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Abstract

In this paper we introduce the notion of cofrontal mappings, as the dual objects to
frontal mappings, and study their basic local and global properties. Cofrontals are very
special mappings and far from generic nor stable except for the case of submersions. It is
observed that any smooth mapping can be C0-approximated by a possibly “unfair” cofrontal
or a frontal. However global “fair” cofrontals are very restrictive to exist. Then we give a
method to construction “fair” cofrontals with fiber-dimension one and a target-local diffeo-
morphism classification of such cofrontals, under some finiteness condition.

1 Introduction
In the previous papers (see [8][9][10][11]) we have introduced and studied the notion of frontal
map-germs. A map-germ f : (N,a) → (M,b) from an n-dimensional manifold N to an m-
dimensional manifold M is called a frontal if n ≤ m and there exists a smooth n-plane field f̃
along f , i.e. which commutes

Gr(n,T M)

π
��

(N,a)
f

//

f̃
99rrrrrrrrrr
(M,b),

and which satisfies ImTx f ⊆ f̃ (x) for any x ∈ (N,a). Here Gr(n,T M) means the Grassman-
nian bundle over M with fibers Gr(n,TyM), the Grassmannians of n-dimensional subspaces in
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TyM,y ∈ M. The condition on f̃ is equivalent to that f̃ is an integral mapping for the canonical
distribution on the Grassmannian bundle.

In this paper, in a dual manner to frontals, we introduce the notion of cofrontals: A map-
germ f : (N,a) → (M,b) is called a cofrontal if n ≥ m and there exists an integrable vector-
subbundle K = K f of T N of corank m, which is regarded as a section

Gr(n−m,T N)

(N,a)
f

//

K f

OO

(M,b),

and which satisfies the condition (K f )x ⊆ Ker(Tx f ) for any x ∈ (N,a). We impose the integra-
bility condition on K in addition. If f is fair (Definition 2.13), i.e. the singular locus of the
confrontal f has no interior point nearby a ∈ N, then the integrability of the germ K follows au-
tomatically. Moreover in this case K is uniquely determined from the cofrontal f (Lemma 2.16).
In some sense, frontals are mappings such that the images of differentials are well-behaved, and
cofrontals are mappings such that the kernels of differentials are well-behaved.

A global mapping f : N → M is called a frontal (resp. a cofrontal) if all germs fa : (N,a)→
(M, f (a)) of f at every a ∈ N are frontal (resp. cofrontal). Moreover a cofrontal f is called fair
if all germs fa at f at every a ∈ N are fair cofrontal germs (Definition 3.1).

Important examples of cofrontals are obtained as mappings which are constant along Seifert
fibers ([2], cf. Example 3.2).

We see that frontals and cofrontals are not stable except for the trivial cases, immersions and
submersions and far from generic classes in the space of all C∞ mappings. Nevertheless we see
that they enjoy rather interesting properties to be studied. For example, we see that any smooth
map is approximated by a frontal or a cofrontal in C0-topology, at least if the source manifold is
compact (Proposition 3.3). In this paper we will describe such basic but interesting properties
of cofrontals mainly.

If f : N → M is a fair cofrontal, then the kernel field of f exists uniquely and globally, and
therefore the source manifold N has a strict restriction if a global fair cofrontal exists on N.
Note that, for given manifolds N,M with n < m, if N is compact then there exists a fair frontal
N → M (Remark 4.3).

It is known that the local structures of fair (proper) frontals are understood by map-germs
between spaces with the same dimension (n = m), together with the process of ”openings”
([10][11]). On the other hand the local structures of fair cofrontals turn to be reduced to the
case n = m. In fact, as for the source-local problem, the classification of cofrontal singularities
is reduced to the case n = m completely (Proposition 2.4, Lemma 2.16).

Note that frontals were studied mainly in the case m−n = 1, i.e. the case of hypersurfaces,
motivated by the study on wave-fronts ([1][10]).
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In this paper, as for cofrontals, we study the cases of relative dimension n−m = 1. We pro-
vide a general target-local classification of fair cofrontals Nm+1 → Mm with relative dimension
1 under a mild condition. In fact the target-local classification problem of cofrontal mappings
is reduced to that of the right-left classification of multi-germs (Rm,S)→ (Rm,0) together with
a right symmetry of the multi-germ (Theorem 5.9). It is interesting to apply the classification
results of map-germs (Rm,0)→ (Rm,0), in particular in the case m = 2 (see [22][19][20][12]
for instance), to classifications of concrete classes of cofrontals.

In §2, we introduce the notion of cofrontal map-germs comparing with that of frontals and
clarify their local characters. In §3, we introduce global cofrontals and show some approxima-
tion result of mappings by frontals and cofrontals. After given several notions and examples
related to fair frontals in §4, we give a classification of cofrontals of fiber-dimension one under
the condition of “reduction-finite” (Definition 2.5, Definition 5.6, Theorem 5.9) in §5.

In this paper all manifolds and mappings are assumed to be smooth i.e. of class C∞ unless
otherwise stated.

