽ = B`ZV → V ,
E = π−1(Z ) = exceptional divisor. Then

s(Z ,V ) = π∗s(E , Ṽ ) = π∗(c(NE Ṽ )−1 ∩ [E ]) = π∗
E

1 + E

= π∗(E − E 2 + E 3 − · · · )

There are algorithms implementing this definition, for subschemes
of (e.g.) Pn.
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Introduction

Segre classes

Example of computation: Z = Veronese surface in P5.

Z = image of Veronese embedding ν : P2 → P5.

h,H hyperplane classes in P2,P5 resp.: ν∗(H) = 2h.

 c(NZP5) = c(TP5|Z )
c(TZ) = ν∗c(TP5)

c(TP2)
= (1+2h)6

(1+h)3 = 1 + 9h + 30h2.

s(Z ,P5) = (1 + 9h + 30h2)−1 ∩ [Z ] = (1− 9h + 51h2) ∩ [Z ].

Remark: 51 · 64 = 3264, a famous number.
(= number of smooth conics tangent to 5 smooth conics in
general position)
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Introduction

Segre classes

Segre classes—Applications

Fulton-MacPherson intersection theory:

Want to intersect X , Y in V .
Assume X ↪→ V is a regular embedding, normal bundle N.

Construct the fiber diagram:

X ∩ Y //

g
��

Y� _

��
X �
� // V

Then X · Y = {c(g∗N) ∩ s(X ∩ Y ,Y )}dimX+dimY−dimV .

The key ingredient here is the Segre class.
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Introduction

Segre classes

X · Y = {c(g∗N) ∩ s(X ∩ Y ,Y )}dimX+dimY−dimV .

If Z ⊆ X ∩ Y is a connected component, the contribution of Z to
X · Y is {c(g∗N) ∩ s(Z ,Y )}dimX+dimY−dimV .

Applications:

Enumerative geometry.
E.g.: How many curves of degree d are tangent to d(d + 3)/2
general lines in the plane?
↔ Segre class of scheme of nonreduced plane curves.
(Open! for d ≥ 5)
Many open problems in enumerative geometry may be
translated into Segre class computations.
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Introduction

Segre classes

Combinatorics:
The characteristic polynomial of a hyperplane arrangement
may be written in terms of a Segre class.

Several invariants of singularities are encoded in Segre classes.
E.g.: Donaldson-Thomas invariants.
E.g.: Milnor data. Code to compute topological Euler
characteristic of projective varieties is based on Segre classes.
X : hypersurface in nonsingular compact V , L = O(X ). Then

χ(X ) =

∫
c(TV )∩

(
c(L)−1 ∩ [X ] + c(L)−1

(
s(JX ,V )∨ ⊗V L

))
Recent: Generalization of this formula to arbitrary schemes
embeddable in a nonsingular variety. (arXiv:1805.11116)
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Introduction

Segre classes

Back to Kushnirenko

x

y2

yx

yx
3 3

3N

We had a system of equations
 a10x + a11xy + a02y

2 + a21x
2y + a12xy

2 + a31x
3y + a22x

2y2 + a32x
3y2 + a33x

3y3 = 0

b10x + b11xy + b02y
2 + b21x

2y + b12xy
2 + b31x

3y + b22x
2y2 + b32x

3y2 + b33x
3y3 = 0

where the coefficients aij and bij are general.

Kushnirenko’s theorem computes the number of solutions with
nonzero coordinates:

# = n! Voln(N)
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Introduction

Segre classes

Newton polygon spanned by monomials in x1, . . . , xn.

Have n general elements in the linear system spanned by these
monomials after homogeneization.

Base locus of linear system: solutions with some coordinate
= 0.

# of ‘good’ solutions = Bézout number − contribution of
base locus. This contribution is evaluated by a Segre class.

In the example: need Segre class of subscheme Z ⊆ P2

defined by

(xz5, xyz4, y2z4, x2yz3, xy2z3, x3yz2, x2y2z2, x3y2z , x3y3)

There are algorithms computing Segre classes, implemented in
Macaulay 2: s(Z ,P2) = 25[pt].

Kushnirenko’s number = 62 − 25 = 11.
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Introduction

Plan for the rest of the talk

Take-away: Kushnirenko’s theorem would follow from results on
Segre classes of subschemes defined by monomial ideals.

Rest of the talk:

(1) Explain computation of Segre classes of monomial ideals
−→ Generalization of Kushnirenko’s theorem.

(2) Explain Kaveh-Khovanskii generalization of Kushnirenko’s
theorem to arbitrary ideals. (Newton-Okounkov bodies.)

