Markov Chains，Graph Spectra，and Some Static／Dynamic Scaling Limits

Akihito HORA 洞 彰人（Hokkaido Univ．）
第3回代数的組合世論「仙台勉強会」
Graduate School of Information Sciences，Tohoku University，5－6 March 2018
§1 Introduction－algebraic（－combinatoric）vs random structures
§2 Cut－off Phenomenon and Asymptotic Spectral Analysis
§3 Markov Chains on Young Diagrams

§1 Introduction

Interplay between randomness and algebraic(-combinatoric) structure
Algebraic structure plays twofold essential roles:

- produce specific randomness
- give nice tools for analyzing random phenomena
- frameworks of harmonic analysis
(Bose-Mesner algebra, symmetric functions, Kerov-Olshanski algebra, ...)

As probability model,
temporally homogeneous Markov chain on a finite set
(quite simple!)

- asymptotic behavior as time (step) $\rightarrow \infty$
recurrence, convergence to invariant distribution, ...
- asymptotic behavior as time $\rightarrow \infty$ and size of state space $\rightarrow \infty$
appropriate scaling in time/space
- asymptotic behavior as size of state space $\rightarrow \infty$

1. Cut-off phenomenon — critical phenomenon in highly symmetric Markov chain (on group)
2. Interface evolution - Markov chain on Young diagrams (dual object of symmetric group)

Both probabilistic models show
macroscopic deterministic aspect (law of large numbers)

+ fluctuation (central limit theorem)
§2 Cut-off Phenomenon and Asymptotic Spectral Analysis
§2.1 Markov chain
§2.2 Cut-off phenomenon I: Hamming graph
§2.3 Random walk on association scheme
§2.4 Cut-off phenomenon II
§2.5 Asymptotic spectral analysis (static model) via quantum decomposition
§3 Markov Chains on Young Diagrams
§3.1 Young graph §3.2 Restriction-induction chain
$\S 3.3$ Irreducible characters of $\mathfrak{S}_{n} \quad \S 3.4$ Kerov-Olshanski algebra
§3.5 Limit shape (static model) §3.6 Interface evolution

§2.1 Markov chain

For finite set S, given

- transition probability $p(x, y)(x, y \in S): p(x, y) \geqq 0, \sum_{y \in S} p(x, y)=1$
- initial distribution $\nu(x) \geqq 0(x \in S): \sum_{x \in S} \nu(x)=1$

Then, there exist probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of random variables $\left(X_{n}\right)_{n=0,1,2, \ldots}\left(X_{n}: \Omega \longrightarrow S\right)$ s.t.

$$
\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right)=p(x, y), \quad \mathbb{P}\left(X_{0}=x\right)=\nu(x), \quad x, y \in S
$$

(temporally homogeneous Markov chain on S)
$P=(p(x, y))_{x, y \in S}$: transition matrix, $\nu=(\nu(x))_{x \in S}$: initial row vector

$$
p_{n}(x, y)=\mathbb{P}\left(X_{n}=y \mid X_{0}=x\right)=\left(P^{n}\right)_{x, y}, \quad \mathbb{P}\left(X_{n}=x\right)=\left(\nu P^{n}\right)_{x}
$$

Continuous time Markov chain $\left(\tilde{X}_{s}\right)_{s \geqq 0}$ on $S: \quad \tilde{X}_{s}=X_{N_{s}}$
$\left(N_{s}\right)_{s \geqq 0}$: Poisson process, $N_{0}=0$ a.s.
$N_{s}: \Omega^{\prime} \longrightarrow\{0,1, \cdots\}$ for some probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right) \quad(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})=$

fig. 1 sample path of Poisson process
$(\Omega, \mathcal{F}, \mathbb{P}) \times\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$ so that $\left(X_{n}\right)$ and $\left(N_{s}\right)$ are independent

$$
\begin{aligned}
\tilde{\mathbb{P}}\left(\tilde{X}_{s}=x\right) & =\sum_{n=0}^{\infty} \tilde{\mathbb{P}}\left(X_{N_{s}}=x, N_{s}=n\right)=\sum_{n=0}^{\infty} \tilde{\mathbb{P}}\left(X_{n}=x \mid N_{s}=n\right) \tilde{\mathbb{P}}\left(N_{s}=n\right) \\
& =\sum_{n=0}^{\infty}\left(\nu P^{n}\right)_{x} \frac{e^{-s} s^{n}}{n!}=\left(\nu e^{s(P-I)}\right)_{x}, \quad x \in S
\end{aligned}
$$