2 Cofrontal singularities
Let N,M be smooth manifold of dimension n and m respectively, and f : (N,a) → (M,b) a
smooth map-germ. Suppose n ≥ m.

Definition 2.1 (Cofrontal map-germ, kernel field.) The germ f is called a cofrontal map-germ
or a cofrontal in short, if there exists a germ of smooth (C∞) integrable subbundle K ⊂ T N,
K = (Kx)x∈(N,a), of rank n−m such that

Kx ⊆ Ker(Tx f : TxN → Tf (x)Rm),

for any x ∈ N nearby a. Here Tx f : TxN → Tf (x)Rm is the differential of f at x ∈ (N,a).
Then K is called a kernel field of the cofrontal f .

Note that the kernel field is regarded as a section K : (N,a) → Gr(n−m,T N) satisfying
(Tx f )(Kx) = {0}, x ∈ (N,a).

Compare with the notion of frontals (cf. [7][10][11]). Here we recall the definition of
frontals: Let f : (N,a)→ (Rm,b) be a map-germ. Suppose n ≤ m. Then f is called a frontal
map-germ or a frontal in short, if there exists a smooth family of n-planes f̃ (t)⊆ Tf (t)Rm along
f , t ∈ (N,a), satisfying the condition Image(Tt f : TtN → Tf (t)Rm)⊆ f̃ (t) (⊂ Tf (t)Rm), for any
t ∈ (N,a). The family f̃ (t) is called a Legendre lift of the frontal f .

In some sense, cofrontals are dual objects to frontals.
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Example 2.2 (1) Any immersion is a frontal. The Legendre lift is given by f̃ :=(Tt f (TtN))t∈(N,a).
Any submersion is a cofrontal. The kernel field K is given by K := (Ker(Tx f ))x∈(N,a).

(2) Any map-germ (N,a) → (M,b) between same dimensional manifolds (n = m) is a
frontal and a cofrontal simultaneously. In fact the Legendre lift is given by f̃ (t) := Tf (t)M, t ∈
(N,a) and the kernel field K is given by the zero-section of T N.

(3) Any constant map-germ (N,a)→ (M,b) is a frontal if n ≤ m and a cofrontal if n ≥ m.
In fact we can take any family of n-planes along the germ as a Legendre lift and any subbundle
K ⊂ T N of rank n−m as a kernel field.

Remark 2.3 As was mentioned, the differentials of cofrontals have a mild behavior. This re-
minds us Thom’s a f -condition: Let f : N → M be a smooth map, X ,Y submanifolds in N, and
x ∈ X ∩Y . Then Y is a f -regular over X at x if a sequence yi of points in Y converges to x and

Ker(Tyi( f |Y ))→ T ⊆ TxN,(i → ∞),

then Ker(Tx( f |X))⊆ T .
Let f : N → M is a cofrontal and take any fiber X = f−1(b),b ∈ M. Then X is a submanifold

of N and Y = N \X is a f -regular over X .

Let EN,a := {h : (N,a)→ R} denote the R-algebra of smooth function-germs on (N,a).
Recall that Jacobi ideal J f of a map-germ f : (N,a) → (M,b) is defined as the ideal gen-

erated in EN,a by all min{n,m}-minor determinants of Jacobi matrix J( f ) of f . Note that J f is
independent of the choices of local coordinates on (N,a) and (M,b).

Proposition 2.4 (Criterion of cofrontality) Let f : (N,a) → (M,b) be a map-germ with n =
dim(N)≥ m = dim(M). If f is a cofrontal, then there exists a germ of submersion π : (N,a)→
(N,a) to an m-dimensional manifold N and a smooth map-germ f : (N,a)→ (M,b) such that
f = f ◦π . Moreover the Jacobi ideal J f of f is principal, i.e. it is generated by one element. In
fact J f is generated by λ = π∗(λ ) for the Jacobian determinant λ of f .

Conversely, if the Jacobi ideal J f is principal and the singular locus

S( f ) = {x ∈ (N,a) | rank(Tx f : TxN → Tf (x)M)< m}

of f is nowhere dense in (N,a), then f is a cofrontal.

Definition 2.5 (Reductions of cofrontals.) We call f a reduction of the cofrontal-germ f . A
germ of cofrontal f : (N,a)→ (M,b) is called reduction-finite if a reduction f : (N,a)→ (M,b)
of f is K -finite (or finite briefly), i.e. the dimension of Q f := EN,a/ f ∗(mb) is finite, where
f ∗ : EM,b → EN,a is the R-algebra homomorphism defined by f ∗(h) = h ◦ f , and mb ⊂ EM,b is
the maximal ideal of function-germs vanishing at b (see [14][5][21][1]).
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Remark 2.6 In Lemma 2.3 of [11], it is shown that if f : (N,a) → (M,b),n ≤ m is a frontal,
then the Jacobi ideal J f is principal and that conversely if J f is principal and S( f ) = {x ∈ (N,a) |
rank(Tx f )< n} is nowhere dense, then f is a frontal.