(3) Fill the diagram

? +3

��

Kaveh-Khovanskii

��

Segre classes of monomial schemes +3 Kushnirenko
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Segre classes of monomial schemes: integral formula

Integral formula for Segre zeta of a monomial ideal.

Example
Say we want the Segre class of the subscheme X (n) defined by
I = (y3, x2y2) in Pn, n ≥ 0.

Implementations for Segre class computations in Macaulay2
(—, Eklund-Jost-Petersen, Helmer, Harris. . . )
essentially implementing the definition:

s(X (n),P7) = (2H−2H2−10H3+94H4−538H5+2638H6−12010H7)∩[P7]

This says

ζI (t) = 2t − 2t2 − 10t3 + 94t4 − 538t5 + 2638t6 − 12010t7 + · · ·

(Not clear how to get the other terms!)
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Segre classes of monomial schemes: integral formula

Different approach—Associate a Newton-like region to the ideal:

22
x

y3

y

N

Subdivide N into ‘generalized simplices’:

2
x

y3

S
2

S
1

y

N

2

17 / 37 Paolo Aluffi Newton-Okounkov bodies and Segre classes



Newton-Okounkov bodies and Segre classes

Segre classes of monomial schemes: integral formula

2
x

y3

S
2

S
1

y

N

2

Get a rational function from each simplex, and add up the results

6t2

(1 + 3t)(1 + 4t)
+

2t

(1 + 4t)
=

2t(1 + 6t)

(1 + 4t)

Fact:

2t(1 + 6t)

(1 + 4t)
= 2t − 2t2 − 10t3 + 94t4 − 538t5 + 2638t6 − 12010t7

+ 52414t8 − 222778t9 + 930478t10 − 3840010t11 + · · ·
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Segre classes of monomial schemes: integral formula

This is nontrivial!
General statement:

I=set of monomials in x1, . . . , xn;

determine Newton region N in Euclidean n-space,
coordinates a1, . . . , an;

then

Theorem (—, 2013)

ζI (t) =

∫
N

n!tnda1 · · · dan
(1 + (a1 + · · ·+ an)t)n+1
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Segre classes of monomial schemes: integral formula

Example

22
x

y3

y

N

∫
N

2!t2da1 da2

(1 + (a1 + a2)t)3
= 2t − 2t2 − 10t3 + 94t4 − 538t5 + · · ·

Fact: Integral may be evaluated by sums over simplices.

Contribution of simplex S with vertices (a
(i)
1 , . . . , a

(i)
n ):

n! Voln(S)tn∏
i (1 + (a

(i)
1 + · · ·+ a

(i)
n )t)
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Segre classes of monomial schemes: integral formula

Proof of the theorem:

Is independent of Kushnirenko’s theorem.

Full statement of the theorem is more precise: get Segre class
in the Chow group, not just after push-forward.

Also: It works for ‘generalized monomial’ subschemes in any
variety.

Ordinary monomials: from components of a divisor with
simple normal crossings. ‘Generalized’ monomials: from
components of a divisor with ‘regular crossings’ (much weaker
requirement).

Using: principalization of generalized monomial schemes
(C. Harris).

Main tool: birational invariance of Segre classes, behavior of
Newton polytopes under blow-ups.
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Segre classes of monomial schemes: integral formula

Claim: Previous theorem implies Kushnirenko’s theorem.

‘Proof’: Volumes of Newton polytopes
→ Segre classes of monomial subschemes
→ evaluation of contribution of base loci to linear systems
→ intersection numbers
→ Kushnirenko’s theorem.

This gives the bottom of the diagram shown earlier:

Segre classes of monomial schemes +3 Kushnirenko

View as a generalization of Kushnirenko: not only computing
intersection numbers, rather whole Segre class.

22 / 37 Paolo Aluffi Newton-Okounkov bodies and Segre classes



Newton-Okounkov bodies and Segre classes

Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Volumes of Newton-Okounkov bodies

There is a completely different generalization of Kushnirenko’s
theorem, due to Kiumars Kaveh and Askold Khovanskii.

Kushnirenko: Monomial linear systems
KK: Any linear system.

L: linear system on (not nec. compact) V , dimV = n.

[L, . . . , L]: ‘intersection index’.
[L, . . . , L] = # points of intersection of n general sections of L,
away from base locus.

Kushnirenko: For monomial L,
[L, . . . , L] = n! Voln(Newton polytope).

KK: For arbitrary L, same! but using Newton-Okounkov body.
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Newton-Okounkov body of a linear system L: depends on the
choice of a valuation.

