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A theory in mathematics is like a bag.
If it has an unexpected hole, it causes a trouble.

Large and small ones are used according to purposes.
The material and design have much concern.

Some people appreciate ones with brands.

1 Introduction

In this survey article we introduce the notion of frontals, which provides a class of generalised
submanifolds with singularities but with well-defined tangent spaces. We present a review of
basic theory and known studies on frontals in several geometric problems from singularity theory
viewpoints. In particular, in this paper, we try to give some of detailed proofs and related ideas,
which were omitted in the original papers, to the basic and important results related to frontals.

We start with one of theoretical motivations for our notion “frontal”. Let M be a C∞ mani-
fold of dimension m, which is regarded as an ambient space. Let f : N → M be an immersion of
an n-dimensional C∞ manifold N , which is regarded as a parameter space, to M . Then for each
point t ∈ N , we have the n-plane f∗(TtN), the image of the differential map f∗ : TtN → Tf(t)M
at t in the tangent space Tf(t)M . Thus we have a field of tangential n-planes {f∗(TtN)}t∈N

along the immersion f . Moreover if M is endowed with a Riemannian metric, then we have also
a field of tangential (m − n)-planes f∗(TtN)⊥ along f . From those vector bundles we can de-
velop differential topology, theory of characteristic classes and so on of immersed submanifolds.
Besides, taking local adapted frames for immersions, we can develop differential geometry of
immersed submanifolds in terms of frames. Then a natural and challenging problem arises to us
on the possibility to find a natural class of singular mappings enjoying the same properties as
immersed submanifolds and to develop generalised topological and geometric theories on them.

In this paper we introduce such a class of generalised submanifolds in terms of Grassmanni-
ans: Let Gr(n, TM) denote the Grassmannian of tangential n-planes in the tangent bundle TM
over an m-dimensional C∞ manifold M with the canonical projection π : Gr(n, TM) → M (see
§3). Let N be a C∞ manifold of dimension n with 0 ≤ n ≤ m and take a point a ∈ N . Then
a C∞ map-germ f : (N, a) → M is called a frontal map-germ or a frontal in short if there
exists a “Legendre” lifting of f , that is, there exist an open neighbourhood U of a and a C∞ lift
f̃ : U → Gr(n, TM) of f , π ◦ f̃ = f |U , such that the image of differential f∗(TtN) is contained in
f̃(t), for any t ∈ U . Note that f̃(t) is an n-plane in Tf(t)M . Moreover a C∞ mapping f : N → M
is called a frontal mapping or a frontal in short if, the germ f : (N, a) → M at any point
a ∈ N is a frontal. See §4 for details. The formulation using Grassmannians is very natural and
satisfactory from the viewpoint of differential systems and their geometric solutions as well. See
for instance [101][52][53].

Note that, if dim(N) = 1, then any frontal f : N → M has a global Legendre lift f̃ : N →
Gr(1, TM) (Lemma 12.3). However, if dim(N) = 2, then a frontal f : N → M not necessarily
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has a global Legendre lift (Example 2.5). This fact seems to be found first in the present paper.
Also note that any mapping f : N → M is a frontal if dim(N) = dim(M) (Remark 4.2). Any
constant mapping f : N → M is a frontal.

The notion of “frontals” was introduced already in many papers, e.g. [38][105][95][85][10][11],
in the case of hypersurfaces as a natural generalisation of wave-fronts. See §2.

We are going to give a survey on local classification of singularities appearing in frontals in
various geometric contexts. Basically we mean by the “singularities” of frontals, as usual, the
equivalence classes of germs of frontals under the following equivalence relation:

Definition 1.1 Two map-germs f : (N, a) → (M,f(a)) and g : (N ′, a′) → (M ′, f ′(a′)) are
right-left equivalent or A-equivalent or diffeomorphic, if there exist diffeomorphism-germs
ϕ : (N, a) → (N ′, a′) and Φ : (M,f(a)) → (M ′, f ′(a′)) such that the following diagram com-
mutes:

(N, a)
f−−→ (M,f(a))

ϕ ↓ ↓ Φ
(N ′, a′)

g−−→ (M ′, f ′(a′)).

As the typical singularities of frontals, we introduce cuspidal edges, swallowtails, folded
umbrellas, open swallowtails, open folded umbrellas and so on.

The cuspidal edge is defined as the equivalence class of the map-germ (R2, 0) → (Rm, 0),
m ≥ 3,

(t, s) 7→ (t + s, t2 + 2st, t3 + 3st2, 0, . . . , 0),

which is diffeomorphic to (u,w) 7→ (u,w2, w3, 0, . . . , 0). The cuspidal edge singularities are
originally defined only in the three dimensional space. Here we are generalising the notion of
the cuspidal edge in higher dimensional ambient space. It will be often emphasised it by writing
“embedded” cuspidal edge.

The folded umbrella (or the cuspidal cross cap) is defined as the equivalence class of
the map-germ (R2, 0) → (R3, 0),

(t, s) 7→ (t + s, t2 + 2st, t4 + 4st3),

which is diffeomorphic to (u, t) 7→ (u, t2 + ut, t4 + 2
3ut3).

The open folded umbrella is defined as the equivalence class of the map-germ (R2, 0) →
(Rm, 0), m ≥ 4,

(t, s) 7→ (t + s, t2 + 2st, t4 + 4st3, t5 + 5st4, 0, . . . , 0),

which is diffeomorphic to (u, t) 7→ (u, t2 + ut, t4 + 2
3ut3, t5 + 5

4ut4, 0, . . . , 0). The open folded
umbrella appeared for instance as a frontal-symplectic singularity in the paper [48].

The swallowtail is defined as the equivalence class of the map-germ (R2, 0) → (R3, 0),

(t, s) 7→ (t2 + s, t3 + 3
2st, t4 + 2st2),

which is diffeomorphic to (u, t) 7→ (u, t3 + ut, t4 + 2
3ut2).

The open swallowtail is defined as the equivalence class of the map-germ (R2, 0) →
(Rm, 0), m ≥ 4,

(t, s) 7→ (t2 + s, t3 + 3
2st, t4 + 2st2, t5 + 5

2st3, 0, . . . , 0),

which is diffeomorphic to (u, t) 7→ (u, t3 + ut, t4 + 2
3ut2, t5 + 5

9ut3, 0, . . . , 0). The open
swallowtail singularity was introduced by Arnol’d (see [6]) as a singularity of Lagrangian va-
rieties in symplectic geometry. Here we abstract its diffeomorphism class as the singularity of
parametrised surfaces (see [26][43]).
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cuspidal edge folded umbrella open folded umbrella swallowtail open swallowtail

In Part I, we provide basic studies for an intrinsic understanding of frontals as parametrised
singular submanifolds with well-defined tangent spaces.

We give the exact definition of frontals in §2 in the case of hypersurfaces and, after the
description of Grassmannian bundles and canonical (or generalised contact) distributions in §3,
we give the general definition in §4. In §5, we have introduced the density function as a main
notion for the theory of frontals.

A frontal f : N → M is called a proper frontal in the present paper if the singular (non-
immersive) locus S(f) is nowhere dense in N (§6). In [44][45][46][47], “frontal” maps were
defined as proper frontals, namely, the density of regular locus was assumed. Note that proper
frontals are not generic in the space of all frontals for C∞-topology in general (Remark 6.4). In
§7, we introduce the tangent bundles to frontals.

Viewed from our generalisation, the notion of frontals turns to be closely related to the
notion of openings. Though the notion of openings of mappings seems to be noticed naively
in many previous contributions, it is introduced in the author’s recent papers [44][45]. An
opening separates the self-intersections of the original map-germ, preserving its singularities. For
example, the swallowtail is an opening of the Whitney’s cusp map-germ (R2, 0) → (R2, 0)
defined by (t, s) 7→ (t2 + s, t3 + 3

2st) which is diffeomorphic to (u, t) 7→ (u, t3 + ut) and
the open swallowtail is a versal opening of them. Openings of map-germs appear as typical
singularities in several problems of geometry and its applications. Note that the process of
unfoldings of map-germs (Rn, 0) → (Rm, 0) preserves the “relative dimension” m − n. On the
other hand, the process of openings preserves n but changes m, and it gives bridges between
map-germs of different relative dimensions. We recall also the related notions, “Jacobi modules”
Jf and “ramification modules” Rf . They play important role to analysis and classification
of singularities of mappings f , in particular, the study on symplectic singularities, contact
singularities and singularities of tangent surfaces ([29][30][31][34][35][37][39][40][49]). Moreover
those notions seem to be related to recognition problem of singularities (see Definition 8.4).
Note that we used the notation, for the ramification module of f , ‘Df ’ instead of Rf in [29],
relating Mather’s C-equivalence, and we denoted it by ‘Hf ’ in [30][31][33][34], because it can
be regarded as a cohomological invariant. Note that the notion of openings, Jacobi modules
and ramification modules for multi-germs is naturally introduced in the paper [44]. We give a
review on the theory of opening related to frontals in §8 and §9. Moreover in §10 we give ideas
of “subfrontals” and “superfrontals”, related to frontals.

In [97], it is introduced the related notion of “coherent tangent bundles”as generalised Rie-
mannian manifolds. Moreover Saji, Umehara, Yamada are developing the intrinsic studies of
frontals in terms of singular metrics introduced by Kossowski [72]. We intend to give abstract
differential-topological features of frontals, which is invariant under diffeomorphisms, by proving
another way to study intrinsically frontals in terms of the theory of C∞-rings (§11).

In part II, we give a survey of several results on frontals as an application of the basic theory
presented in part I.

In §12, we treat frontal curves and give basic results on them. Let γ : N → R2 a planar frontal
curve with dim(N) = 1. By Lemma 12.3, there exists a global Legendre lifting γ̃ : I → P (T ∗R2).
Thus it is possible to perform differential geometry of planar frontals, as a generalised differential
geometry of planar immersions, in terms of Legendre curves covering frontals. In fact geometric
studies on planar frontals, evolutes and involutes, are given in a series of papers [21][22][23][24].
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As a related topics to planar frontals, we gave a review the “Goursat Monster tower” found
by Zhitomirskii, Montgomery, Mormul and others (cf. [80][81][16]) and the “Legendre-Goursat
duality” related to it in [46].

Singularities and bifurcations of wavefronts based on Legendre singularity theory are estab-
lished by Arnold-Zakalyukin’s theory ([5][7][103][104]). The application of singularity theory
to differential geometry has been developed by many authors (see for instance [90][91][14][63]).
The geometric study of submanifolds in hyperbolic space Hn+1 based on singularity theory was
initiated by Izumiya et al.([66][67][68]). The Legendre duality developed in [62][18] enables us
to unify the theory of framed curves in any space form as describes in [42]. We recall Legendre
duality (see [13][82][58][52][18]) in the framework of moving frames and flags and discuss its
generalisation and relation with the theory of frontals in §13, §14 and §15.

Let γ : I → R3 be a space frontal curve. Then the tangent surface (tangent developable)
Tan(γ) is defined as the surface ruled by tangent lines to γ. Then the tangent surface has zero
Gaussian curvature, therefore it is flat with respect to Euclidean metric of R3 at least off the
singular locus. Thus the tangent surfaces serve main parts of “flat frontals”(§16). Flat fronts or
flat frontals are studied also in [83][84].

The notion of tangent surfaces ruled by “tangent lines” to directed curves is naturally gen-
eralised in various ways: For a curve in a projective space, we regard tangent projective lines
as “tangent lines”. The classification is generalised to An-geometry (§17). For a curve in a Rie-
mannian manifold, we regard tangent geodesics as “tangent lines. In fact, tangent surfaces are
defined for proper frontal curves (directed curves) in a manifold with an affine connection (§18).
After discussing useful criteria of singularities in §19, we define null tangent surface to a null
curve of a semi (pseudo)-Riemannian manifold, regarding null geodesics as “tangent lines”(see
§20). In particular we pick up several results related to Dn-geometry ([57]). For a horizontal
curve of a sub-Riemannian manifold, we regard “tangent lines” by abnormal geodesics (see §21).
In particular the classification result of singularities of tangent surfaces to generic integral curves
to Cartan distribution with G2-symmetry is introduced.

Speaking of G2, we note that the work on frontals may be related to the rolling ball prob-
lem [1][9][8][79]. We will treat “rolling frontals” as a generalisation of rolling bodies [4] in a
forthcoming paper.

In the last section (§22), as an appendix, we show the Malgrange’s preparation theorem on
differentiable algebras ([74]) from the ordinary Malgrange-Mather’s preparation theorem (see
for example [15]), relating to the theory of C∞-rings which we have utilised in this paper.

The author hopes very much that this survey paper helps to raise wider reader’s interest to
the mathematics on frontals.

In this paper a manifold or a mapping is supposed to be of class C∞ unless otherwise stated.
The symbol ⊆ of inclusion is often used, which has the same meaning as ⊂ just to stress that
the equality may occur.

Part I. Basic Theory

2 The case of hypersurfaces

Let M be a manifold of dimension m. Let P (T ∗M) denote the projective cotangent bundle of
M , which consists of non-zero cotangent vectors somewhere on M considered up to a non-zero
scalar multiplication. Note that P (T ∗M) is naturally identified with the Grassmannian bundle
Gr(m−1, TM) (see §3) by sending each class (x, [α]) ∈ P (T ∗M) of a non-zero covector α ∈ T ∗M
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to its kernel Ker(α) ∈ Gr(m − 1, TxM). Note that α ∈ T ∗
xM , that α : TxM → R is a non-

zero linear map, and that Ker(α) ⊂ TxM is an (m − 1)-plane. Then the (2m − 1)-dimensional
manifold P (T ∗M) has a canonical contact structure D ⊂ TP (T ∗M). In fact it is defined by
D =

⋃
(x,[α]) D(x,[α]), and D(x,[α]) = π−1

∗ (Ker(α)), where π : P (T ∗M) → M is the canonical
projection.

We recall the coordinate description of the contact structure, which will be needed for the
detailed computation on singularities.

Let (x1, x2, . . . , xm) be a local coordinate system on an open subset U of M . Let

(x1, x2, . . . , xm, p1, p2, . . . , pm)

be the associated system of coordinates on T ∗U such that any element α ∈ T ∗U is expressed as

α = p1dx1 + p2dx2 + · · · + pmdxm,

by its coordinates. Set Vi = {pi 6= 0} ⊂ T ∗U, 1 ≤ i ≤ m. Then we have a local system of
coordinates of P (T ∗M) associated to Vi,

x1, x2, . . . , xm,−p1/pi, . . . ,−pi−1/pi,−pi+1/pi, . . . ,−pm/pi.