Remark 2.7 If f : (Rm,0) → (Rm,0) is K -finite, then the zero set of f is isolated and any
nearby germ of f has the same property. The number of fibers of f is uniformly bounded by
dim(Q f ) (Propositions 2.2, 2,4 of Ch.VII in [5], see also [3][13]).

Proof of Proposition 2.4: Let f be a cofrontal and K be a kernel field of f . Since K is integrable
subbundle of T N of rank n−m, there exists a submersion π : (N,a)→ (Rm,0) such that Kx =
Ker(π∗ : TxN → Tπ(x)Rm for any x ∈ (N,a), i.e. π-fibers form the foliation induced by K. Take
any curve γ : (R,0) → N in a fiber of π . Then ( f ◦ γ)′(t) = (Tγ(t) f )(γ ′(t)) = 0. Therefore f
is constant along the curve γ . Hence f is constant on π-fibers. Then there exists a map-germ
f : (Rm,0) → (M,b) such that f = f ◦ π . Take a smooth section s : (Rm,0) → (N,a). Then
f = f ◦π ◦ s = f ◦ s. Therefore f is a smooth map-germ.

Take a system of local coordinates x1, . . . ,xm,xm+1, . . . ,xn such that π is given by

π(x1, . . . ,xm,xm+1, . . . ,xn) = (x1, . . . ,xm)

and therefore Kx is generated by ∂/∂xm+1, . . . ,∂/∂xn in TxN. Then f is expressed as

f (x1, . . . ,xn) = ( f1(x1, . . . ,xm), . . . , fm(x1, . . . ,xm)).

Then J f is generated by one element det(∂ fi/∂x j)1≤i, j≤m = π∗(det(∂ f i/∂x j)1≤i, j≤m) = π∗(λ )
and therefore J f is a principal ideal in EN,a.

Conversely suppose J f is a principal ideal generated by one element λ ∈ J f and S( f ) is
nowhere dense. Denote by Γ the set of subsets I ⊆ {1,2, . . . ,n} with #(I) = m. For a map-germ
f : (N,a)→ (M,b),n ≥ m and I ∈ Γ, we set DI = det(∂ fi/∂x j)1≤i≤m, j∈I for some coordinates
x1, . . . ,xn of (N,a) and y1, . . . ,ym of (M,b) with fi = yi ◦ f . For any I ∈ Γ, there exists hI ∈ Ea
such that DI = kIλ . Since S( f ) is nowhere dense, there exists I0 ∈ Γ such that DI0 ̸= 0. Since
λ ∈ J f , there exists ℓI ∈ Ea for any I ∈ Γ such that λ = ∑I∈Γ ℓIDI . Then (1−∑I∈Γ ℓIkI)λ = 0. If
kI(a) = 0 for any I ∈ Γ, then 1−∑I∈Γ ℓIkI is invertible in Ea, therefore λ = 0 and then we have
J f = 0. This contradicts to the assumption that S( f ) is nowhere dense. Hence there exists I0 ∈ Γ
such that (ℓI0kI0)(a) ̸= 0. Then kI0(a) ̸= 0. Therefore J f is generated by DI0 . Hence DI = hIDI0

for any I ∈ Γ with hI0(a) = 1. Then the Plücker-Grassmann coordinates (hI)I∈Γ give a smooth
section K : (Ra,a)→ Gr(n−m,T N)∼= Gr(m,T ∗Ra), which is regarded as a subbundle K ⊆ T N
of rank n−m and Kx ⊆ Ker(Tx f ) for any x ∈ (N,a). Moreover Kx coincides with Ker(Tx f ) for
x ∈ (N \S( f ),a) and therefore K is integrable outside of S( f ). Since S( f ) is nowhere dense, K
is integrable. Thus f is a cofrontal map-germ with the kernel field K. 2

Corollary 2.8 Let f : (N,a)→ (M,b) be a map-germ. Suppose f is analytic and J f ̸= 0. Then
f is a frontal or a cofrontal if and only if J f is a principal ideal.
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Proof : By Lemma 2.4 and Remark 2.6, if f is a frontal or a cofrontal, then J f is principal. If
J f is principal, J f ̸= 0 and f is analytic, then S( f ) is nowhere dense. Thus by Lemma 2.4 and
Remark 2.6, f is a frontal if n ≤ m or a cofrontal if n ≥ m. 2

Example 2.9 Let f : (R3,0) → (R2,0) be the map-germ given by f (x1,x2,x3) = (x2
1 + x2

2 +
x2

3,0). Then f is analytic and J f = 0 is principal. However f is not a cofrontal. In fact, suppose
f is a cofrontal and K a kernel field of f of rank 1. Let

ξ (x) = ξ1(x)∂/∂x1 +ξ2(x)∂/∂x2 +ξ3(x)∂/∂x3, ξ (0) ̸= 0,

be a generator of K. Then ξ1(x)x1+ξ2(x)x2+ξ3(x)x3 is identically zero in a neighborhood of 0
in R3. In particular we have ξ1(x1,0,0)x1 = 0 and therefore ξ1(x1,0,0) = 0, so ξ1(0,0,0) = 0.
Similarly we have also ξ2(0,0,0) = 0 and ξ3(0,0,0) = 0. This leads a contradiction.