Geometric version:

Fix a flag of nonsingular subvarieties
V = Vn ⊇ Vn−1 ) · · · ) V0, dimVi = i ;

For f ∈ L, f 6= 0, associate n-tuple of integers:

m1 := order of vanishing of f along Vn−1;
If g = 0 is the equation of Vn−1, then f1 := fg−m1 |V1 does not
vanish identically along Vn−1;
m2 := order of vanishing of f1 along Vn−2;
etc.  v(f ) = (m1, . . . ,mn).

Get set v(L) of tuples, from all nonzero f ∈ L.
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Linear system L on V ; flag V = Vn ) Vn−1 ) · · · ) V0, dimVi = i
 set v(L) ⊆ Zn.

Example: v(xm1
1 · · · xmn

n ) = (m1, . . . ,mn)
for the flag: Vi = {x1 = · · · = xn−i = 0}.
For V = P2

(x : y : z), flag P2 ⊇ P1 = {x = 0} ⊇ P0 = {x = y = 0},
L = 〈xz5, xyz4, y2z4, x2yz3, xy2z3, x3yz2, x2y2z2, x3y2z , x3y3〉:

L

Note: Trivially in this case, #v(L) = dim L.
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Fact: For ‘all’ L, ‘all’ flags, #v(L) = dim L.

Idea: The growth of v(Lk) as k →∞ gives information about the
growth of dim(Lk), hence Hilbert polynomial-type information.

Definition

Newton-Okounkov body of L:

NO(L) :=

{
closed convex hull of

⋃
k>0

1

k
v(Lk)

}
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

NO(L) :=

{
closed convex hull of ∪k>0

1

k
v(Lk)

}

Example: Again with the standard flag, and
L = 〈xz5, xyz4, y2z4, x2yz3, xy2z3, x3yz2, x2y2z2, x3y2z , x3y3〉:

L
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

NO(L) :=

{
closed convex hull of ∪k>0

1

k
v(Lk)

}

Example: Again with the standard flag, and
L = 〈xz5, xyz4, y2z4, x2yz3, xy2z3, x3yz2, x2y2z2, x3y2z , x3y3〉:

L
2
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

NO(L) :=

{
closed convex hull of ∪k>0

1

k
v(Lk)

}

Example: Again with the standard flag, and
L = 〈xz5, xyz4, y2z4, x2yz3, xy2z3, x3yz2, x2y2z2, x3y2z , x3y3〉:

4
L
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

NO(L) :=

{
closed convex hull of ∪k>0

1

k
v(Lk)

}

Example: Again with the standard flag, and
L = 〈xz5, xyz4, y2z4, x2yz3, xy2z3, x3yz2, x2y2z2, x3y2z , x3y3〉:

L

NO(L
ο

)
ο
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Kaveh-Khovanskii: volumes of Newton-Okounkov bodies

Fact: Although NO(L) depends on the flag, its volume does not!

Theorem (Kaveh-Khovanskii)

[L, . . . , L] = n! Voln(NO(L))

(Rough version; the actual result is more precise.)

If L is monomial, this is again Kushnirenko’s theorem. This is the
rightmost arrow in the earlier diagram:

Kaveh-Khovanskii

��

Kushnirenko
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Newton-Okounkov bodies and Segre classes

Newton-Okounkov bodies and Segre classes

? +3

��

Kaveh-Khovanskii

��

Segre classes of monomial schemes +3 Kushnirenko

The task: Obtain an integral formula for Segre classes of arbitrary
projective schemes, in the style of the result for monomial schemes
presented earlier.

Natural expectation: It should work in the same way, with the
Newton polytope replaced by a suitable Newton-Okounkov body.
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Newton-Okounkov bodies and Segre classes

I ⊆ C[x0, . . . , xn]: homogeneous ideal
Pn = Vn ) Vn−1 ) · · · ) V0 flag, dimVi = i .

We will construct a ‘Newton-Okounkov body’ NO(I ) ⊆ Rn+1 for
which the following will hold.

Theorem (—, 2018)

ζI (t) =

∫
N

(n + 1)!tn+1da0 · · · dan
(1 + (a0 + · · ·+ an)t)n+2

where N = complement of NO(I ) in positive orthant.

• I monomial, standard flag: Then recover computation of Segre
class for monomial schemes

• For arbitrary I , use Segre classes to evaluate contribution of base
locus: Then recover Kaveh-Khovanskii.

(However, Kaveh-Khovanskii is used in the proof of main theorem!)
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Newton-Okounkov bodies and Segre classes

Construction of Newton-Okounkov body of an ideal

—Essentially a special case of a construction of
Lazarsfeld-Mustaţă, ‘global Newton-Okounkov body’.