To avoid non-essential complexity, we will discuss just for i = m in what follows. Then set
ai = −pi/pm, 1 ≤ i ≤ m − 1. Then

x1, x2, . . . , xm, a1, a2, . . . , am−1

give a local system of coordinates of P (T ∗M) and the contact structure D ⊂ TP (T ∗M) is given
locally by

dxm − (a1dx1 + a2dx2 + · · · + am−1dxm−1) = 0.

Let N be a submanifold of dimension n with n < m. Then the submanifold N induces the
projective conormal bundle

Ñ = P (T ∗
NM) = {(x, [α]) ∈ P (T ∗M) | α|TxN = 0},

which satisfies that TÑ ⊂ D and dim(Ñ) = m − 1, in other words, a Legendre submanifold in
the contact manifold P (T ∗M).

In particular, suppose n = m − 1, that is, N is a hypersurface of M . Then π|
eN

: Ñ → N is
a diffeomorphism. Its inverse N → Ñ is given by x 7→ (x, TxN).

Let f : N → M be an immersion of an (m−1)-dimensional manifold N to an m-dimensional
manifold M . Then we have an immersion f̃ : N → P (T ∗M) defined by f̃(t) = (f(t), f∗(TtN)).
Then f̃ is a lift of f and f̃ is D-integral, i.e. f̃∗(TtN) ⊂ Df(t) for any t ∈ N . In other words, f̃
is a Legendre immersion.

Remark 2.1 Set f̃(t) = (f(t), [α(t)]) ∈ P (T ∗
f(t)M). Then the condition f̃∗(TtN) ⊂ Df(t) is

equivalent to that α(t)|f∗(TtN) = 0.

Definition 2.2 Let N be a manifold of dimension m − 1 in a manifold M of dimension m. A
map-germ f : (N, a) → M is called a wave-front or a front in short if there exists a germ of
Legendre immersion f̃ : (N, a) → P (T ∗M) with π ◦ f̃ = f .

A mapping f : N → M is called a wave-front or a front in short if, for any point a ∈ N ,
the germ of f at a is a front.

A map-germ f : (N, a) → M is a front if and only if there exists a representative of f , which
is a front.
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Remark 2.3 In the original and naive context, the image f(N) was called a wave-front rather
than the parametrisation f itself.

Definition 2.4 Let N be a manifold of dimension m− 1 in a manifold M of dimension m. Let
a ∈ N . A map-germ f : (N, a) → M is called a frontal map-germ or a frontal in short if
there exist a germ of Legendre lifting f̃ : (N, a) → P (T ∗M) of f , that is, there exist an open
neighbourhood U of a, a representative f : U → M of f and a Legendre lifting f̃ : U → P (T ∗M)
of f |U , i.e. f̃∗(TtN) ⊂ Df(t) for any t ∈ U and π ◦ f̃ = f |U . Here we do not assume that f̃ is an
immersion.

A mapping f : N → M is called a frontal mapping or a frontal in short if, for any a ∈ N ,
the germ of f at a is a frontal.

A map-germ f : (N, a) → M is a frontal if and only if there exists a representative of f ,
which is a frontal.

In Definition 2.4 we have defined the notion of frontals by the local existence of its Legendre
liftings. A frontal f : N → M not necessarily has its global Legendre lifting f̃ : N → P (T ∗M).

Example 2.5 Define a C∞ function ϕ : R → R by ϕ(t) = e−1/t2(t > 0), ϕ(t) = 0(t ≤ 0). Then
define h : R2 → R3 by h(t1, t2) = (t1, t22, t

3
2 + ϕ(t1)t2), which we will call a half cuspidal edge.

The graph of ϕ(t). The image of the half cuspidal edge.

The mapping h is not frontal. In fact the local existence of Legendre lift for h does not
hold at the origin (t1, t2) = (0, 0). Moreover h is a front on R2 \ {(0, 0)} with cuspidal edge
along {(t1, 0) | t1 < 0} and the Legendre lifting h̃ : R2 \ {(0, 0)} → P (T ∗R3) ∼= R3 × RP 2 is
not homotopically trivial. In fact h̃ restricted to a loop around the origin of R2 generates the
fundamental group π1(P (T ∗R3)) ∼= π1(RP 2) ∼= Z/2Z.

Define k : R2 → R2 by k(t1, t2) = ϕ(t21 + t22 − 1)(t1, t2). Then k is a C∞ mapping which
collapses the unit disc to the origin and maps the outside of the unit disc to R2 \ {(0, 0)}
diffeomorphically. Set f = h ◦ k : R2 → R3. Then
(1) f is a frontal.
(2) There does not exist a global Legendre lifting f̃ : R2 → P (T ∗R3) of f .
To see (1), let t = (t1, t2) satisfy t21 + t22 < 1. Then the germ of f at t is constant and therefore
it is a frontal. Let t satisfy t21 + t22 > 1. Then the germ of f at t is right equivalent to h at
k(t) ∈ R2 \ {(0, 0)}, which is a frontal. Let t satisfy t21 + t22 = 1. Then any local extension of
h̃ ◦ k to (R2, t) turns to be a Legendre lift of the germ of f at t. Therefore f is a frontal. Thus
we have (1). To see (2), it is sufficient to observe that h̃ ◦ k : R2 \D2 → P (T ∗R3), which is the
unique Legendre lift of f restricted to R2 \ D2, is never extended continuously to R2.

3 Grassmannian bundle and generalised contact distribution

Let N be a manifold of dimension n and M a manifold of dimension m with n ≤ m. Note that
in the previous section we assumed m = n+1. However in the next section we treat the general
case under the weaker condition n ≤ m.

To treat the general cases, we recall the Grassmannian bundle associated to the tangent
bundle TM of M . For each x ∈ M , Gr(n, TxM) denotes the Grassmannian manifold consisting
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of n-dimensional subspaces of TxM . Then let Gr(n, TM) =
⋃

x∈M Gr(n, TxM). Note that
Gr(n, TM) is a bundle over M with fibres Gr(n, TxM) and that dim(Gr(n, TxM)) = n(m − n).
Note also that Gr(n, TxM) is identified with Gr(m−n, T ∗

xM) and therefore that, when m = n+1,
Gr(n, TM) is identified with P (T ∗M). Let π : Gr(n, TM) → M be the canonical projection,
π(x, V ) = x for any (x, V ) ∈ Gr(n, TM) with V ∈ Gr(n, TxM), x ∈ M . If n = m, then
π : Gr(m,TM) → M is a diffeomorphism.

Lemma 3.1 Let Φ : M → M ′ be a diffeomorphism. Let n be an integer with 0 ≤ n ≤ m =
dim(M). Let Φ] : Gr(n, TM) → Gr(n, TM ′) denote the diffeomorphism induced by the differen-
tial map Φ∗ which is regarded as the bundle isomorphism Φ∗ : TM → TM ′ covering Φ. Then we
have π◦Φ] = Φ◦π : Gr(n, TM) → M ′. Here π means the canonical projection Gr(n, TM ′) → M ′

as well as Gr(n, TM) → M .

Proof : Let (x, V ) ∈ Gr(n, TM). Then Φ](x, V ) = (Φ(x), Φ∗(V )). Therefore (π ◦ Φ])(x, V ) =
π(Φ(x), Φ∗(V )) = Φ(x) = (Φ ◦ π)(x, V ). 2

We recall the coordinate description of Grassmannians. Let (x0, V0) ∈ Gr(n, TM). Here
x0 ∈ M and V0 ∈ Gr(n, Tx0M) so that V0 ⊂ Tx0M is a fixed n-plane. The suffix 0 is used to
indicate that (x0, V0) becomes the center of the local coordinate system we are going to provide.
Let us take a local coordinate system (x1, . . . , xn, xn+1, . . . , xm) on a coordinate neighbourhood
U ⊂ M centred at x0 such that ∂/∂x1, . . . , ∂/∂xn generate V0 at x0. Let π′ : U → Rn denote the
coordinate projection defined by (x1, . . . , xn, . . . , xm) 7→ (x1, . . . , xn). Let Ω ⊂ π−1(U) be the set
of (x, V ) with x ∈ U, V ∈ Gr(n, TxM) such that V is mapped isomorphically by π′

∗ : TU → TRn

to π′
∗(V ). Then, for any (x, V ), there exist unique real numbers ak

j , (1 ≤ j ≤ n, n + 1 ≤ k ≤ m)
such that the n-plane V has the basis of the form (*)

h1 =
∂

∂x1
(x) + an+1

1

∂

∂xn+1
(x) + · · · + am

1

∂

∂xm
(x),

h2 =
∂

∂x2
(x) + an+1

2

∂

∂xn+1
(x) + · · · + am

2

∂

∂xm
(x),

...
. . .

hn =
∂

∂xn
(x) + an+1

2

∂

∂xn+1
(x) + · · · + am

2

∂

∂xm
(x).

Thus we have a system of coordinates (x1, . . . , xm, ak
j , (1 ≤ j ≤ n, n + 1 ≤ k ≤ m)) on Ω of

Gr(n, TM) centred at (x0, V0).
We call the coordinate systems constructed as above Grassmannian coordinates.

The canonical distribution D ⊂ T (Gr(n, TM)) on the Grassmann bundle Gr(n, TM) is
defined by D =

⋃
(x,V ) D(x,V ) where (x, V ) runs over Gr(n, TM), V being an n-plane of TxM ,

x ∈ M , and, for v ∈ T(x,V )(Gr(n, TM)),

v ∈ D(x,V ) ⇐⇒ π∗(v) ∈ V (⊂ TxM).

We call the canonical distribution D on Gr(n, TM) also the canonical differential system
and also the contact distribution, in a generalised and wider sense. If n = m−1, then D is the
contact distribution in the strict sense. Note that, if n = m, then D = T (Gr(n, TM)) ∼= TM .

Definition 3.2 A mapping F : N → Gr(n, TM) is called an integral mapping of the contact
distribution D ⊂ TGr(n, TM) or a D-integral mapping if F∗(TN) ⊂ D. If dim(N) = n, then
we call an integral mapping f : Nn → Gr(n, TM) of the contact structure D ⊂ TGr(n, TM) a
Legendre mapping in a generalised and wider sense.
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Lemma 3.3 A mapping F : Nn → Gr(n, TM) is a Legendre mapping if and only if, (π ◦
F )∗(TtN) ⊆ F (t), (t ∈ N). If F is Legendre and π ◦ F is an immersion at t ∈ N , then
F (t) = (π ◦ F )∗(TtN).

Proof : By definition, F is Legendre if and only if, for any t ∈ N , F∗(TtN) ⊂ DF (t). Since
DF (t) = π−1

∗ (F (t)), regarding F (t) as an n-plane in T(π◦F )(t)M , the condition is equivalent to
that π∗(F∗(TtN)) ⊆ F (t), that is, (π ◦ F )∗(TtN) ⊆ F (t), for any t ∈ N . Moreover if π ◦ F is an
immersion at t ∈ N , then dim((π ◦F )∗(TtN)) = n. Therefore we have (π ◦F )∗(TtN) = F (t). 2

The following result shows one of fundamental properties of the canonical differential systems
(the generalised contact distributions).

Proposition 3.4 Let Φ : M → M ′ be a diffeomorphism. Let 0 ≤ n ≤ m = dim(M). Let
D denote the contact distribution of Gr(n, TM ′) as well as that of Gr(n, TM). Then, for any
(x, V ) ∈ Gr(n, TM), we have

(Φ])∗(D(x,V )) = D(Φ(x),Φ∗(V )).

In particular we have (Φ])∗(D) = D ⊂ T (Gr(n, TM ′)) (see Lemma 3.1).

Proof : Let v ∈ D(x,V ). Then π∗v ∈ V . Then we have, by Lemma 3.1,

π∗((Φ])∗(v)) = (π ◦ Φ])∗(v) = (Φ ◦ π)∗(v) = Φ∗(π∗v) ∈ Φ∗(V ).

Therefore we have (Φ])∗(D(x,V )) ⊆ D(Φ(x),Φ∗(V )). The converse inclusion is obtained by consid-
ering Φ−1, or, by counting the dimension of the vector spaces. 2

We conclude this section by the coordinate description of the contact distribution: Take the
Grassmannian coordinates (x1, . . . , xm, ak

j , (1 ≤ j ≤ n, n + 1 ≤ k ≤ m)) of Gr(n, TM) on an
open set Ω ⊂ Gr(n, TM). Set

θk := dxk −
n∑

j=1

ak
j dxj , (n + 1 ≤ k ≤ m).

Lemma 3.5 Let 0 ≤ n ≤ dim(M). The local description of the contact distribution D of
Gr(n, TM) is given by

D|TΩ = {v ∈ TΩ | θn+1(v) = 0, . . . , θm(v) = 0}.

Proof : Let (x, V ) ∈ Ω and v =
∑m

i=1 bi∂/∂xi +
∑

j,k ck
j ∂/∂ak

j ∈ T(x,V )Ω. Then v ∈ D(x,V ) if and
only if π∗(v) ∈ V . Now V = 〈h1, . . . , hn〉R in terms of the above basis (*). Then the condition
is equivalent to that

∑m
i=1 bi∂/∂xi =

∑n
j=1 λjhj for some λ1, . . . , λn ∈ R, which is equivalent

to that bj = λj , 1 ≤ j ≤ n and bk =
∑n

j=1 bjak
j , n + 1 ≤ k ≤ m, and thus equivalent to that

θk(v) = 0, n + 1 ≤ k ≤ m. 2

4 Generalised frontals

We give the exact definition of our main notion in this paper:
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Definition 4.1 Let N be an n-dimensional manifold and M an m-dimensional manifold with
n ≤ m. A map-germ f : (N, a) → M is called a frontal map-germ or a frontal in a generalised
sense, if there exists a germ of Legendre lift f̃ : (N, a) → Gr(n, TM) of f , that is, if there exists
an open neighbourhood U of a and a D-integral lift f̃ : U → Gr(n, TM) of f for the canonical
distribution D ⊂ TGr(n, TM) and for the canonical projection π : Gr(n, TM) → M , which
satisfies that f∗(TtN) ⊆ f̃(t) for any t ∈ U and π ◦ f̃ = f .

We call a mapping f : Nn → Mm a frontal mapping or a frontal in a generalised sense,
if, for any point a ∈ N , the germ of f at a is a frontal.

Remark 4.2 Note that, in the equi-dimensional case n = m, any mapping f : N → M is a
frontal. In fact the mapping f̃ : N → Gr(m,TM) defined by f̃(t) := Tf(t)M is a Legendre lift
of f .