Definition 2.10 (Jacobians of frontals and cofrontals.) Let f : (N,a)→ (M,b) be a frontal or a
cofrontal. Then a generator λ ∈ Ea of J f is called a Jacobian (or a singularity identifier) of the
cofrontal f , which is uniquely determined from f up to multiplication of a unit in Ea.

Remark 2.11 The singular locus S( f ) = {x ∈ (N,a) | rank(Tx f : TxN → Tf (x)M)< min{n,m}}
of a frontal or a cofrontal f is given by the zero-locus of the Jacobian λ of f .

Remark 2.12 Let f : (N,a)→ (M,b) be a cofrontal and K a kernel field of f . Set

K⊥
x := {α ∈ T ∗

x N | α(v) = 0 for any v ∈ Kx}.

Then K⊥ is a germ of subbundle of the cotangent bundle T ∗N of rank m. Let α1,α2, . . . ,αm be
a local frame of K⊥. Then there is a unique λ ∈ Ea such that

d f1 ∧d f2 ∧·· ·∧d fm = λα1 ∧α2 ∧·· ·∧αm.

Then λ generates J f and therefore λ is a Jacobian of the cofrontal f .

Definition 2.13 (Fair frontals and cofrontals.) A frontal or a cofrontal f : (N,a)→ (M,b) is
called fair if the singular locus S( f ) is nowhere dense in (N,a).

Remark 2.14 A cofrontal f is fair if and only if a reduction f (Definition 2.5) is fair. In fact if
f = f ◦π for a submersion-germ π : (N,a)→ (Rm,0), we have S( f ) = π−1(S( f )), and therefore
S( f ) is nowhere dense in (N,a) if and only if S( f ) is nowhere dense in (Rm,0). If a cofrontal f
is reduction-finite (Definition 2.5), then f is fair, since a reduction f is K -finite so is necessarily
fair.

6



Remark 2.15 In [10][11], a frontal with nowhere dense singular locus was called proper. How-
ever in the global study the terminology “proper” is rather confusing, in particular for the study
of cofrontals, since its usage is different from the ordinary meaning of properness (inverse im-
ages of any compact is compact). Therefore in this paper we use the terminology “fair” instead
of “proper”.

Lemma 2.16 Let f : (N,a)→ (M,b) be a fair cofrontal or dim(N) = dim(M). Then the ker-
nel filed K of f is uniquely determined and the reduction f of f (Definition 2.5) is uniquely
determined up to right equivalence.

Proof : On the regular locus N \ S( f ), there is the unique kernel field K defined by Kx :=
Ker(Tx f : TxN → Tf (x)M). Let f be a fair cofrontal. Then N \S( f ) is dense in (N,a). Therefore
the extension of K to (N,a) is unique if it exists. Let n = m. Then the unique unique kernel field
K is defined by the zero-section of T N (Example 2.2 (2)). Then the submersion π : (N,a) →
(Rm,0) induced by K is uniquely determined up to left equivalence. Let π ′ : (N,a)→ (Rm,0)
be induced by K and f and f ′ be both reductions of f with f = f ◦π = f ′ ◦π ′. Then π ′ = σ ◦π
for some diffeomorphism-germ σ : (Rm,0) → (Rm,0) and f ◦ π = ( f ′ ◦σ) ◦ π . Since π is a
submersion, we have f = f ′ ◦σ . 2

Let f : (N,a)→ (M,b) be a cofrontal (resp. a fair cofrontal) and K : (N,a)→Gr(n−m,T M)
be a kernel field of f . Recall that K ⊂ T N is a germ of integrable subbundle of rank n−m.

Definition 2.17 (Adapted coordinates.) A system (x1, . . . ,xm,xm+1, . . . ,xn) of local coordinates
of N centered at a is called adapted to a kernel field K of a cofrontal f , or simply, to f , if

Kx =

⟨(
∂

∂xm+1

)
x
, . . . ,

(
∂

∂xn

)
x

⟩
R
= {v ∈ TxN | dx1(v) = 0, . . . ,dxm(v) = 0},

for any x ∈ (N,a).

Since a kernel field K of a cofrontal is assumed to be integrable, we have

Lemma 2.18 Any cofrontal f : (N,a)→ (M,b) has an adapted system of local coordinates on
(N,a).

Remark 2.19 For an adapted system of coordinates (x1, . . . ,xn,xn+1, . . . ,xm) of f , the Jacobian
λ is given by the ordinary Jacobian ∂ ( f1,..., fm)

∂ (x1,...,xm)
.
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3 Global cofrontals
We will define the class of (co)frontal maps and fair (co)frontal maps, and we make clear the
difference of these classes of mappings.

Definition 3.1 (Global cofrontal mappings.) Let N,M be smooth manifolds of dimension n,m
respectively.