I : homogeneous ideal, so I = ⊕s≥0Is .

Each Is determines a linear system  NO(Is), constructed as
before.

Theorem (—, 2018; but really Lazarsfeld-Mustaţă)

Let δ : Rn+1 → R, (a0, . . . , an) 7→ a0 + · · ·+ an.
There is a naturally defined convex body in Rn+1, NO(I ), such
that for s � 0 integer, δ−1(s) ∩ NO(I ) = NO(Is).
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Newton-Okounkov bodies and Segre classes

To define NO(I ):

Dehomogenize I (e.g., set x0 = 1);

Fix flag, corresponding valuation v on C[x1, . . . , xn];

UI :=
{

(a, s, t) ∈ Rn × R2 | s ∈ Z≥0, t ∈ Z≥0, a ∈ v((I t)s)
}

;

Σ(UI ) = closed convex cone generated by UI ;

∆(I ) = Σ(UI ) ∩ {t = 1} ⊆ Rn × R1;

NO(I ) := image of ∆(I ) in Rn+1 via
(a1, . . . , an, s) 7→ (s − (a1 + · · ·+ an), a1, . . . , an).

Then NO(I ) ∩ δ−1(s) = ∆(I ) ∩ (Rn × {s}) = NO(Is) for s ≥ max
degree of generator of I .
(Proof: Techniques from Lazarsfeld-Mustaţă.)
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Newton-Okounkov bodies and Segre classes

Construction =⇒ main theorem

∆(I ) ⊆ Rn × R1 7→ R1, (a, s) 7→ s.
∆r := fiber over r .
Also: Define σj ∈ Z by

∑n
j=0 σj [Pn−j ] = [Pn]− s(X ,Pn),

where X = subscheme defined by I .

Lemma

For r ∈ R, r > max degree of a generator,

Voln(∆r ) =
n∑

i=0

(
n

i

)
σn−i r

i

Main theorem follows from this: The integral extracts the
coefficients σj . (+ technicalities to get the whole ζI (t).)
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Newton-Okounkov bodies and Segre classes

Proof of the lemma.

Kaveh-Khovanskii  Vol(∆s) for s � 0 integer;

Formula reduced to showing [Is , . . . , Is ] =
∑n

j=0 σjs
n−j for

s ∈ Z, s � 0;

For this: Is determines a rational map
ϕs : Pn 99K P(I∨s ) = PNs ; Γs ⊆ Pn × PNs , graph of ϕs ;

[Γs ] = g
(s)
0 HNs + · · ·+ g

(s)
n hnHNs−n, where h,H = hyperplane

classes in Pn,PNs ;

Fact (—, 2003; essentially straightforward): the g
(s)
i may be

expressed in terms of the Segre class of X in Pn;

[Is , . . . , Is ] = g
(s)
n .
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Newton-Okounkov bodies and Segre classes

Technicalities to get whole Segre zeta function:

Define
∑
i≥0

ρi t
i =

∫
NO(I )

(n + 1)!tn+1da0 · · · dan
(1 + (a0 + · · ·+ an)t)n+2

∈ Z[[t]] .

Then s(X ,Pn) = (1−
∑n

i=0 ρih
i )∩ [Pn], X defined by I in Pn;

In particular, coefficients ρ0, . . . , ρn are independent of the
chosen flag; need to deal with ρi , i > n;

Key point: If I ′ = extension of I to C[x0, . . . , xn, xn+1], then
may choose flags so that NO(I ′) = NO(I )× R≥0.
For such flags,

∫
NO(I ′)

(n + 2)!tn+2da0 · · · dan+1

(1 + (a0 + · · · + an+1)t)n+3
≡

∫
NO(I )

(n + 1)!tn+1da0 · · · dan
(1 + (a0 + · · · + an)t)n+2

mod tn+2

Inductively, extend to ≡ mod tN for all N, done.
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Newton-Okounkov bodies and Segre classes

Last comments about the proof:

The proof depends on Kaveh-Khovanskii, and this comes at a
price, e.g., the result is ‘numerical’. Possible improvements?

It would be desirable to get s(X ,Pn) as a class in A∗X .

It would also be desirable to allow more general ambient
spaces: get s(X ,Y ) for arbitrary subschemes X of arbitrary
varieties Y .
(Both points OK for monomial ideals.)

Blueprint for a stronger result? Extend strategy working for
monomial ideals: Use birational invariance, induction on #
blow-ups needed to principalize a given ideal.

Main difficulty: Understand behavior of new
Newton-Okounkov body under blow-ups.
This seems very difficult.
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Newton-Okounkov bodies and Segre classes

Thank you for your attention!
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