Proposition 4.3 Let f : (N, a) → (M,f(a)) and g : (N ′, a′) → (M ′, f(a′)) be map-germs. If f
is a frontal and g is right-left equivalent to f , then g is a frontal.

Proof : Suppose g ◦ ϕ = Φ ◦ f for some diffeomorphism-germs ϕ : (N, a) → (N ′, a′) and Φ :
(M,f(a)) → (M ′, f(a′)). Let f̃ : (N, a) → Gr(n, TM) be a Legendre lift of f . Set g̃ :=
Φ] ◦ f̃ ◦ ϕ−1 : (N ′, a′) → Gr(n, TM ′). For t′ ∈ (N, a′), we have, by Proposition 3.4,

g̃∗(Tt′N
′) = (Φ])∗(f̃∗(ϕ−1

∗ (Tt′N))) = (Φ])∗(f̃∗(Tϕ−1(t)N)) ⊂ (Φ])∗D = D.

Therefore g̃ is Legendre. Moreover, by Lemma 3.1, we have

π ◦ g̃ = π ◦ Φ] ◦ f̃ ◦ ϕ−1 = Φ ◦ π ◦ f̃ ◦ ϕ−1 = Φ ◦ f ◦ ϕ−1 = g.

Therefore g̃ is a Legendre lifting of g, and hence g is a frontal. 2

Definition 4.4 A map-germ f : (N, a) → M is called a front in the generalised sense if there
exists a Legendre lift f̃ : (N, a) → Gr(n, TM) of f such that f̃ is an immersion-germ. A mapping
f : Nn → Mm is called a front in the generalised sense if, for any a ∈ N , the germ of f at a is
a front.

A map-germ f : (N, a) → M is a front in the generalised sense if and only if there exists
a representative of f which is a front. The condition that f : N → M is a front in the
generalised sense is equivalent to the local existence, at each point of N , of an immersive lift
f̃ : U → Gr(n, TM) of f satisfying f∗(TtN) ⊂ f̃(t), (t ∈ U).

5 Density function

The notion of density functions is a key to understand the geometry of frontals, which was
introduced in [71][25][95] first. We introduce its generalisation (see also [59][60]):

Proposition 5.1 Let f : (N, a) → M be a map-germ with dim(N) = n ≤ m = dim(M). Then
the following conditions are equivalent:
(1) f is a frontal map-germ.
(2) There exists a frame h1, h2, . . . , hn : (N, a) → TM along f and a function-germ σ : (N, a) →
R such that

(
∂f

∂t1
∧ ∂f

∂t2
∧ · · · ∧ ∂f

∂tn
)(t) = σ(t)(h1 ∧ h2 ∧ · · · ∧ hn)(t),

as germs of n-vector fields (N, a) → ∧nTM over f . Here t1, t2, . . . , tn are coordinates on (N, a).
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The function σ : (N, a) → R in Proposition 5.1 is called a signed area density function
or briefly an s-function of the frontal f associated with the frame. Note that the function σ is
essentially the same thing with the function λ introduced in [71][25] in the case dim(M) = 3.

Two function-germs σ, σ̃ : (N, a) → R are called K-equivalent if there exists a diffeomorphism-
germ T : (N, a) → (N, a) and a non-vanishing function-germ c : (N, a) → R, c(a) 6= 0, such that
σ̃(T (t)) = c(t)σ(t), (t ∈ (N, a)) (see [75]).

Lemma 5.2 The K-equivalence class of a signed area density function σ is independent of the
choice of the frame h1, h2, . . . , hn and of the coordinates t1, t2, . . . , tn on (Rn, a) and depend only
on the frontal f .

Proof : Let us take another frame k1, . . . , kn. Then there exists A = (aij) : (Rn, a) → GL(n,R)
such that (h1, . . . , hn) = (k1, . . . , kn)A. Then h1 ∧ h2 ∧ · · · ∧ hn = (det A)(k1 ∧ k2 ∧ · · · ∧ kn).
Therefore σ is transformed to (det A)σ. Let us take another coordinates T1, T2, . . . , Tn on (Rn, a).
Then

(
∂f

∂T1
∧ ∂f

∂T2
∧ · · · ∧ ∂f

∂Tn
)(T (t)) = J(t)(

∂f

∂t1
∧ ∂f

∂t2
∧ · · · ∧ ∂f

∂tn
)(t),

where J(t) is the Jacobian function ∂(T1, . . . , Tn)/∂(t1, . . . , tn) at t. Therefore σ(t) is transformed
to the function J(t)σ(T (t)). Thus we have the required result. 2

We call the signed density function of a frontal, considered up to K-equivalence, a density
function of the frontal. The singular locus (non-immersive locus) S(f) of f coincides with the
zero locus {σ = 0} of the density function σ.

6 Proper frontals

Frontals can be collapsing in general. For example, any constant mapping f : N → M is a
frontal. In fact any lifting F : N → Gr(n, TM) of f is Legendre in that case. See also Example
2.5.

Definition 6.1 A frontal f : N → M is called a proper frontal if the regular locus

R(f) := {t ∈ N | f∗ : TtN → Tf(t)M is injective.}

of f is dense in N . A germ of frontal f : (N, a) → M is called a germ of proper frontal if
there exists a representative of f which is a proper frontal.

Note that R(f) is an open subset of N in general. Then the condition that f is a proper
frontal requires that R(f) is open and dense.

The fundamental property of proper frontals is the following:

Proposition 6.2 Let f : N → M be a proper frontal. Then there exists the unique global Legen-
dre (i.e. D-integral) lift f̃ : N → Gr(n, TM) of f , for the canonical projection π : Gr(n, TM) →
M , π ◦ f̃ = f . Here D is the contact distribution on Gr(n, TM), n = dim(N), introduced in
§4.

Proof : Consider the mapping F : R(f) → Gr(n, TM) defined by F (t) = f∗(TtN) ∈ Gr(n, Tf(t)M)
⊂ Gr(n, TM). Then F is a D-integral mapping and π ◦ F = f |R(f). By Lemma 3.3, F is a
unique Legendre lifting of f |R(f). Since f is a frontal, for any a ∈ N , there exists an open
neighbourhood U of a and a D-integral lift f̃ : U → Gr(n, TM) of f . Then by the uniqueness of
F , we have f̃ = F on U ∩ R(f). Since f is a proper frontal, R(f) is dense in N , and therefore
U ∩ R(f) is dense in U . Thus the Legendre lift F of f is uniquely extended to U ∪ R(f). Since
a is arbitrary, we have the unique Legendre lift f̃ : N → Gr(n, TM) of f . 2
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Proposition 6.3 If f : N → M is a frontal and it has a unique Legendre lift f̃ : N →
Gr(n, TM), then f is a proper frontal.

Proof : Suppose the regular locus R(f) of f is not dense in N . Then there exists a non-void
open subset U ⊂ N such that the maximal rank of f |U is ` < n. Then there exists a non-void
open subset V ⊂ U such that f |V is of constant rank `. Then there exists a non-void open
subset W ⊂ V and an open subset Ω ⊂ M such that f |W : W → Ω is right-left equivalent
to h : Rn → Rm which is defined by h(s1, . . . , s`, s`+1, . . . , sn) = (s1, . . . , s`, 0, . . . , 0) (“Rank
theorem”, see [15]). Let f̃ : N → Gr(n, TM) be a Legendre lift and h̃ : Rn → Gr(n, TRm) be
the induced lift of h by f̃ |W (cf. Proposition 4.3). Then Th(s)(R` ×{0}) ⊂ h̃(s), (s ∈ Rn). Then
there exists a non-trivial perturbation of h̃ therefore of f̃ with compact support. 2

Remark 6.4 Proper frontals are not generic in C∞-topology in general. In fact the frontal
mapping f : R2 → R3 constructed in Example 2.5 can not be approximated by any proper
frontal.

Now we introduce the notion of non-degenerate frontals which was originated in [71].

Definition 6.5 We say that a frontal f : (N, a) → M has a non-degenerate singular point at
a if the density function σ of f satisfies that σ(a) = 0 and dσ(a) 6= 0. Note that the condition
is invariant under the K-equivalence of σ (see Proposition 5.2).

To study the property of non-degenerate singular points of frontals, we recall the following
result.

Lemma 6.6 Let N be a manifold of dimension n. Let g : (N, a) → (N, g(a)) be a map-germ.
Let Jg denote the Jacobi matrix of g and det(Jg) : (N, a) → R the Jacobian determinant of
g. Suppose (detJg)(a) = 0. Then (d det(Jg))(a) = 0 if rank(Jg)(a) ≤ n − 2, that is, if g is of
corank ≥ 2 at a.

Proof : It is easy to see, as a fundamental fact in the linear algebra, for the determinant function
det : M(n, n;R) on the space of n × n-matrices, and for any A ∈ M(n, n;R) with det(A) = 0,
(d det)(A) = 0 if and only if rank(A) ≤ n − 2. Then we have, if rank(Jg) ≤ n − 2, then
(d det(Jg))(p) = (Jg)∗(d det)(p) = 0. 2

Lemma 6.7 If a frontal f : (N, a) → M has a non-degenerate singular point at a, then f is of
corank 1 such that the singular locus S(f) ⊂ (N, a) is a regular hypersurface.

Proof : Let us take a representative f : U → M of f , using the same symbol, satisfying that
dσ(t) 6= 0 for any t ∈ U . Then S(f) = {t ∈ U | σ(t) = 0} is a regular hypersurface of U . In
particular S(f) is nowhere dense in U . Therefore f is a proper frontal. Let f̃ : U → Gr(n, TM)
be the unique Legendre lifting of f . Set V = f̃(a) ⊂ Tf(p)M . Take a local coordinate system
(x1, . . . , xn, xn+1, . . . , xm) around f(a) of M such that V = 〈(∂/∂x1)(f(a)), . . . , (∂/∂xn)(f(a))〉R
Define g : U → Rn by g = (x1 ◦ f, . . . , xn ◦ f), deleting U if necessary. Then the rank of g∗ at
a is equal to the rank of f∗ at a. Moreover the signed area density function of g is K-equivalent
to that of f . Note that the signed area density function of g is K-equivalent to the Jacobian
determinant of g. Suppose the rank of g∗ at p is less than n−1. Then by Lemma 6.6 we see that
(dσ)(a) = d(det(Jg))(a) = 0. This leads a contradiction to the assumption of non-degeneracy.
Therefore we have that the rank of g∗ is equal to n − 1. Thus we have the required result. 2
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7 Tangent bundles and complementary bundles

Let f : N → M be a proper frontal. Let dim(N) = n and f̃ : N → Gr(n, TM) be the unique
Legendre lifting of f (Proposition 6.2). Then we have a subbundle Tf of the pull-back bundle
f∗TM over N defined by

Tf := {(t, v) ∈ N × TM | v ∈ f̃(t)} ⊂ f∗TM.

We call Tf the tangent bundle to the proper frontal f . Moreover we call the quotient bundle
Qf := f∗TM/Tf the complementary bundle.

Definition 7.1 A proper frontal f : N → M is called oriented (resp. co-oriented) if the
bundle Tf (resp. Qf ) is oriented. f is called orientable (resp. co-orientable) if Tf (resp. Qf )
is orientable.

Example 7.2 The proper front f : S1(⊂ C) → R2(= C) defined by z 7→ 2z−z2, for z ∈ C, |z| =
1 (“cardioid”) is not orientable nor co-orientable. The half cuspidal edge h : R2 \ {(0, 0)} → R3

(see Example 2.5) restricted to R2 \ {(0, 0)} is a proper front which is not orientable nor co-
orientable. The mapping R2 → R3 defined by the normal form of the cuspidal edge (resp.
folded umbrella) is a proper front (resp. frontal) which is orientable and co-orientable.

Let f : N → M be a proper frontal. Then the bundle homomorphism ϕf : TN →
Tf , ϕ(t, v) = (t, f∗(v)) is induced. Then we have

R(f) = {t ∈ N | f∗ : TtN → Tf(t)M is injective} = {t ∈ N | ϕf is injective at t}.

The notion of frontals will play important role in differential geometry. Therefore the fol-
lowing observations are important. First we treat the case of hypersurfaces (m = n + 1).

Lemma 7.3 If M is endowed with an Riemannian metric, then f : Nn → Mn+1 is a frontal if
and only if, for any a ∈ N , there exists an open neighbourhood U of a and a unit vector field ν
along f such that ν(t) is normal to the subspace f∗(TtN) for any t ∈ U .

Proof : Let f be frontal. Let f̃(t) = (f(t), [α(t)]) be a Legendre lifting of f . It defines the
local integral tangential hyperplane field Ker(α(t)) along f . Then we associate the normal
line field Ker(α(t))⊥ with f̃(t) and take a local unit frame ν(t) of Ker(α(t))⊥. Conversely let
ν(t) be a local unit normal field along f with f∗(TtN). Regarding the metric, we associate a
non-zero cotangent vector field α(t) with ν(t) so that Ker(α(t)) = ν(t)⊥. Then the tangential
hyperplane field ν(t)⊥ satisfies the condition f∗(TtN) ⊆ ν(t)⊥. The condition is equivalent to
that f̃(t) = (f(t), [α(t)]) is a Legendre map. 2

Lemma 7.4 If M is endowed with an Riemannian metric, then f : Nn → Mn+1 is a front
if and only if locally there exists a normal unit vector field ν along f such that (f, ν) is an
immersion to the unit tangent bundle T1M .

Proof : Regard each unit vector ν ∈ TxM as an element of T ∗
xM by v 7→ ν ·v, we have the natural

double covering T1M → P (T ∗M). Therefore we have required result by Lemma 7.3. 2

In generalised cases, we have:

Lemma 7.5 If M is endowed with an Riemannian metric, then f : Nn → Mm is a frontal
if and only if, for any a ∈ N , there exists an open neighbourhood U of a and a system of
orthonormal vector fields ν1, . . . , νm−n over U along f such that νi(t) is normal to the subspace
f∗(TtN) for any t ∈ U , i = 1, . . . ,m − n.
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Proof : Suppose f is a frontal. For any a, let f̃ : U → Gr(n, TM) be a Legendre local lifting
of f |U . Deleting U if necessary, take an orthonormal frame h1, ,̇hn, ν1, . . . , νm−n on U such
that h1(t), ,̇hn(t) form a basis of f̃(t) ⊂ Tf(t)M for any t ∈ U . Then ν1, . . . , νm−n satisfy the
required condition. Conversely we may set f̃(t) = 〈ν1(t), . . . , νm−n(t)〉⊥. Then π ◦ f̃ = f and
(π ◦ f̃)∗(TtN) = f∗(TtN) ⊂ f̃(t), hence f̃ is Legendre by Lemma 3.3. 2

The following is clear:

Lemma 7.6 If M is a Riemannian manifold, then the condition that f : Nn → Mm is a front
is equivalent to the local existence of an orthonormal unit frame ν1, . . . , νn along f such that
t 7→ (f(t), 〈ν1(t), . . . , νn(t)〉⊥) is an immersion to Gr(n, TM).