Suppose n ≤ m. A smooth mapping f : N → M is called a cofrontal map or a cofrontal
briefly if the germ fa : (N,a)→ (M, f (a)) at a is a cofrontal for any a ∈ N (Definition 2.1). A
cofrontal f : N → M is called fair if fa is a fair cofrontal for any a ∈ N, i.e. if the singular locus
S( f ) := {x ∈ N | rank(Tx f : TxN → Tf (x)M)< m} is nowhere dense in N (Definition 2.13).

Suppose n ≥ m. A smooth mapping f : N → M is called a frontal map or a frontal briefly if
the germ fa : (N,a)→ (M, f (a)) is a frontal for any a ∈ N. A frontal f : N → M is called fair
if fa is a fair frontal for any a ∈ N, i.e. if the singular locus S( f ) := {x ∈ N | rank(Tx f : TxN →
Tf (x)M)< n} is nowhere dense in N.

Example 3.2 (1) Any submersion is a cofrontal. Any immersion is a frontal.
(2) Any constant mapping N →M is a cofrontal of a frontal depending on dim(N)≥ dim(M)

or dim(N)≤ dim(M).
(3) Let F ) be a foliation of codimension m on a manifold N of dimension n. If a mapping

f : Nn → Mm is constant on any leaf of F , then f is a cofrontal.
(4) As a motivating example from symplectic geometry, consider a Lagrangian foliation L

on a symplectic manifold N2n and a system of functions f1, . . . , fn on N. Then f = ( f1, . . . , fn) :
N → Rn is a cofrontal if f is constant along each leaf of L .

First we observe “unfair” (co)frontal maps are not so restrictive in topological or homotopi-
cal sense. In what follows we suppose N is compact for simplicity.

Proposition 3.3 (C0-approximation.) Any smooth (C∞) map f : N → M is C0-approximated by
a frontal or a cofrontal g : N → M. Any smooth map f : N → M is homotopic to a frontal or a
cofrontal g : N → M.

Example 3.4 Let S2 ⊂R3 be the unit sphere and g : S2 →R the height function, i.e. g(x1,x2,x3)=
x3. Then g is never a cofrontal. Let ε > 0. Let φ : [−1,1]→ [−1,1] be any smooth map satisfy-
ing that φ(y) =−1(−1 ≤ y−1+ ε),φ(y) = 1(1− ε ≤ y ≤ 1), and that φ is a diffeomorphism
from (−1+ ε,1− ε) to (−1,1). Then f = φ ◦ g is a cofrontal. See the figure: In the right
picture, f restricted to the north (resp. south) gray part is constant.
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1

1

f

graph of φ . A cofrontal on the sphere.

Note that f can be taken to be arbitrarily near g in C0-topology.
Similar construction can be applied to any proper Morse function g : N → R and we have a

cofrontal which is a C0-approximation to g.

Proof of Proposition 3.3: Let f : N → M be a smooth mapping. Then f is C∞-approximated
by a mapping f ′ : N → M such that there exists a Thom stratification (S ,T ) of f ′. This is a
consequence of the topological stability theorem ([15][16][17][4]). In particular we have

(1) S is a Whitney stratification of N and T is a Whitney stratification of M.
(2) For any S ∈ S , there exists a T ∈ T such that f ′|S : S → T is a surjective submersion.
(3) The critical locus

Σ( f ′) := {x ∈ N | rank(Tx f ′ : TxN → Tf (x)M)< m}

is a union of strata of S and, for any stratum S ∈ S in Σ(S), f |S : S → M is an immersion.
(4) There exists a compatible tubular system (πS,ρS)S∈S for S , i.e., a normed normal

bundle ES → S to S in N, a positive smooth function ε : S → R and a diffeomorphism ϕS :
(ES)<ε →N on on the image US =ΦS((ES)<ε), which is a tubular neighborhood of S in N. Here
(ES)<ε := {v ∈ ES | v ∈ TxN,∥v∥< ε(x)} and ρS(v) = ∥v∥2. The projection πS is regarded as the
projection from the tubular neighborhood US to S via ϕS, and ρS is the squared norm function
on a normed normal bundle of S, which is regarded as a function on the tubular neighborhood.
Then compatibility condition means that, for any S,S′ ∈ S with S′ ⊆ S,

πS′ ◦πS = πS′, ρS′ ◦πS = ρS,

in the intersection of a tubular neighborhood of S and that of S′, and that for any S,S′ ∈ S with
dim(S) = dim(S′), the intersection US ∩US′ = /0.
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For 0 ≤ i ≤ n, denote by S(i) is the i-skeleton of S , i.e. the union of all strata of S of
dimension ≤ i. Set U (i) = N \Si, the union of all strata of S of dimension > i. We will modify
f ′ first on U (n−1) and then U (n−2) and so on to get the approximation g.

Actually we perform as follows: First we suppose n > m. Let τ be a sufficiently small
positive real number and τ = τδ : [0,1] → R a smooth function such that τ(t) = 0(0 ≤ t <
δ ),τ(t) = 1(1−δ < t ≤ 1. Define fn−1 : U (n−1) → M by

fn−1(x) := f

(
ϕS

(
τ

(
1

ε(πS(ϕ−1
S (x)))

∥ϕ−1
S (x)∥

)
ϕ−1

S (x)

))
,

for x ∈ US ∩U (n−1) with dim(S) = n− 1, and by fn−1(x) = f (x) otherwise. Note that, by the
mapping fn−1, the mapping f is modified along points near S∈S with dim(S)= n−1 contracts
to S and then mapped by f . The modified map fn−1 is a smooth map and a cofrontal. Also we
have that fn−1 is homotopic to f |U (n−1) . Moreover note that fn−1 is not a C∞-approximation but
a C0-approximation of f on U (n−1). Define fn−2 : U (n−2) → M by setting fn−2(x) similar as
above for x ∈US ∩U (n−2) with dim(S) = n−2, by fn−2(x) = fn−1(x) otherwise. Then fn−2 is
a smooth map, a cofrontal and a C0 approximation of f on U (n−2). Iterating this procedure we
have f0 : U (0) → M and finally f−1 : U (−1) = N → M, which is a smooth map, a cofrontal, a C0

approximation of f on N and is homotopic to f .
If n = m, then we have nothing to do.
Suppose n < m. Note that in this case Σ( f ) = N. Then by the same procedure as above,

we have a frontal fi which is a C0-approximation of f |U (i) and is homotopic to f |U (i) for
i = n− 1,n− 2, . . . ,0,−1. Note that we may take as a Legendre lift of fi any extension of the
Legendre lift of f |S,dim(S) = i over US. Thus we have a frontal f which is a C0-approximation
of f and is homotopic to f . 2

4 Global fair cofrontals
Contrary to the case of “unfair” cofrontals, the following lemmata show that the sauce space of
a fair cofrontal must be very restrictive.
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Lemma 4.1 Let f : N → M be a fair cofrontal. Then there exists a unique kernel field K of f ,
i.e. there exists a unique integrable subbundle K ⊆ T N of rank n−m such that Kx ⊆ Ker(Tx f :
TxN → Tf (x)M) for any x ∈ N.

Proof : By Lemma 2.16, the germ of kernel field is uniquely determined for each x ∈ N. By the
local existence and uniqueness, we have the global existence of the kernel field of f . 2

Lemma 4.2 Let f : N →M be a fair cofrontal and K the kernel field of f . Let F be the foliation
induced by the integrable subbundle K of T N of rank n−m. Then the closure of any leaf of F
is nowhere dense in N.

Proof : Let L be a leaf of F . Then f restricted to L is constant. (See the proof of Proposition
2.4. Note that L is assumed to be connected by the definition of leaves. ) Then f restricted to the
closure L of L is constant just by the connectedness of f . Assume L has an interior point. Then
also S( f ) necessarily has an interior point. This leads us to a contradiction with the fairness. 2

Remark 4.3 Let N,M be smooth manifolds with dim(N) = n ≤ m = dim(M). Suppose that N
is compact or both N,M are non-compact. Then there exists a proper fair frontal f : N → M. In
fact take any closed submanifold N′ ⊆ M of dimension n and its inclusion i : N′ ↪→ M. Take any
proper smooth map g : N → N′ whose singular locus S(g) is nowhere dense, for instance, g is a
topologically stable map. Then f := i◦g is a proper fair frontal map.

The following is clear.

Lemma 4.4 Let g : L → M be a cofrontal and π : N → L be a submersion. Then g◦π : N → M
is a cofrontal. g◦π is fair if and only if g is fair.

Definition 4.5 (Reducible and irreducible cofrontals.) Let f : N → M be a cofrontal with
dim(N) = n > m = dim(M). The frontal f is called reducible if there exists a submersion
π : N → Ñ to an ℓ-dimensional manifold Ñ and a cofrontal g : Ñ → M with n > ℓ≥ m such that
f = g◦π . A cofrontal is called irreducible if it is not reducible.

Proposition 4.6 Let f : N → M be a fair cofrontal with n > m and K its kernel field. If the leaf
space form an m-dimensional manifold N and π : N → N is a surjective smooth submersion
such that Ker(π∗) = K, then f is reducible. In fact, there exists a smooth map g : N → M such
that f = g◦π .

Proof : Since f is constant on each leaf of K, we have a map g : N → M such that f = g ◦π .
Take any leaf L of K and any point x ∈ L, then the reduction of the germ of f at x is given by
the germ of g at L ∈ N. Therefore g is smooth at L (see Proposition 2.4). Thus g is a smooth
map. 2

11



Example 4.7 (Irreducible fair frontals.) (1) Let the open Möbius band N is given as the quo-
tient of R2 by the cyclic action generated by the transformation ψ : R2 → R2, ψ(x1,x2) =
(x1+1,−x2). Then (x1,x2) 7→ x2

2 induces a well-defined map f : N →R which is an irreducible
fair cofrontal.

(2) Let T = R2/Z2 be the torus. Let K be the Klein bottle defined as the quotient by
the involution φ : T → T , φ([x1,x2]) := [x1 +

1
2 ,1− x2]. Define f : K → R by f ([[x1,x2]]) :=

(x2− 1
2)

2. Here [x1,x2] (resp. [[x1,x2]]) be the point on T (resp. K) represented by (x1,x2) ∈R2.
Then f is well-defined smooth mapping which is an irreducible fair cofrontal.