Let f : N → M be a proper frontal. If M is endowed with a Riemannian metric, then we
define the normal bundle to f by

Nf := {(t, w) ∈ N × TM | w ∈ f̃(t)⊥} ⊂ f∗TM,

which is isomorphic to the complementary bundle Qf (see §7). Note that both bundles Tf and
Nf have induced Riemannian bundle structures from TM .

8 Openings and frontals

In this section, we review the known results on “geometric” openings.
We denote by EN,a the R-algebra of C∞ function-germs on (N, a) with the maximal ideal

mN,a. If (N, a) = (Rn, 0) is the origin, then we use En, mn instead of EN,a,mN,a respectively.

Definition 8.1 ([30][35]) Let f : (N, a) → (M, b) be a C∞ map-germ with dim(N) = n ≤ m =
dim(M). We define the Jacobi module of f :

Jf := EN,a d(f∗ΩM,b) = {
m∑

j=1

aj df j | aj ∈ EN,a, 1 ≤ j ≤ m}

in the space Ω1
N,a of 1-form germs on (N, a). Here f j = xj ◦ f , for a system of coordinates

(x1, . . . , xm) of (M, b). Further we define the ramification module Rf by

Rf := {h ∈ EN,a | dh ∈ Jf}.

Example 8.2 Let µ be a positive integer and g : (R, 0) → (R, 0), g(t) = tµ. Then Jg = m
µ−1
1 dt

and Rg = R + m
µ
1 . Here m

µ
1 = tµE1 = {h ∈ E1 | dkh

dtk
(0) = 0, (0 ≤ k ≤ µ)}. In fact, since

dg = µtµ−1dt, we gave Jg = m
µ−1
1 dt. Moreover, for a k ∈ E1, we have that k ∈ Rf if and only if

dk
dt ∈ m

µ−1
1 if and only if k ∈ R + m

µ
1 .

Note that Jf is just the first order component of the graded differential ideal J •
f in Ω•

N,a

generated by df1, . . . , dfm. Then the singular locus is given by S(f) = {x ∈ (N, a) | rankJf (x) <
n}. Also we consider the kernel field Ker(f∗ : TN → TM), of f near a. Then we see that,
for another map-germ f ′ : (N, a) → (M ′, b′) with Jf ′ = Jf , n ≤ m′, we have Σf ′ = Σf and
Ker(f ′

∗) = Ker(f∗). Note that related notion was introduced in [78].

Lemma 8.3 Let f : (N, a) → (M, b) be a map-germ. Then we have:
(1) f∗EM,b ⊂ Rf ⊂ EN,a and Rf is an EM,b-module via f∗.
(2) For another map-germ f ′ : (N, a) → (M ′, b′), Jf ′ = Jf if and only if Rf ′ = Rf .
(3) If τ : (M, b) → (M ′, b′) is a diffeomorphism-germ, then Rτ◦f = Rf . If σ : (N ′, a′) → (N, a)
is a diffeomorphism-germ, then Rf◦σ = σ∗(Rf ).
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Proof : (1) follows from that, if h ∈ Rf and dh =
∑m

j=1 pjdfj , then we have

d{(k ◦ f)h} =
m∑

j=1

{(k ◦ f)pj + h (∂k/∂yj)} dfj .

(2) It is clear that Jf ′ = Jf implies Rf ′ = Rf . Conversely suppose Rf ′ = Rf . Then any
component f ′

j of f ′ belongs to Rf ′ = Rf , hence dfj ∈ Jf . Therefore Jf ′ ⊂ Jf . By the symmetry
we have Jf ′ = Jf .

(3) follows from that Jτ◦f = Jf and Jf◦σ = σ∗(Jf ). 2

Definition 8.4 Let f : (N, a) → M and g : (N ′, a′) → M ′ be map-germs. Then f and g
are called J -equivalent if there exists a diffeomorphism-germ σ : (N, a) → (N ′, a′) such that
Jg◦σ = Jf . Here Jf = EN,t0f

∗Ω1
M,f(t0) (see Definition 8.1). Note that dim(M) and dim(M ′)

can be different.

Definition 8.5 Let f : (Rn, a) → (Rm, b) a map-germ and h1, . . . , hr ∈ Rf . Then the map-
germ F : (Rn, a) → Rm × Rr = Rm+r defined by

F = (f1, . . . , fm, h1, . . . , hr)

is called an opening of f , while f is called a closing of F .

Proposition 8.6 Let M,N be a manifold of dimension m,n respectively. A map-germ f :
(N, a) → M is a frontal if and only if f is right-left equivalent to an opening of a map-germ
g : (Rn, 0) → (Rn, 0).

Proof : Suppose f : (N, a) → M be a frontal map-germ. Then, since f̃(a) is an n-dimensional
vector subspace of Tf(a)M , there exists of a system of local coordinates of (M,f(a))

y1, . . . , yn, z1, . . . , zk, (k = m − n),

such that, for g = (y1 ◦ f, . . . , yn ◦ f), the component zj ◦ f, (1 ≤ j ≤ k) belongs to the Rg

and therefore f is right-left equivalent to an opening of g. Conversely, suppose f is right-left
equivalent to an opening G : (Rn, a) → Rn+k = Rm of a germ g = (g1, . . . , gn) : (Rn, a) →
(Rn, g(a)). Set G = (g1, . . . , g`, h1, . . . , hk). Then, since hj ∈ Rg, 1 ≤ j ≤ n dhj =

∑n
i=1 ai

jdgi,
for some function-germs ai

j : (Rn, a) → R. Define G̃ : (Rn, a) → Gr(n, TRm), in terms of
Grassmannian coordinates,

G̃(t) =
(
g1(t), . . . , g`(t), h1(t), . . . , hk(t), ai

j(t)
)
, (t ∈ (Rn, a)).

Then, by Lemma 3.5, G̃ is a D-integral lift of g. Therefore G is an `-frontal, and so is f . 2

9 Versal openings

Definition 9.1 An opening F = (f, h1, . . . , hr) of f is called a versal opening (resp. a mini-
versal opening) of f : (Rn, a) → (Rm, b), if 1, h1, . . . , hr form a (minimal) system of generators
of Rf as an ERm,b-module via f∗ : ERm,b → ERn,a.

A C∞ map-germ f : (Rn, a) → (Rm, b) is called analytic if f is right-left equivalent to
a real analytic map-germ ([35]). Moreover f is called a finite map-germ if ERn,a is a finite
f∗(ERm,b)-module. Then f is finite if and only if dimR(ERn,a/〈f1, . . . , fm〉ERn,a

< ∞. If f is
analytic, then f is finite if and only if its complexification has isolated zero set ([100]). By
mRm,a, we denote the maximal ideal of ERm,a which consists of function-germs vanishing at 0.
By the projection πm : Rm+r = Rm ×Rr → Rm we regard Rm+r as an affine bundle over Rm.
If f is finite and analytic, then, in the analytic category, Rωf is a finite ORm,b-module.

We summarise the known results on the existence of versal openings:
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Theorem 9.2 Let f : (Rn, a) → (Rm, b) be a map-germ. Suppose that (I) f is finite and of
corank at most one, or (II) f is finite analytic. Then we have
(1) The ramification module Rf of f is a finitely generated f∗(ERm,b)-module. In particular f
has a versal opening.
(2) 1, h1, . . . , hr ∈ Rf form a system of generators of Rf as a f∗(ERm,b)-module if and only if
the residue classes 1, h1, . . . , hr form an R-basis of the vector space V = Rf/f∗(mRm,b)Rf . In
particular there exists a versal opening F = (f, h1, . . . , hr) of f . If r = dimR V − 1, then F is
called a mini-versal opening of f .
(3) For any versal opening F : (Rn, a) → Rm+r of f and for any opening G : (Rn, a) → Rm+s

of f , there exists an affine bundle map Ψ : (Rm+r, F (a)) → (Rm+s, G(a)) such that G = Ψ ◦F .
(4) For any two mini-versal opening F, F ′ : (Rn, a) → Rm+r of f , there exists an affine bundle
isomorphism Φ : (Rm+r, F (0)) → (Rm+r, F ′(0)) such that F ′ = Φ ◦ F .

Proof of Theorem 9.2: Case (I): (1) is proved as Lemma 2.1 of [35]. Then f∗ : ERm,b → Rf

is a homomorphism of differentiable algebras in the sense of Malgrange [74]. Therefore, by
Malgrange’s preparation theorem ([74] Corollary 4.4) we have (2). Case (II): Let 1, h1, . . . , hr

generate Rωf over ORm,b via f∗. Then 1, h1, . . . , hr generate Rf over ERm,b via f∗ by Proposition
5.2 of [45]. Therefore we have (1) and (2). The assertion (3) is clear from the definitions. (4)
follows from (2). 2

We do not repeat the proofs of Lemma 2.1 in [35] nor Proposition 5.2 in [45]. However we
give an exposition, relating the theory of C∞-rings, on Malgrange’s preparation theorem in §22
of this paper.

10 Subfrontals and superfrontals

Relating the theory of frontals with that of openings, we are led to the following generalisations
of frontals naturally.

Definition 10.1 Let M be a manifold and ` an integer with 0 ≤ ` ≤ dim(M). A map-germ
f : (N, a) → M is called an `-frontal if there exists a D-integral lift f̃ : (N, a) → Gr(`, TM)
of f . Here we do not assume that ` = dim(N) and D is the contact distribution on Gr(`, TM).
The condition on the C∞ mapping f̃ is that f∗(TtN) ⊂ f̃ ∈ Gr(`, Tf(t)M) for any t ∈ (N, a). If
0 < ` < dim(N), then an `-frontal is called a subfrontal. If dim(N) < ` < dim(M), then an
an `-frontal is called a superfrontal.

Proposition 10.2 Let f : (N, a) → M be an `-frontal and f ′ : (N ′, a′) → M ′ be right-left
equivalent to f . Then also f ′ is an `-frontal.

Proof : The proof is performed similarly to Proposition 4.3 using Proposition 3.4. 2

Proposition 10.3 Let M,N be a manifold of dimension m,n respectively and ` an integer with
0 ≤ ` ≤ m. A map-germ f : (N, a) → M is an `-frontal if and only if f is right-left equivalent
to an opening of a map-germ g : (Rn, 0) → (R`, 0).

Proof : Suppose f : (N, a) → M be an `-frontal map-germ. Then, since f̃(a) is an `-dimensional
vector subspace of Tf(a)M , there exists of a system of local coordinates of (M,f(a))

y1, . . . , y`, z1, . . . , zk, (k = m − `),

such that, for g = (y1 ◦ f, . . . , y` ◦ f), the component zj ◦ f, (1 ≤ j ≤ k) belongs to the Rg

and therefore f is right-left equivalent to an opening of g. Conversely, suppose f is right-left
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equivalent to an opening G : (Rn, a) → R`+k = Rm of a germ g = (g1, . . . , g`) : (Rn, a) →
(R`, g(a)). Set G = (g1, . . . , g`, h1, . . . , hk). Then, since hj ∈ Rg, 1 ≤ j ≤ ` dhj =

∑`
i=1 ai

jdgi,
for some function-germs ai

j : (Rn, a) → R. Define G̃ : (Rn, a) → Gr(`, TRm), in terms of
Grassmannian coordinates,

G̃(t) =
(
g1(t), . . . , g`(t), h1(t), . . . , hk(t), ai

j(t)
)
, (t ∈ (Rn, a)).

Then, by Lemma 3.5, G̃ is a D-integral lift of g. Therefore G is an `-frontal, and so is f . 2

11 Algebraic openings

In this section we will utilise the notion of sheaves which describes locally defined objects ([12])
to introduce an algebraic notion which is related to frontals.

Let N be a manifold. Let EN denote the sheaf of C∞ function-germs on N . For any open
subset U ⊂ N , EN (U) = C∞(U), the C∞-ring of all real-valued C∞ functions on U . Note that
EN has the natural structure of C∞-ring sheaf. See §22 for the notion of C∞-rings.

Definition 11.1 Let F be a sub C∞-ring sheaves of EN . The versal opening F̃ of F is defined
as follows: For any open subset U ⊂ N , F̃(U) is the set of h ∈ EN (U) satisfying that, for any
p ∈ U , there exists g1, . . . , gr ∈ Fp and a1, . . . , ar ∈ EN,p such that

dh =
r∑

i=1

aidgi

in Ω1
N,p. Here Ω1

N means the sheaf of C∞ 1-form-germs on N , EN,p (resp. Ω1
N,p) the stalk of EN

(resp. of Ω1
N ) at p, i.e. the set of germs at p, and d : EN,p → Ω1

N,p the exterior differential.
Let F ,G be a sub C∞-ring sheaves of EN . Then G is called an opening of F if F ⊆ G ⊆ F̃ .

We have that following basic properties of algebraic openings.

Proposition 11.2 Let N be a C∞ manifold and let EN denote the sheaf of C∞ function-germs
on N . Let F be a sub C∞-ring sheaf of EN . Then we have

(1) F̃ is a sub C∞-ring sheaf of EN . (2) F ⊂ F̃ . (3) ˜̃F = F̃ .

Proof : (1) Let p ∈ N . Let h1, . . . , hr ∈ F̃p and f ∈ C∞(Rr). Let dhi =
∑si

j=1 aijdgij for some
aij ∈ EN,p, gij ∈ Fp. Then

d(f(h1, . . . , hr)) =
r∑

i=1

∂f

∂xi
(h1, . . . , hr) dhi =

r∑
i=1

si∑
j=1

(
∂f

∂xi
(h1, . . . , hr)aij)dgij .

Therefore f(h1, . . . , hr) ∈ F̃p. (2) Let p ∈ N and g ∈ Fp. Then we have dg = 1 · dg, and

therefore g ∈ F̃p. (3) Let p ∈ N and h ∈ ˜̃Fp. Then dh =
∑r

i=1 aidhi for some ai ∈ EN,p, hi ∈ F̃p.
Since hi ∈ F̃p for each i, dhi =

∑si
j=1 bijdgij for some bij ∈ EN,p and gij ∈ Fp. Then we have

dh =
∑r

i=1

∑si
j=1(aibij)dgij , therefore h ∈ F̃p. 2

We call F full if F̃ = F . Then Proposition 11.2 shows that F̃ is the minimal full sheaf
containing F .

Let ϕ : N ′ → N be a C∞ mapping and F a subsheaf of EN on N . We define a subsheaf ϕ∗F
of EN ′ on N ′ by (ϕ∗F)q = ϕ∗(Fϕ(q)), where ϕ∗ : EN,ϕ(q) → EN ′,q is defined by ϕ∗(h) = h◦ϕ, (h ∈
EN,ϕ(q)). If ϕ = Φ is a diffeomorphism, then (Φ∗F)(U ′) = Φ∗(F(Φ(U ′))) for any open U ′ ⊂ N ′.

Then we have the naturality of versal openings:
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Proposition 11.3 Let F be a sub C∞-ring sheaves of EN . For any diffeomorphism Φ : N ′ → N
from another manifold N ′, we have Φ̃∗F = Φ∗F̃ .

Proof : Let q ∈ N ′ and h ∈ Φ̃∗Fq. Then dh =
∑r

i=1 aid(Φ∗gi) for some ai ∈ EN ′,q and gi ∈ FΦ(q).
Then d(Φ−1∗h) = Φ−1∗(

∑r
i=1 aid(Φ∗gi)) =

∑r
i=1(Φ

−1∗ai)dgi. Since Φ−1∗ai ∈ EN,Φ(q), we see
Φ−1∗h ∈ F̃Φ(q), therefore h ∈ Φ∗((F̃)Φ(q)) = (Φ∗F̃)q. Thus we have Φ̃∗Fq ⊆ (Φ∗F̃)q. Applying
the same argument to Φ−1 and Φ∗F , then we have Φ̃∗Fq ⊇ (Φ∗F̃)q. Therefore we have the
required equality. 2

Definition 11.4 Let N be a manifold. Let F be a sub C∞-ring sheaf of EN . A mapping
f : N → M is called a realisation of F if F = f∗EM .

The following is clear:

Proposition 11.5 Let f : (Rn, a) → (Rm, b) be a map-germ. Let F = f∗ERm,b be the germ of
subsheaf of ERn,a. Let F : (Rn, a) → Rm+r be an opening of f . Then F is a versal opening of
f if and only if F is a realisation of the algebraic opening F̃ of F .

Definition 11.6 A mapping f : N → M is called locally injective if for any a ∈ N , there
exists an open neighbourhood U of a in N such that f |U : U → M is injective.

Proposition 11.7 Let f : N → M be a finite mapping and F : N → M ′ a realisation of the
versal opening f̃∗EM of f∗EM . Then F is locally injective.

Proof : Let a ∈ N . Then F ∗EM ′,F (a) = f̃∗EM a = Rf,a. Then the germ of F at a is a versal
opening of f . Therefore by Proposition 2.16 of [45] we have the result. 2

Definition 11.8 Let F be a sub C∞-ring of EN . We call F locally injective if for any a ∈ N ,
there exist h1, . . . , hr ∈ Fa such that (h1, . . . , hr) : (N, a) → Rr has an injective representative.

Proposition 11.9 If f : N → M is a realisation of a locally injective sub C∞-ring F of EN ,
then f is locally injective.

Proof : Let a ∈ N . There exist h1, . . . , hr ∈ Fa such that (h1, . . . , hr) : (N, a) → Rr has an
injective representative. There exists a gi ∈ EM,f(a) such that hi = gi ◦ f for each i, 1 ≤ i ≤ r.
After taking representatives of germs we have hi = gi ◦ f : U → R, (1 ≤ i ≤ r) on an open
neighbourhood of a. Deleting U if necessary, (h1, . . . , hr) = (g1, . . . , gr)◦f : U → Rr is injective.
Therefore f |U is injective. 2

Part II. Advanced studies and applications

12 Frontal curves

Let us give several observations on frontal map-germs and frontal maps N → M with dim(N) =
1.

Let f : (N, a) → M be a map-germ with dim(N) = 1. We consider the classification
problem of germs up to the right-left equivalence. To simplify this, let (N, a) = (R, 0) and

17



(M,f(a)) = (Rm, 0). Let t be the coordinate of (R, 0) and x1, . . . , xm of (Rm, 0). We define the
order of f at 0 by

ord(f) := inf
{

k ∈ N
∣∣∣∣ dkf

dtk
(0) 6= 0

}
If the Taylor infinite series of f is 0, then we set ord(f) = ∞. It is easy to see that ord(f) is
invariant under right-left equivalence.

Lemma 12.1 If ord(f) < ∞, then f is a frontal. Moreover f is right-left equivalent to an
opening of the map-germ g : (R, 0) → (R, 0) defined by t 7→ tµ, where µ = ord(f).

Proof : For a diffeomorphism-germ σ : (R, 0) → (R, 0) and a linear transformation Φ : (Rm, 0) →
(Rm, 0), Φ ◦ f ◦ σ is of form:

Φ ◦ f ◦ σ = (tµ, h2(t), . . . , hm(t)),

with hi ∈ m
µ+1
1 , 2 ≤ i ≤ m. Set g(t) = tµ. Then Rg = R + m

µ
1 and hi ∈ Rg, 2 ≤ i ≤ m (see

Example 8.2). Therefore Φ ◦ f ◦ σ is an opening of g. 2

Corollary 12.2 Let f : (R, a) → Rm be an analytic map-germ. If f is not a constant map-
germ, then f is a frontal.

As for a global result, we have:

Lemma 12.3 Let dim(N) = 1 and f : N → M a frontal. Then there exists a global Legendre
lift f̃ : N → M .

Proof : Let R(f) denote the immersion locus of f and set S := N \R(f). We have the Legendre
lift F : R(f) → Gr(1, TM) of f |R(f) which is defined by F (t) = f∗(TtN). The mapping F is
extended to R(f) continuously. Since f is a frontal. F is extended to a C∞ Legendre lift of f
on an open neighbourhood of R(f). Now take any connected component J of the open set S.
Then J is diffeomorphic to S1 or an open interval. In the case that J is diffeomorphic to S1,
then f |J is of constant rank 0 and it is a constant mapping. Let us consider the case that J ⊂ N
is diffeomorphic to an open interval. Take the closure I = J in N , which is diffeomorphic to an
interval, [0, 1], (0, 1] or (0, 1). In the case I is diffeomorphic to [0, 1], consider the boundary points
of I, which belong to R(f) necessarily. Since the fibre of π : Gr(1, TM) → M is diffeomorphic
to the projective space Gr(1,Rm) = RPm−1 is connected, we can extend the given Legendre
lift F : R(f) → Gr(1, TM) to a Legendre lift an open set containing R(f) ∪ I. The extension is
performed independently for each connected component of S. Thus we have a global Legendre
lift f̃ : N → M . 2

Remark 12.4 If dim(N) = 2, then a frontal f : N → M need not have a global Legendre
lifting. See Example 2.5.

Next we study the genericity problem of frontal curves. To simplify the story we treat frontals
f : R → Rm. Let f̃ : R → Gr(1, TRm) = P (TRm) = Rm × RPm−1 be an integral lifting of
f (see Lemma 12.3). Then, turning upside-down the view point, we start from an integral map
F : R → Gr(1, TRm). Let F be, in terms of Grassmannian coordinates x1, . . . , xm, a2, . . . , am,

F (t) = (x1(t), . . . , xm(t), a2(t), . . . , am(t)),

which satisfies F ∗θ2 = 0, . . . , F ∗θm = 0, namely that

dx2 − a2dx1 = 0, . . . , dxm − amdx1 = 0.
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The condition is equivalent to that

dx2

dt
(t) = a2(t)

dx1

dt
(t), . . . ,

dxm

dt
(t) = am(t)

dx1

dt
(t).

Therefore, if functions x1(t), a2(t), . . . , am(t) and values x2(0), . . . , xm(0) are arbitrarily given,
then the integral mapping F is uniquely determined. Thus we can apply ordinary transversality
theorem to discuss the genericity of frontal curves through Legendre curves.

Remark 12.5 In general we can apply transversality argument to Legendre mappings of corank
≤ 1 and obtain the classification of generic singularities (see [33][40]). However the similar
argument does not work for Legendre mappings having singularities of corank ≥ 2 (see Example
2.5, Remark 6.4).

13 Frames and flags

As refinements of the notion of frontal curves, we consider framed curves or “flagged” curves.
Flagged curves and framed curves in a space-form plays important roles in topology, geometry
and singularity theory. For example, as it is well-known, the self-linking number in 3-space
is defined via framing ([88]). The fundamental theory of curves is formulated via osculation
framing. Surface boundaries have adapted framings, etc. Two kinds of frames, adapted frames
and osculating frames, are considered in [43] from the viewpoint of duality. We classify the
singularities of envelopes associated to framed curves. The singularities of envelopes in E3 were
studied in [41] to apply to the flat extension problem of a surface with boundary. The problem
on extensions by tangentially degenerate surfaces motivates to study the envelopes associated
to framings on curves in a space form.

In this article already we have used Grassmannians to introduce the frontals. Then we are
naturally led to the following definitions.

Let M be a manifold of dimension m and `1, . . . , `r integers with 0 < `1 < · · · < `r <
m. Define the flag bundle Fl(`1, . . . , `r; TM) over M of type (`1, . . . , `r) as the totality of
flags V`1 ⊂ · · · ⊂ V`r ⊂ TxM with dim(V`i

) = `i, (1 ≤ i ≤ r), x running over M . Then
π : Fl(`1, . . . , `r; TM) → M is a fibration with fibres of dimension

`1(m − `1) + (`2 − `1)(m − `2) + · · · + (`r − `r−1)(m − `r)

Moreover Fl(n; TM) = Gr(n, TM).
Set F = Fl(`1, . . . , `r; TM). Suppose M is endowed with an affine connection ∇. Let

γ(t) = (x(t), V`1(t), . . . , V`r(t)) be a curve on F . Let vectors v1(t), . . . v`r(t) ∈ Tx(t)M satisfy
that V`j

(t) = 〈v1(t), . . . , v`j
(t)〉R for each t and 1 ≤ j ≤ r. Then consider the condition

x′(t) ∈ V`1(t), ∇v1(t), . . . ,∇v`j
(t) ∈ V`j+1

(t), (1 ≤ j < r),

at t. Here, for a vector field v(t) along a curve x(t) in M , we define ∇v(t) := ∇x′(t)v(t),
the covariant derivative of v(t) by the velocity vector x′(t). By this condition we define the
distribution D ⊂ TF , which depends on the given affine connection.

If M is a projective space, then the above construction is more clarified ([43]). Let V be a
real vector space of dimension m + 1 and n1, . . . , ns integers satisfying 0 < n1 < · · · < ns ≤ m.
Define the flag manifold Fl(n1, . . . , ns, V ) of type (n1, . . . , ns) by the totality of flags Vn1 ⊂
· · · ⊂ Vns ⊂ V of linear subspaces with dim(Vi) = `i, (1 ≤ i ≤ r). Set F = Fl(n1, . . . , ns, V ).
Then the canonical distribution D ⊂ TF is defined as follows: Denote by πi : F → Gr(`i, V )
the canonical projection to the i-th member of the flag. Then, for v ∈ TV)F ,V ∈ F ,

v ∈ DV ⇐⇒ πi∗(v) ∈ TGr(ni, Vni+1)(⊂ TGr(ni, V )), (1 ≤ i ≤ ` − 1).
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Then D is a subbundle of TF with

rank(D) = n1(n2 − n1) + (n2 − n1)(n3 − n2) + · · · + (n` − n`−1)(n − n`).

Note that the flag bundle Fl(`1, . . . , `r; TP (V )) is naturally identifies with the flag manifold
Fl(1, `1 + 1. . . . , `r + 1). Therefore the canonical differential system on Fl(`1, . . . , `r; TP (V ))
is induced. Then the canonical distribution D on the Grassmannian bundle Gr(n, T (P (V )) =
Fl(1, n + 1) introduced in §3 coincides with that introduced here.

Definition 13.1 Let V be a real vector space of dimension m + 1. A curve-germ f : (N, a) →
P (V ), dim(N) = 1 is called a flagged curve if there exists a D-integral lift f̃ : (N, a) →
Fl(1, 2, . . . ,m) of f with respect to the projection π1 : Fl(1, 2, . . . ,m, V ) = Gr(1, V ) = P (V ).

Let γ : N → RPm be a curve and t0 ∈ N . Take a system of projective local coordinates
(x1, x2, . . . , xm) of RPm centred at γ(t0) and the local affine representation (R, t0) → (Rm, 0),

γ(t) = T (x1(t), x2(t), . . . , xm(t))

of γ. Consider the (m × k)-matrix

Wk(t) :=
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0)

)
for any integer k ≥ 1 and k = ∞. Note that the rank of Wk(t0) is independent of the choice on
representations for γ.

Definition 13.2 We call γ of finite type at t = t0 ∈ N if the (m ×∞)-matrix

W∞(t0) =
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0), · · · · · ·

)
is of rank m. Define, for 1 ≤ i ≤ m, ai := min {k | rankWk(t0) = i} . Then we have a sequence
of natural numbers 1 ≤ a1 < a2 < · · · < am, and we call γ of type (a1, a2, . . . , am) at t = t0 ∈ N .

If (a1, a2, . . . , am) = (1, 2, . . . ,m), then t = t0 is called an ordinary point of γ.

Let f : N → RPm be of finite type at t0 ∈ N . Then the osculating flag to f at t0 is
defined by

O1(t0) ⊂ O2(t0) ⊂ · · · ⊂ Ok(t0) ⊂ · · · ⊂ Om(t0) = Tf(t0)RPm,

where Or is the linear subspace of Tf(t0)RPm generated by γ′(t0), γ′′(t0), · · · , γ(k)(t0). The
corresponding projective subspace through f(t0) to Ok(t0) is also regarded ([34]). Then there
exists unique integral lift f̃ : N → Fl(1, 2, . . . , k, . . . ,m, V ) of f .

The classification results on singularities which are related to flagged curves are given in
[41][42][43].

14 Legendre duality

The Legendre duality is a natural geometric framework where the frontals play fundamental
roles. In this section we review several studies of frontals in specified (semi-)Riemannian mani-
folds from [42][53].

Let Rn,m denote the metric vector space of signature (n,m), n plus and m minus ([27][87].
We write Rn,0 as Rn simply. Recall the space-models, the sphere and the hyperbolic

space,

Sn+1 = {x ∈ Rn+2 | x · x = 1}, Hn+1 = {x ∈ R1,n+1 | x · x = −1, x0 > 0},
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where R1,n+1 = Rn+2
1 = {(x0, x1, . . . , xn+1)} is the Minkowski space of index (1, n + 1) (See

for instance [66][27]). The inner product in R1,n+1 is defined by x · y = −x0y0 +
∑n+1

i=1 xiyi.
Moreover we identify Euclidean space En+1 with {x ∈ Rn+2 | x0 = 1} ⊂ Rn+2 if necessary.