Example 4.8 (Cofrontal of reduction-non-finite.) Let φ : R→ R be a smooth such that φ(t) =
t,(t < 1

3 , t
2
3 < t), 1

3 < |φ(t)|< 2
3 and that φ−1(1

2) is an infinite set having just one point t = 1
2 as

a non-isolated point. Then define f : T 2 = R2/Z2 → S1 = R/Z by f ([t1, t2]) = [φ(t2)] modulo
Z, where t2 ∈ [0,1]. Then f is a fair cofrontal such that f is not reduction-finite and the fiber
f−1([1

2 ]) has infinite many connected components.

5 Classification of cofrontals of fiber-dimension one
To give a target-local classification theorem of cofrontals, we start with an algebraic considera-
tion. Let Diff(N,a) denote the group of diffeomorphisms (N,a)→ (N,a).

Definition 5.1 Let f : (N,a)→ (M,b) be a smooth map-germ. Then the right symmetry group
G f of f is defined by

G f := {σ ∈ Diff(N,a) | f ◦σ = f}.

Lemma 5.2 Let f : (N,a)→ (M,b) and g : (N′,a′)→ (M′,b′) be smooth map-germs. If f and
g are right-left equivalent (A -equivalent), then G f and Gg are isomorphic as groups.

Proof : Suppose τ◦ = g ◦σ for diffeomorphism-germs σ : (N,a) → (N′,a′) and τ : (M,b) →
(M′,b′). Let φ ∈ G f . Then

g◦ (σ ◦φ ◦σ−1) = (g◦σ)◦φ ◦σ−1 = (τ ◦ f )◦φ ◦σ−1 = τ ◦ ( f ◦φ)◦σ−1τ ◦ f ◦σ−1 = g.

Therefore σ ◦φ ◦σ−1 ∈ Gg. The correspondence G f → Gg defined by φ 7→ σ ◦φ ◦σ−1 induces
a group isomorphism. 2

Example 5.3 (1) Let f : (R2,0) → (R2,0) be a fold which is defined by f (x1,x2) = (x1,x2
2).

Then the right symmetry group G f ∼= Z/2Z.
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(2) Let f : (R2,0)→ (R2,0) be a cusp which is defined by f (x1,x2) = (x1,x3
2+x1x2) ([22]).

Then G f is trivial, i.e. G f consists of only the identity map-germ on (R2,0).
(3) Let f : (R2,0)→ (R2,0) be defined by f (x1,x2) = (x2

1,x
2
2). Then G f ∼= Z/2Z×Z/2Z.

(4) Let f : (R2,0) = (C,0) → (C,0) = (R2,0) be defined by f (z) = zℓ,(z ∈ C). Then we
have G f ∼= Z/ℓZ.

(5) Let G be a finite reflection group on Rn and h1,h2, . . . ,hn be a system of generators of
the invariant ring of G consisting of homogeneous polynomials (cf. Chevalley’s theorem [6]).
Then the right symmetry group Gh of h = (h1, . . . ,hn) : (Rn,0)→ (Rn,0) is isomorphic to G.

Proposition 5.4 (Construction of cofrontals of fiber-dimension one) Let h : (Rm,0)→ (M,b)
be a smooth map-germ and σ ∈ Gh. Let h : U → M and σ : U →U be representatives of h and
σ respectively such that h◦σ = h on U. Set N = ([0,1]×U)/∼ where (0,x)∼ (1,σ(x)). Then
N is a (m+1)-dimensional manifold and f = fh,σ : N → M, f ([t,x]) = h(x) is well-defined and
is a cofrontal.

In general, let h1, . . . ,hs : (Rm,0)→ (M,b) be smooth map-germs and σi ∈ Ghi,(1 ≤ i ≤ s).
Let hi : Ui → M and σi : Ui → Ui be representatives of hi and σi, (1 ≤ i ≤ s) respectively such
that hi ◦σi = hi on Ui. Set Ni = ([0,1]×Ui)/∼ where (0,x)∼ (1,σi(x)). Take the disjoint union
N =

∪s
i=1 Ni. which is an (m+1)-dimensional manifold. Define f = fh1,...,hs;σ1,...,σs : N → M by

f ([t,x]) = hi(x) for [t,x] ∈ Ni, 1 ≤ i ≤ s. Then f is well-defined and f is a cofrontal.

L i

Ui

Wi

Proof : Since σi ∈ Ghi , f is well-defined and smooth. Moreover the t-direction defines well-
defined subbundle K ⊂ T N of ranks 1. Since f is constant along K, we see that f is a cofrontal.
2

Remark 5.5 The cofrontal f in Proposition 5.4 is fair if and only if all hi, i = 1, . . . ,s are fair.
Moreover f is reduction-finite if and only if all hi, i = 1, . . . ,s are K -finite.