Let X denote Sn+1,Hn+1 or En+1. Set Z = G̃r(n, TX), the oriented Grassmannian bundle
over X. Then Z is a double covering of Gr(n, TX). The space Z is identified with T1X, the
unit tangent bundle to X. In fact,

T1S
n+1 = {(x, y) ∈ Sn+1 × Sn+1 | x · y = 0}, T1H

n+1 = {(x, y) ∈ Hn+1 × S1,n | x · y = 0},

where S1,n = {x ∈ R1,n+1 | x·x = 1} is the de Sitter space. Note that Z = T1H
n+1 is identified

with T−1S
1,n = {(y, v) | y ∈ S1,n, v ∈ TyS

1,n, v · v = −1}. Moreover T1E
n+1 = En+1 × Sn. We

set Y = Sn+1, S1,n,R×Sn corresponding to Sn+1,Hn+1, En+1 respectively. Define π1 : Z → X
by the projection to the first component in three cases. Define π2 : Z → Y by the projection to
the second component in the cases (X,Y ) = (Sn+1, Sn+1), (X,Y ) = (Hn+1, S1,n). In the case
(X,Y ) = (En+1,R×Sn), we define π2 : Z = En+1×Sn → R×Sn by π2(x, y) = (−x ·y, y). The
space has the canonical contact structure and all fibres of π1 and π2 are Legendre submanifold.
Therefore π1 and π2 are Legendre fibrations. Then we have the double Legendre fibration in
each case:

X
π1←− Z

π2−→ Y.

As the model of duality, we do have the projective duality ([98][58]): We set

Z = In+2 := {([x], [y]) ∈ Pn+1 × Pn+1∗ | x · y = 0}.

Here Pn+1∗ is the dual projective space and · means the natural paring. The contact structure
on In+2 is defined by dx · y = x · dy = 0 ([58]). The projections π1 : In+2 → X = Pn+1, π2 :
In+2 → Y = Pn+1∗ are both Legendre fibrations.

The following fact is basic to unify our treatment:

Proposition 14.1 ([52][53]) All Legendre double fibrations X ←− Z −→ Y constructed above
are locally isomorphic to each other. In particular each of them is locally isomorphic to the
double fibration of the projective duality Pn+1 ←− In+2 −→ Pn+1∗.

Let f : Nn → X be a co-oriented proper frontal (see Definition 7.1). Then there arises
naturally the Legendre lift f̃ : N → T1X = Z for π1 : Z → X by attaching the unit normal
vector field along f . The Legendre dual of f is defined by f∨ := π2 ◦ f̃ : N → Y . Then f∨ is
a frontal. If f∨ is a proper frontal. Then we have the equality f∨∨ = f .

Let γ : I → X be a C∞ immersion from an interval or a circle I. In general, we mean by
a framing of the immersed curve γ, an oriented orthonormal frame (e1, e2, . . . , en+1) along γ.
An immersion γ is called framed if a framing is given.

Remark 14.2 Note that in [62][18], more general framings are considered to treat also light
cone in Minkowski space.

If X = Sn+1, then we set e0(t) = γ(t) ∈ Sn+1, and we have the moving frame γ̃ =
(e0, e1, . . . , en+1) : I → G = SO(n + 2) ⊂ GL+(n + 2,R).

If X = Hn+1, then we set e0(t) = γ(t) ∈ Hn+1, and we have the moving frame γ̃ =
(e0, e1, . . . , en+1) : I → G = SO(1, n + 1) ⊂ GL+(n + 2,R).

In any of three cases, the frame manifold G is identified with an open subset of the oriented
flag manifold F̃n+2 consisting of oriented complete flags

V1 ⊂ V2 ⊂ · · · ⊂ Vn+1 ⊂ Rn+2
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in Rn+2. For each g = (e0, e1, . . . , en+1) ∈ GL+(n + 2,R), we set the oriented subspace

Vi = 〈e0, e1, . . . , ei−1〉R ⊂ Rn+2, (1 ≤ i ≤ n + 1).

This induces an open embedding G → F̃n+2 = Fl(1, 2, . . . , n + 1). Thus, for a framed curve
γ : I → X in X = En+1, Sn+1,Hn+1, with the frame (e1, . . . , en+1), we have the flagged curve
γ̃ by setting

Vi(t) = 〈e0(t), e1(t), . . . , ei−1(t)〉R ⊂ Rn+2, (1 ≤ i ≤ n + 1).

Then γ̃ is a lifting of γ for the projection π1 : F̃l(1, 2, . . . , n + 1,Rn+2) → G̃r(1,Rn+2) to
Grassmannian of oriented lines in Rn+2. Note that there is the natural open embedding X ⊂
G̃r(1,Rn+2) in each of three cases.

The projective duality plays an essential role, for instance, to formulate the famous Plücker-
Klein’s formula, to analyse generic projective hypersurface (Bruce, Platonova, Landis [7]), tan-
gent surfaces and Monge-Ampère equations ([52]).

Let f : Nn −→ RPn+1 be a frontal. Then we have the Legendre lifting f̃ : N −→
Gr(n, TRPn+1) = PT ∗RPn+1. Then we get the projective dual f∨ : N −→ RPn+1∗ of
f by the composition of f̃ with the projection π∗ : PT ∗RPn+1∗ −→ RPn+1∗. If f is sufficiently
generic, then f∨ is also frontal, and we get the presumable equality f∨∨ = f .

Viewed from Legendre duality, we consider the class of tangentially degenerate frontals.

Definition 14.3 Let f : N → RPn+1(Sn+1,Hn+1, En+1) be a proper frontal. Then f is called
tangentially degenerate if the regular locus R(f∨) = {t ∈ N | f∨ is an immersion at t} of
the dual f∨ of f is not dense in N .

See the basic text [3] for the tangentially degenerate submanifolds.

15 Grassmannian frontals

With the notion of frontals, we are naturally led to the following generalization of the projective
duality.

Let f : Nn −→ RPm be a frontal of codimension r = m − n. Then, consider the Legendre
lifting of f :

f̃ : N −→ Gr(n, TRPm) ↪→ Gr(1,Rm+1) × Gr(n + 1,Rm+1)
∼= Gr(1,Rm+1) × Gr(r,Rm+1∗).

The Grassmannian bundle Gr(n, TRPm) is identified with

I = {(p, q) ∈ Gr(1,Rm+1) × Gr(r,Rm+1∗ | p ⊆ q∨}.

Here, for q ∈ Gr(r,Rm+1∗, we set q∨ := {v ∈ Rm+1 | α(v) = 0(α ∈ q)}.
Therefore we are naturally led to define the Grassmannian dual f∨ : N −→ Gr(r,Rm+1∗)

of f : N −→ RPm by f̃ composed with the projection to the second component, (p, q) 7→ q.

Definition 15.1 A proper (co-oriented) frontal f : Nn → RPm(Sn+1,Hn+1, En+1) is called
tangentially degenerate if the regular locus R(f∨) = {t ∈ N | f∨ is an immersion at t} of
the Grassmannian dual f∨ of f is not dense in N .

Returning to the general case, we remark that the equality “ f∨∨ = f ” does not have any
meaning, even if f∨ is a proper frontal in the sense of Definition 4.1. Therefore, for a mapping
into a Grassmannian, it is natural to specialise the definition of frontals as follows:

Let f : N −→ Gr(r,Rm+1) be a C∞ mappings with n + r ≤ m + 1. Set s = m + 1 − n − r.
Then f is called Grassmannian frontal if there exists the unique integral lift f̃ : M −→ (I,D)
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of f with respect to a fibration π1 : I −→ Gr(r,Rm+1) and a distribution D on I defined as
follows: First set

I := {(p, q) ∈ Gr(r,Rm+1) × Gr(s,Rm+1∗) | p ⊆ q∨},

and consider the projection π1 : I → Gr(r,Rn+2) (resp. π2 : I → Gr(s,Rm+1∗)). Moreover set

P := {(p, q, p′) ∈ Gr(r,Rm+1) × Gr(s,Rm+1∗) × Gr(r,Rm+1) | p ⊆ q∨ , p′ ⊆ q∨},

and consider the projection ρ : P → I to the first and second factors (resp. ϕ : P → Gr(r,Rm+1)
to the third factor). Then we get the double fibration (ρ, ϕ):

I ρ←− P ϕ−→ Gr(r,Rm+1).

For each c = (p, q) ∈ I, we consider ρ−1(c). Then we consider its projection

ϕ(ρ−1(c)) = {p′ ∈ Gr(r,Rm+1) | p′ ⊆ q∨}

by ϕ, which is regarded as Gr(r,Rr+n). Note that dim q∨ = r + n, p ∈ ϕ(ρ−1(c)) and that
ϕ(ρ−1(c)) ⊂ Gr(r,Rm+1) is a submanifold of codimension r(m + 1 − r) − rn = rs.

Define the tautological subbundle D ⊂ TI of codimension rs, for each c = (p, q) ∈ I, by

Dc = π−1
∗ (Tp(ϕ(ρ−1(c)))) ⊂ TcI.

Note that, if r 6= 1, or, r 6= n + 1, then the “system of tangential linear subspaces” {ϕ(ρ−1(c)) |
c ∈ I} in the Grassmannian Gr(r,Rm+1) defined by D does not represent general tangential
linear subspaces of the Grassmannian.

If we take local Grassmannian coordinates (aij)1≤i≤r,1≤j≤n+s of Gr(r,Rm+1) and (bk`)1≤k≤n+r,1≤`≤s

of Gr(s,Rm+1∗), then I is defined by the system of equations

bij + ai1br+1 j + · · · + ainbr+n j + ai n+j = 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s,

and D is defined by the system of 1-forms

br+1 jdai1 + · · · + br+n jdain + dai n+j = 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

The integral lifting f̃ is called the Legendre lifting of f in the generalised sense. The
relation to the original definition of frontals is as follows:

Lemma 15.2 Let F : (Rn, 0) −→ (I, (p0, q0)) be an integral map-germ to the distribution
D ⊂ TI. Then f = π1 ◦ F : (Rn, 0) −→ (Gr(r,Rm+1), p0) is Grassmannian frontal if and only
if κ ◦ f is proper, i.e. S(κ ◦ f) ⊂ (Rn, 0) is nowhere dense, for some projection

κ : (Gr(r,Rm+1), p0) ↪→ (Hom(Rr,Rn+s), 0) i∗−→ (Hom(R,Rn+s), 0) ↪→ RPn+s−1,

induced from a linear inclusion i : R ↪→ Rr.

Now, from the duality, we have another distribution D′ ⊂ TI from the projection π′ : I −→
Gr(s,Rm+1∗) to the second factor, setting

P ′ = {(q′, p, q) ∈ Gr(s,Rm+1∗) × Gr(r,Rn+2) × Gr(s,Rm+1∗) | q ⊆ p∨, q′ ⊆ p∨}.

Then the fundamental result is the following:

Proposition 15.3 Two distributions D and D′ on the incidental manifold I coincide.

We conclude this section by the following observation:

Proposition 15.4 Let F : Nn → I ⊂ Gr(r,Rm+1) × Gr(s,Rm+1∗) be an integral mapping to
the distribution D with n+r+s = m+1. Suppose π◦F =: f and π′◦F =: f∨ are Grassmannian
frontals respectively. Then we have f∨∨ = f .
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16 Tangent varieties

Given a curve in Euclidean 3-space E3 = R3, the embedded tangent lines to the curve draw a
surface in R3, which is called the tangent surface (or tangent developable) to the curve
([17][35]). It is known that the tangent surfaces (tangent developables) are developable surfaces.
Developable surfaces which are locally isometric to the plane keep on interesting many mathe-
maticians, for instance, Monge (1764), Euler (1772), Cayley (1845), Lebesgue (1899). See [73] for
details. Therefore the tangent surfaces are regarded as generalised solutions (with singularities)
of the Monge-Ampère equation

∂2z

∂x2

∂2z

∂y2
−

(
∂2z

∂x∂y

)2

= 0

on spacial surfaces z = z(x, y). Tangent surfaces are flat in E3. However they are not flat but
“extrinsically flat” or tangentially degenerate in S3 and H3 (cf. [3][71]). See also §14. The notion
of types (a1, a2, a3) for a curve-germ is introduced (Definition 13.2). Then the cuspidal edge,
(resp. the swallowtail, the cuspidal beaks (Mond surface), the cuspidal butterfly) is obtained as
the tangent developable of a curve of type (1, 2, 3) (resp. (2, 3, 4), (1, 3, 4), (3, 4, 5)).

This property is related to “projective duality”: The projective dual of a tangent surface
collapse to a curve (the dual curve). See [36].

Let γ : R → R3 be an immersed curve. Then the tangent surface has the natural parametriza-
tion

Tan(γ) : R2 → R3, Tan(γ)(t, s) := γ(t) + sγ′(t).

The tangent surface necessarily has singularities at least along γ, “the edge of regression”.
It is known that the tangent surface to a generic curve γ : R → R3 in R3 has singularities

only along γ and is locally diffeomorphic to the cuspidal edge or to the folded umbrella (also
called, the cuspidal cross cap), as is found by Cayley and Cleave (1980). Cuspidal edge singu-
larities appear along ordinary points where γ′, γ′′, γ′′′ are linearly independent, while the folded
umbrellas appear at isolated points of zero torsion where γ′, γ′′, γ′′′ are linearly dependent but
γ′, γ′′, γ′′′′ are linearly independent.

In a higher dimensional space Rm, m ≥ 4, for an immersed curve γ : R → Rm, we define the
tangent surface Tan(γ) : R2 → Rm by Tan(γ)(t, s) := γ(t) + sγ′(t). Then we have generically
that γ′, γ′′, γ′′′ are linearly independent and Tan(γ) is locally diffeomorphic to the (embedded)
cuspidal edge in Rm. Now we give the general definition:

Definition 16.1 Let N be an n-dimensional manifold. Let f : Nn → Rm be a proper frontal.
Let f̃ : N → Gr(n, TRm) be the Legendre lift of f . Then the tangent mapping Tan(f) : Tf →
Rm of f is defined by, for t ∈ N and v ∈ f̃(t) ⊂ Tf(t)Rm,

Tan(f)(t, v) := f(t) + v, (t, v) ∈ Tf ,

using the affine structure of Rm. Then we define the tangent variety of f as the parametrised
variety which is defined by the right equivalence class of Tan(f). If (t1, . . . , tn) is a system of
local coordinates of N , and (t1, . . . , tn, s1, . . . , sn) the induced system of local coordinates of Tf

induced by a system of local frame v1(t), . . . , vn(t) of f̃ , then Tan(f) is given by

Tan(f)(t, s) = f(t) +
n∑

j=1

sjvj(t)).
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Also note that we can define similarly the tangent varieties of mappings to a projective
space. Tangent varieties appear in various geometric problems and applications naturally
([3][14][54][55][56][64][69][65][90][73][102]). See [36][43], for the geometric exposition on the local
classification problem of tangent varieties. In particular it is proved in [43][56] the following:

Proposition 16.2 Let γ : (N, t0) → RPm be a curve-germ of finite type (Definition 13.2).
Then Tan(γ) : (N × R, (t0, 0)) → RPm is a proper frontal.