Definition 5.6 (Reduction-finite cofrontals.) A cofrontal f : N → M is called reduction-finite if
any germ of cofrontal fa : (N,a)→ (M, f (a)) is reduction-finite in the sense of Definition 2.5.
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Definition 5.7 ([18]) Let f : N → M, f ′ : N′ → M′ be smooth map-germs and b ∈ M,b′ ∈ M′.
Then the germ of f over b is right-left equivalent to the germ of f ′ over b′, if there exists
an open neighborhood U of b in M, an open neighborhood U ′ of b′ in M′, a diffeomorphism
Φ : f−1(U)→ f ′−1(U ′) and a diffeomorphism φ : U →U ′ such that the diagram

f−1(U)

f
��

Φ // f ′−1(U ′)

f ′
��

U φ
// U ′

commutes.

Remark 5.8 The right-left equivalence class of the germ of fg,σ : N → M over b ∈ M in Propo-
sition 5.4 depends only on the right-left equivalence class of the germ g and the conjugacy class
of σ in Gg. Similarly the right-left equivalence class of the germ of fh1,...,hs;σ1,...,σs : N → M over
b ∈ M the right-left equivalence class of the multi-germ (g1, . . . ,gs) from the disjoint union of
s-copies of (Rm,0) to (M,b), and the conjugacy classes of σi in Ggi .

Theorem 5.9 (Classification theorem of cofrontals with one-dimensional fibers.) Let N be a
compact smooth manifold of dimension m+ 1, and M a smooth manifold of dimension m. Let
f : N → M be any reduction-finite cofrontal and b ∈ M. Then the germ f over b is right-left
equivalent to the germ fh1,...,hs;σ1,...,σs over b for some non-negative integer s, K -finite map-
germs hi : (Rm,0)→ (M,b) and elements σi ∈ Ggi of finite order (1 ≤ i ≤ s).

Lemma 5.10 Let h : (Rm,S)→ (M,b) be a multi-germ with S = {x1, . . . ,xs}. Suppose all germ
hi = hxi : (Rm,xi) → (Rm,0) are K -finite. Let σi ∈ Ghi . Then there exist open neighborhood
V of b, open neighborhood Ui of xi and representatives hi : Ui → M of hi and σi : Ui →Ui such
that h−1

i (V ) =Ui and hiσi = hi on Ui for i = 1, . . . ,s.

Proof : Let g : (Rm,0)→ (M,b) be a K -finite map-germ. Then mk
0 ⊂ f ∗(mb) for some positive

integer k. Then there exist α > 0,C > 0 such that C∥x∥α ≤ ∥g(x)∥ on a neighborhood of
0 ∈ Rm. Therefore, for any representative g : W → M of g, and for any neighborhood W ′ of 0
with W ′ ⊆W , there exists an open neighborhood V of b such that g−1(V )⊂W ′. For each hi take
such an open neighborhood Vi of b such that hi ◦σi = hi holds on h−1(Vi). Then set V = ∩s

i=1Vi

and Ui = h−1
i (V ). Then σ(Ui) =Ui and hi ◦σi = hi on Ui. 2

Lemma 5.11 Let f : N → M be a cofrontal of reduction-finite, N compact and b ∈ M. Then
the fiber f−1(b) over b consists of a finite number of disjoint circles in N. Each connected
component has an open neighborhood consist of leaves of a kernel field of f .
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Proof : First we remark that, since the cofrontal f is reduction-finite, f is fair and therefore
there exists the unique global kernel field K of f . Take any a ∈ N. Let L be the leaf through
a of the foliation F defined by K. Then the germ fa has a K -finite reduction. Then there
exists an adapted open neighborhood Wa of form U ×V,dim(U) = m,dim(V ) = n−m such
that {p}×V is contained in a leaf of F for any p ∈ U . If we take U sufficiently small, then
Wa∩ f−1(b) =Wa∩L, since f is reduction-finite. Set W = ∪a∈LWa. Then W is an open set in N
and W ∩ f−1(b) =W ∩L. Thus we have seen that L is a closed, therefore compact submanifold
in N. In particular L is diffeomorphic to the circle S1. Moreover L has an open neighborhood
consists of leaves of F . Then we have that the number of connected components is finite. 2

Proof of Theorem 5.9: Since N is compact and the cofrontal f is reduction-finite, f−1(b) con-
sists of a finite number of disjoint circles L1,L2, . . .Ls in N by Lemma 5.11. Each Li has an open
neighborhood Wi consisting of leaves of the foliation F of the kernel field K of f . By taking
each Wi small enough, we have that Wi∩Wj = /0 for i ̸= j. Now f is constant on each leaf of F .
Take a transversal Ui of dimension m to the leaves on Wi through a point on Li. Then we have
the Poincaré map σi : Ui → Ui by moving along leaves of F . We have that f ◦σi = σi on Ui.
Set hi = f |Ui . Then we have that the germ of f over b is right-left equivalent to fg1,...,gs;σ1,...,σs

over b. Taking Ui sufficiently small, then the number of fibers of hi is bounded (Remark 2.7).
Then any σi-orbit on Ui has bounded period. Therefore σi must be of finite order. 2
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