A proper frontal f : N → M is called a directed curve if dim(N) = 1 ([59][60][61]). A
directed curve γ is called orientable if there exists a frame u : N → TM , u(t) 6= 0, along γ such
that γ′(t) ∈ 〈 u(t) 〉R, t ∈ R, which projects to the unique Legendre lift γ̃ : N → P (TM) =
Gr(1, TM) of γ satisfying γ′(t) ∈ γ̃(t), (t ∈ R).

Let γ : N → M be a directed curve and γ̃ : N → P (TM) the unique D-integral lift of f .
Recall that the tangent bundle to f is defined by Tγ := {(t, v) ∈ N × TM | v ∈ γ̃(t)}, which
is a line bundle over N (see §7). Let M be a manifold with an affine connection. We define the
tangent mapping Tan(γ) : Tγ → M by (t, v) → exp(v), using the exponential map (see §18).

Remark 16.3 By Lemma 12.3, there exists a global Legendre lift γ̃ : N → P (TM) of f . Then
the orientability condition means that the line bundle T

ef
over N is orientable.

Let M = Rm and γ : N → Rm be a directed and orientable curve. Then the tangent surface
Tan(γ) : N × R → Rm of a directed curve γ is defined by

Tan(γ)(t, s) := γ(t) + s u(t)

The right equivalence class of Tan(γ) is independent of the choice of frame u.
The singularities of the tangent surface Tan(γ) for a generic directed curve γ : R → Rm on

a neighbourhood of the curve are only the cuspidal edge, the folded umbrella, and swallowtail if
m = 3, and the embedded cuspidal edge and the open swallowtail if m ≥ 4. See [20][59]. Several
degenerate cases are studied in [76][77][32][34][35][36].

17 Grassmannian geometry

We will give a series of classification results of singularities of tangent surfaces in An-geometry,
i.e. the geometry associated to the group PGL(n + 1,R) (see [57]).

Let V = Rm+1 be the vector space of dimension m + 1 and consider a flag in V of the
following type (a complete flag):

V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ Vm ⊂ V, dim(Vi) = i.

The set of such flags form a manifold Fl(1, 2, 3, . . . ,m) of dimension n(n+1)
2 .

A curve γ : R → P (V ) = P (V m+1) arises a D-integral curve Γ : R → Fl(1, 2, 3, . . . ,m) for
the canonical distribution D ⊂ TFl(1, 2, 3, . . . ,m), if we regard its osculating planes: the curve
itself is given by V1(t), the tangent line is given by V2(t), the osculating plane is given by V3(t)
and so on.

Let m = 2. Let V1(t) ⊂ V2(t) ⊂ V = R3 be an admissible curve. For each a, planes V2

satisfying V1(a) ⊂ V2 ⊂ V form the tangent line to the curve {V1(t)} at t = a in P (V ) = P 2.
Similarly lines V1 satisfying V1 ⊂ V2(a) form the tangent line to the dual curve {V2(t)} at t = a
in Gr(2, V ) = P (V ∗) = P 2∗, the dual projective plane. For a generic admissible curve, we have
the duality on “tangent maps”:

Let m = 3. Let Γ : R → Fl(1, 2, 3) be a D-integral curve. Set Γ(t) = (V1(t), V2(t), V3(t)),
V1(t) ⊂ V2(t) ⊂ V3(t) ⊂ V = R4. Then Γ induces the curve π1 ◦ Γ in P 3 = P (R4), the curve
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π2 ◦Γ in Gr(2,R4) and the curve π3 ◦Γ in P 3∗ = Gr(3,R4). Then we have the following duality
on their tangent surfaces in A3-geometry:

3© 4© 3©
Cuspidal Edge Cuspidal Edge Cuspidal Edge
Swallow Tail Cuspidal Edge Folded Umbrella

Mond Surface Open Swallowtail Mond Surface
Folded Umbrella Cuspidal Edge Swallow Tail

In general for a generic D-integral curve Γ : R → Fl(1, 2, 3, . . . ,m),

V1(t) ⊂ V2(t) ⊂ V3(t) ⊂ · · · ⊂ Vm(t) ⊂ V = Rm+1,

we have the classification of singularities of tangent surfaces:

Theorem 17.1 (An, n ≥ 4) The classification list consists of n + 1 cases for curves in Grass-
mannians:

Pn Gr(2, V ) Gr(3, V ) Gr(4, V ) · · · Gr(n, V )
CE CE CE CE · · · CE

OSW CE CE CE · · · CE
OM OSW CE CE · · · OFU
OFU CE OSW CE · · · OM
CE CE CE OSW · · · CE
...

...
...

...
. . .

...
CE CE CE CE · · · OSW

The cuspidal edge (resp. open swallowtail, open Mond surface, open folded um-
brella) is defined as a diffeomorphism class of the tangent surface-germ to a curve of type
(1, 2, 3, · · · ) (resp. (2, 3, 4, 5, · · · ), (1, 3, 4, 5, · · · ), (1, 2, 4, 5, · · · )) in an affine space.

Mond surface (cuspidal-beaks) open Mond surface

18 Affine connection and tangent surface

Now let us consider the case of directed curves in a Riemannian manifold, or more generally,
the case of directed curves in a manifold with any affine connection, which is not necessarily
projectively flat. For any directed curve, we have the well-defined tangent geodesic to each point
of the curve. If we regard it as the “tangent line”, then we have the well-defined tangent surface
for the directed curve.

It is proved in [59], for any affine connection on a manifold of dimension m ≥ 3, the singu-
larities of the tangent surface to a generic directed curve on a neighbourhood of the curve are
only the cuspidal edge, the folded umbrella, and swallowtail if m = 3, and the embedded
cuspidal edge and the open swallowtail if m ≥ 4. Moreover we have:
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Theorem 18.1 ([59]) Let ∇ be any torsion-free affine connection on a manifold M . Let γ :
R → M be a C∞ curve.

(1) Let dim(M) = 3. If (∇γ)(a), (∇2γ)(a), (∇3γ)(a) are linearly independent at t = a ∈ R,
then the tangent surface Tan(γ) is locally diffeomorphic to the cuspidal edge at (a, 0) ∈ R2. If
(∇γ)(a), (∇2γ)(a), (∇3γ)(a) are linearly dependent, and (∇γ)(a), (∇2γ)(a), (∇4γ)(a) are linearly
independent, then the tangent surface Tan(γ) is locally diffeomorphic to the folded umbrella at
(a, 0) ∈ R2. If (∇γ)(a) = 0 and (∇2γ)(a), (∇3γ)(a), (∇4γ)(a) are linearly independent, then the
tangent surface Tan(γ) is locally diffeomorphic to the swallowtail at (a, 0) ∈ R2.

(2) Let dim(M) ≥ 4. If (∇γ)(a), (∇2γ)(a), (∇3γ)(a) are linearly independent at t = a ∈
R, then the tangent surface Tan(γ) is locally diffeomorphic to the embedded cuspidal edge at
(a, 0) ∈ R2. If (∇γ)(a) = 0 and (∇2γ)(a), (∇3γ)(a), (∇4γ)(a), (∇5γ)(a) are linearly independent
at t = a ∈ R, then the tangent surface Tan(γ) is locally diffeomorphic to the open swallowtail at
(a, 0) ∈ R2.

For the proof of Theorem 18.1, we apply the characterisation theorems found in [71][25][43].
In [59][60], singularities of tangent surfaces of torsionless curves are studied. In that case, so

called fold singularities and (2, 5)-cuspidal edges appear. See also [28].

19 Characterisation of frontal singularities

When we treat singularities in a general ambient space as in the previous section, we need
the intrinsic characterisations of singularities. Note that the characterization of swallowtails
was applied to hyperbolic geometry in [71] and to Euclidean and affine geometries in [52].
The characterization of folded umbrellas is applied to Lorenz-Minkowski geometry in [25]. In
Theorem 18.1, we apply to non-flat projective geometry the characterisations and their some
generalization via the notion of openings introduced in §8.

Let f : (R2, p) → M3 be a frontal with a non-degenerate singular point at p (see Lemma
6.7) and f̃ : (R2, p) → Gr(2, TM) the integral lifting of f . Let V1, V2 : (R2, p) → TM be an
associated frame with f̃ . Let L : (R2, p) → T ∗M \ ζ be an annihilator of f̃ . The condition is
that 〈L, V1〉 = 0, 〈L, V2〉 = 0. Here ζ means the zero section. Let c : (R, t0) → (R2, p) be a
parametrization of the singular locus S(f), p = c(t0), and η : (R2, p) → TR2 be a vector field
which restricts to the kernel field of f∗ on S(f). Suppose that V2(p) 6∈ f∗(TpR2). Then, for any
affine connection ∇ on M , we define

ψ(t) := 〈L(c(t)), (∇f
ηV2)(c(t))〉.

Note that the vector field (∇f
ηV2)(c(t)) is independent of the extension η and the choice of affine

connection ∇, since η|S(f) is a kernel field of f∗. We call the function ψ(t) the characteristic
function of f .

Then the following characterisations of cuspidal edges and folded umbrellas are given in
[71][25]:

Theorem 19.1 (Theorem 1.4 of [25]). Let f : (R2, p) → M3 be a germ of frontal with a non-
degenerate singular point at p. Let c : (R, t0) → (R2, p) be a parametrization of the singular
locus of f . Suppose f∗c

′(t0) 6= 0. Then, for the characteristic function ψ,
(1) f is diffeomorphic to the cuspidal edge if and only if ψ(t0) 6= 0.
(2) f is diffeomorphic to the folded umbrella if and only if ψ(t0) = 0, ψ′(t0) 6= 0.

We can summarise several known results as those on openings of the fold:

Theorem 19.2 ([59][60]) Let f : (R2, p) → Mm,m ≥ 2 be a germ of frontal with a non-
degenerate singular point at p, f̃ : (R2, p) → Gr(2, TM) the integral lifting of f and V1, V2 :
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(R2, p) → TM an associated frame with f̃ . Let c : (R, t0) → (R2, p) be a parametrization of the
singular locus of f . Suppose f∗c

′(t0) 6= 0. Then f is diffeomorphic to an opening of the fold,
namely to the germ (u,w) 7→ (u, 1

2w2). Moreover we have:
(0) Let m = 2. Then f is diffeomorphic to the fold.
(1) Let m ≥ 3. Then f is diffeomorphic to the cuspidal edge if and only if ψ(t0) 6= 0.
(2) Let m = 3. Then f is diffeomorphic to the folded umbrella if and only if ψ(t0) = 0, ψ′(t0) 6=
0.

Based on results in [71] and [43], we summarise the characterization results on openings of
the Whitney’s cusp map-germ:

Theorem 19.3 ([59][61]) Let f : (R2, p) → Mm,m ≥ 2 be a germ of frontal with a non-
degenerate singular point at p, V1, V2 : (R2, p) → TM an associated frame with f̃ with V2(p) 6∈
f∗(TpR2), and η : (R2, p) → TR2 an extension of a kernel field along of f∗. Let c : (R, t0) →
(R2, p) be a parametrization of the singular locus of f . Set γ = f ◦ c : (R, t0) → M . Suppose
(∇γ)(t0) = 0 and (∇2γ)(t0) 6= 0. Then f is diffeomorphic to an opening of Whitney’s cusp,
namely to the germ (u, t) 7→ (u, t3 + ut). Moreover we have

(0) Let m = 2. Then f is diffeomorphic to Whitney’s cusp.
(1) Let m = 3. Then f is diffeomorphic to the swallowtail if and only if

V1(c(t0)), V2(c(t0)), (∇f
ηV2)(c(t0))

are linearly independent in Tf(p)M .
(2) Let m ≥ 4. Then f is diffeomorphic to the open swallowtail if and only if

(V1 ◦ c)(t0), (V2 ◦ c)(t0), ((∇f
ηV2) ◦ c)(t0), (∇γ

∂/∂t((∇
f
ηV2) ◦ c))(t0)

are linearly independent in Tf(p)M .

Note that the conditions appeared in Theorem 19.1 are invariant under diffeomorphism
equivalence introduced in Introduction. In fact the conditions are invariant under a weaker
equivalence relation. In Definition 8.4, we have introduce the notion of J -equivalence of map-
germs.

Corollary 19.4 Let f : (R2, 0) → (Rm, 0) be a frontal. Then f is J -equivalent to Whitney’s
cusp if and only if f is diffeomorphic to an opening of Whitney’s cusp. Moreover. if m = 2,
then f is diffeomorphic to Whitney’s cusp. If m = 3 and f is a front, then f is diffeomorphic
to swallowtail.

The known criteria of singularities (see for instance [93][94][70]) seem to be closely related
with frontals, openings and J -equivalence. The detailed relations are still open to be studied.

20 Null frontals

Let (M, g) be a semi-Riemannian manifold with an indefinite metric g. Denote by C ⊂ TM the
null cone field associated with the indefinite metric g, i.e. C is the set of null vectors:

C =
⋃

x∈M

Cx, Cx = {u ∈ TxM | gx(u, u) = 0}.

Let π : C → M be the canonical projection.
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Definition 20.1 A mapping f : N → M is called totally null (resp. null) if the induced
metric f∗g is identically zero (resp. f∗g is degenerate everywhere). The condition that f is
totally null is equivalent to that f∗(TtN) ⊂ Cf(t) (resp. f∗(TtN) is tangent to Cf(t)), for any
t ∈ N .

Definition 20.2 A curve-germ γ : (R, a) → M is called null if γ′(t) ∈ C (t ∈ (R, a)). More-
over γ : (R, a) → M is called null-directed if there exists a lift u : (R, a) → C such that
π ◦ u = γ, u(t) 6= 0, γ′(t) ∈ 〈u(t)〉R, t ∈ (R, a).

A map-germ is null (resp. null-directed) if and only if it is totally null (resp. totally null
frontal).

Definition 20.3 Let γ : (R, a) → M be null-directed. Define the null tangent surface
Tan(γ) : (R2, a × R) → M of γ as the ruled surface by null geodesics through points γ(t) with
the directions u(t).

The right equivalence class of Tan(γ) is independent of the choice of the lift u.
We have the following classification results. For the details see [56][57]: The singularities

of tangent surface Tan(γ) for a generic null directed curve γ : R → R2,2 are cuspidal edges
and open swallowtails. The singularities of tangent surface Tan(γ) for a generic null directed
curve γ : R → R2,3 are cuspidal edges, open swallowtails, open Mond surfaces and unfurled
folded umbrellas. The singularities of tangent surface Tan(γ) for a generic null directed curve
γ : R → R3,3 (the projection of a generic “Engel integral” curve) are embedded cuspidal edges,
open swallowtails and open Mond surfaces. See [43] for the normal forms and pictures of the
singularities.

In general the tangent surface to a null curve is a ruled surface by null lines, which is not
necessarily a totally null surface, but a null surface, which we call the null tangent surface.

Let X be a 3-dimensional Lorentzian manifold (with signature (1, 2)). A smooth map-germ
ϕ : (R2, 0) → X is called a null frontal surface or a null frontal in short if there exists
a smooth lift ϕ̃ : (R2, 0) → PT ∗X = Gr(2, TX) of ϕ such that ϕ̃(t) is a lightlike plane in
Tϕ(t)X and ϕ∗(TtR2) ⊂ ϕ̃(t), for any t ∈ (R2, 0). The notion of null frontals is a natural
generalization of null immersions to singular surfaces. We have presented several classification
results of singularities which arise in null frontals up to local diffeomorphisms and up to O(2, 3)-
conformal transformations in the conformally flat case (cf. [54]). The classification is achieved
by using the fact that null frontals are obtained as tangent surfaces to null curves in X, as well as
“associated varieties” to Legendre curves in the space Y of null geodesics on X (cf. [55][56][57]).
A related result is obtained in [19].

21 Abnormal frontals

Let M be a 5-dimensional manifold and D ⊂ TM a distribution of rank 2. Then D is called a
Cartan distribution if it has growth (2, 3, 5), namely, if rank(D(2)) = 3 and rank(D(3)) = 5,
where, we define in terms of Lie bracket, D(2) = D+[D,D] and D(3) = D2 +[D,D2]. It is known
that, for any point x of M and for any direction ` ⊂ Dx, there exists an abnormal geodesic,
which is unique up to parametrisations, through x with the given direction ` (see [50][51]).

Then, for a given D-directed curve γ, we define abnormal tangent surface of γ, which is
ruled by abnormal geodesics through points γ(t) with the directions u(t).

29



On R5 with coordinates (λ, ν, µ, τ, σ), define the distribution D ⊂ TR6 generated by the
pair of vector fields

η1 =
∂

∂λ
+ ν

∂

∂µ
− (λν − µ)

∂

∂τ
+ ν2 ∂

∂σ
,

η2 =
∂

∂ν
− λ

∂

∂µ
+ λ2 ∂

∂τ
− (λν + µ)

∂

∂σ
.

Then D ⊂ TR6 is a Cartan distribution and it has maximal symmetry of dimension 14, maximal
among all Cartan distributions, which is of type G2, one of simple Lie algebras.

For a generic G2-Cartan directed curve γ : R → R5, the tangent surfaces at any point
a ∈ R is classified, up to local diffeomorphisms, into embedded cuspidal edge, open Mond
surface, and generic open folded pleat (see [55] for details). The classification of singularities
in abnormal tangent surfaces to generic Cartan directed curves for general Cartan distributions
seems to be un-known yet.

22 Appendix: Malgrange preparation theorem on differentiable
algebras

We show the Malgrange’s preparation theorem on differentiable algebras [74] from the ordinary
Malgrange-Mather’s preparation theorem (see for example [15]), relating to the theory of C∞-
rings which we have utilised in this paper.

An R-algebra A is called local if it has a unique maximal ideal mA.

Example 22.1 Let En denote the R-algebra of C∞-functions-germs (Rn, 0) → R. Then En is
a local R-algebra with the unique maximal ideal mn = {h ∈ En | h(0) = 0}.

Definition 22.2 ([74]) A local R-algebra A is called a differentiable algebra if a surjective
R-algebra homomorphism, mapping 1 to 1, π : Em → A, for some m ∈ N is endowed.

A differentiable algebra A has the unique maximal ideal mA = π(mm).

Let A and B be differentiable algebras with the surjective homomorphisms π : Em → A
and ψ : En → B respectively. An R-algebra homomorphism u : A → B is called a morphism
of differentiable algebras if there exists a C∞ map-germ g : (Rn, 0) → (Rm, 0) such that the
diagram

Em
g∗→ En

π ↓ ↓ ψ

A
u→ B

commutes.

A morphism u : A → B of differentiable algebras is called finite (resp. quasi-finite) if B is
a finite A-module via u (resp. B/mAB is a finite dimensional R-vector space).

If u is finite, then it is quasi-finite. Then we have:

Theorem 22.3 (Malgrange preparation theorem on differentiable algebras. Theorem
4.1 in [74] p.73) Let u : A → B be a morphism of differentiable algebras. Then u is finite if
and only if it is quasi-finite. Moreover b1, . . . , br ∈ B generate B over A via u if and only if
b1, . . . , br ∈ B/mAB generate B/mAB over R.
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Theorem 22.4 (Malgrange-Mather’s preparation theorem: Theorem 6.5, Corollary 6.6
in [15]) Let f : (Rn, 0) → (Rm, 0) be a C∞ map-germ with the induced homomorphism f∗ :
Em → En. Let C be a finite En-module. Then C is a finite Em-module via f∗ if and only if
C/mmC is a finite dimensional R-vector space. Moreover c1, . . . , cr ∈ C generate C over Em

via f∗ if and only if c1, . . . , cr ∈ C/mmC generate C/mmC over R.

Proof that Theorem 22.4 implies Theorem 22.3:
Let u is quasi-finite. Suppose b1, . . . , br ∈ B and b1, . . . , br ∈ B/mAB generate B/mAB over R.
Let g : (Rn, 0) → (Rm, 0) and g∗ : Em → En cover u : A → B. Note B is a finite En-module via ψ.
In fact 1 ∈ B generates B over En via the surjection ψ. Also note that mmB = π(mm)B ⊆ mAB.
Then b1, . . . , br ∈ B/mmB generate B/mmB over R via u ◦ π = ψ ◦ g∗. Therefore, by Theorem
22.4, b1, . . . , br ∈ B generate B over A. Thus u is finite. This implies also remaining statement
naturally. 2

Definition 22.5 A commutative ring A is called a C∞-ring if the following conditions are
satisfied:
(1) A contains the field R of real numbers.
(2) For any positive integer r, for any a1, . . . , ar ∈ A, and for any C∞ function f ∈ C∞(Rr), an
element f(a1, . . . , ar) ∈ A is assigned, such that the equality

(g(f1, . . . , fs))(a1, . . . , ar) = g(f1(a1, . . . , ar), . . . , fs(a1, . . . , ar))

holds for any g ∈ C∞(Rs), f1, . . . , fs ∈ C∞(Rn).
(3) The operations on A by C∞ functions are compatible with the structure of R-algebra on
A, i.e. if f is a polynomial, f = P (x1, . . . , xr) ∈ R[x1, . . . , xr] ⊂ C∞(Rr), then f(a1, . . . , ar) is
equal to the element P (a1, . . . , ar) obtained just by substitutions (see [29]).

Note that by the condition (1), a C∞-ring is naturally an R-algebra. A C∞-ring A is called
a local C∞-ring if A is a local R-algebra. Let mA denote the unique maximal ideal of a local
C∞-ring. Let A be a C∞-ring. We say that a1, . . . , an ∈ A generate A as the C∞-ring if
for any a ∈ A, there exists f ∈ C∞(Rn) such that a = f(a1, . . . , an). A is called a finitely
generated C∞-ring if there exists a finite number of elements generating A as the C∞-ring.
Let π : A → A/mA denote the natural projection and i : R → A the inclusion.

Lemma 22.6 Let A be a differentiable algebra with a surjective R-algebra homomorphism
π : Em → A. Then we have:
(1) A has the induced structure of a local C∞-ring.
(2) A is generated by π(x1), . . . , π(xm) as the C∞-ring. Here (x1, . . . , xm) is a system of coor-
dinates of (Rm, 0) centred at 0.
(3) π ◦ i : R → A/mA is a bijection.

Proof : (1) For any positive integer r, for any a1, . . . , ar ∈ A, and for any C∞ function f ∈
C∞(Rr), we take a system of lifts ã1, . . . , ãr ∈ Em for π and define f(a1, . . . , ar) := π(f(ã1, . . . , ãr)).
If we take another system of lifts â1, . . . , âr ∈ Em for π, we have

f(ã1, . . . , ãr) − f(â1, . . . , âr) =
r∑

i=1

gi(ã, â)(ãi − âi) ∈ Ker(π),

for some C∞ functions gi(x̃1, . . . , x̃r; x̂1, . . . , x̂r) ∈ C∞(R2r), 1 ≤ i ≤ r. Thus π(f(â1, . . . , âr)) =
π(f(ã1, . . . , ãr)). Moreover, take any a ∈ A. Then there exists h ∈ Em such that a =
π(h). (2) Take an H ∈ C∞(Rm) having h as the germ at 0. Then H(π(x1), . . . , π(xm)) =
π(H(x1, . . . , xm)) = π(h) = a. (3) R ∼= Em/mm

∼= A/mA. 2
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Proposition 22.7 Let (A,mA) be a local C∞-ring. Then the following conditions are equivalent:
(1) A is finitely generated as C∞-ring and the natural map π ◦ i : R → A/mA is bijective.
(2) A is a differentiable algebra in the sense of Malgrange.

Proof : (1) ⇒ (2): Let a1, . . . , am be a system of generators of A as C∞-ring. Define Π :
C∞(Rm) → A by Π(f) = f(a1, . . . , am). Then Π is surjective. Set I = Π−1(mA) which is a
maximal ideal of C∞(Rm) with C∞(Rm)/I ∼= R. Then there exists a point p ∈ Rm such that
I = {f ∈ C∞(Rm) | f(p) = 0} (see Proposition 2.1 [2] for instance). Moreover Ker(Π) ⊂ I.
Set J = {f ∈ C∞(Rm) | the germ of f at p is zero}. We show that J ⊆ Ker(Π). Let h ∈ J .
Then there exists k ∈ C∞(Rm) such that k(p) 6= 0 and hk = 0. Then 0 = (hk)(a1, . . . , am) =
h(a1, . . . , am)k(a1, . . . , am). On the other hand k(a1, . . . , am) 6∈ mA. Hence k(a1, . . . , am) is
invertible. Then Π(h) = (h(a1, . . . , am) = 0 and thus h ∈ Ker(Π). Now Π : C∞(Rn) → A
induces a surjective homomorphism π′ : ERm,p → A. Define π : Em = ERm,0 → A by π(f) =
π′(f̃), where f̃(x) = f(x − p).
The implication (2) ⇒ (1) follows by Lemma 22.6. 2

Example 22.8 Let I = {h ∈ C∞(R) | ∃n0 ∈ N, h(n) = 0(n ∈ N, n ≥ n0)}. Then I is a
maximal ideal of C∞(R). Let A = C∞(R)I be the localisation (a localisation at infinity).
Then A is an R-algebra with the unique maximal ideal mA. However A is not a differentiable
algebra in the sense of Malgrange. In fact, the quotient field A/mA

∼= C∞(R)/I is a Robinson’s
hyper-real number field [92].

We call an R-algebra homomorphism u a C∞-ring homomorphism if

u(f(a1, . . . , ar)) = f(u(a1), . . . , u(ar)),

for any r ≥ 1, for any a1, . . . , ar ∈ A and for any f ∈ C∞(Rr).

Lemma 22.9 Let ϕ : Em → En be an R-algebra homomorphism. Then the following conditions
are equivalent:
(1) There exists a C∞ map-germ g : (Rn, 0) → (Rm, 0) such that ϕ = g∗.
(2) ϕ is a C∞-ring homomorphism.

Proof : (1) ⇒ (2): Let a1, . . . , ar ∈ Em and h ∈ C∞(Rr). Then

h(ϕ(a1), . . . , ϕ(ar)) = h(g∗a1, . . . , g
∗ar) = h◦(a1, . . . , ar)◦g = g∗(h(a1, . . . , ar)) = ϕ(h(a1, . . . , ar)).

(2) ⇒ (1): Let x1, . . . , xm be coordinates of (Rm, 0). Then ϕ(x1), . . . , ϕ(xm) ∈ mn. Take
representatives g̃i : U → R of ϕ(yi) over a common open neighbourhood of 0 in Rn, (1 ≤ i ≤ m).
We set g̃ = (g̃1, . . . , g̃m) : U → Rm. Then g̃(0) = 0. Take the germ g : (Rn, 0) → (Rm, 0) of g̃ at
0. Let h ∈ Em. Take a representative h̃ ∈ C∞(Rm). Then we have ϕ(h) = ϕ(h̃(x1, . . . , xm)) =
h̃(ϕ(x1), . . . , ϕ(xm)) = h ◦ g = g∗(h). Therefore ϕ = g∗. 2

Lemma 22.10 Let u : A → B be an R-algebra homomorphism of differentiable algebras. Then
the following conditions are equivalent:
(1) u is a morphism of differentiable algebras.
(2) u is a C∞-ring homomorphism.

Proof : (1) ⇒ (2): Let a1, . . . , ar ∈ A and f ∈ C∞(Rr). Take ãi ∈ Em with π(ãi) = ai.
Then ψ(g∗ãi) = u(ai). Then u(f(a1, . . . , ar) = u(π(f(ã1, . . . , ãr))) = ψ(f ◦ (ã1, . . . , ãr) ◦ g) =
ψ(f(g∗ã1, . . . , g

∗ãr)) = f(u(a1), . . . , u(ar)).
(2) ⇒ (1): Take gi ∈ En with u(π(xi)) = ψ(gi). Since ψ(gi) ∈ mB, we have gi ∈ mm. Set
g = (g1, . . . , gm) : (Rn, 0) → (Rm, 0). Let h ∈ Em and take a representative H ∈ C∞(Rm) of
the germ h. Then we have u(π(h)) = u(H(π(x1), . . . , π(xm))) = H(u(π(x1)), . . . , u(π(xm))) =
H(ψ(g1), . . . , ψ(gm)) = ψ(H(g1, . . . , gm) = ψ(g∗(h)). 2
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