\triangleright Ehrenfests' urn (extended)
Imagine n urns and d balls put in them. At each step, pick up a ball among d at random and move it into another urn chosen at random.

$$
S=\{1,2, \cdots, n\}^{d} \ni x, y \quad\left(x=\left(x_{i}\right) \text { indicates } i \text { th ball is in } x_{i} \text { th urn }\right)
$$

$$
p(x, y)= \begin{cases}1 / d(n-1) & \text { if } x \text { and } y \text { differ at just } 1 \text { entry } \\ 0 & \text { otherwise }\end{cases}
$$

\triangleright Bernoulli-Laplace diffusion

Imagine two rooms separated by a partition, one containing d particles and the other $v-d$. At each step, pick up a particle at random from each room and interchange the two.

$$
\begin{aligned}
S= & \{d \text {-subset of }\{1,2, \cdots, v\}\} \ni x, y \\
& p(x, y)= \begin{cases}1 / d(v-d) & \text { if } x \text { and } y \text { have } d-1 \text { common elements } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

§2.2 Cut-off phenomenon I: Hamming graph

Illustrate the cut-off phenomenon - certain critical phenomenon for Markov chain in which the process of convergence to stationarity is remarkable.

Ehrenfests' urn (simple random walk on Hamming graph) is a perfect model!
Hamming graph $H(d, n)$:
vertex sets $S=\{1,2, \cdots, n\}^{d}$
For $x=\left(x_{i}\right), y=\left(y_{i}\right) \in S, \quad \partial(x, y)=\sharp$ of $\left(i\right.$'s s.t. $\left.x_{i} \neq y_{i}\right)$.
adjacency matrix $A_{x, y}=\left\{\begin{array}{ll}1, & \partial(x, y)=1 \\ 0, & \partial(x, y) \neq 1\end{array}\right.$,
valency $\kappa=d(n-1)$
transition matrix $P=\frac{1}{\kappa} A$
\Longrightarrow simple random walk on S with uniform invariant distribution

For continuous time simple random walk on $H(d, n)$,
$\left(e^{s(P-I)}\right)_{x, \text {, }}$: distribution at time s starting from x
total variation distance between distributions at time s and ∞

$$
\begin{aligned}
D^{(d, n)}(s) & =\frac{1}{2} \|\left(e^{s(P-I)}\right)_{x, \cdot}-(\text { uniform distribution }) \|_{\mathrm{tot}} \\
& =\frac{1}{2} \sum_{y \in S}\left|\left(e^{s(P-I)}\right)_{x, y}-\frac{1}{n^{d}}\right|
\end{aligned}
$$

(independent of starting vertex x)
$D(0)=1-\frac{1}{n^{d}} \approx 1, \quad D(\infty)=0$

Theorem (Diaconis-Graham-Morrison 1990)
For simple random walk on $H(d, 2)$

$$
D^{(d, 2)}\left(\frac{1}{4} d(\log d+\tau)\right) \underset{d \rightarrow \infty}{ } \sqrt{\frac{2}{\pi}} \int_{0}^{\frac{1}{2} e^{-\tau / 2}} e^{-x^{2} / 2} d x=c(\tau), \quad \tau \in \mathbb{R}
$$

holds.

fig. 2 graph of $c(\tau)$

For $\forall \epsilon>0, \exists \tau_{\epsilon}$ s.t. $c(\tau)\left\{\begin{array}{ll}>1-\epsilon, & \tau<-\tau_{\epsilon} \\ <\epsilon, & \tau_{\epsilon}<\tau\end{array} \quad\right.$ since $c(\mp \infty)=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$

Therefore

$$
D^{(d, 2)}\left(\frac{1}{2} \frac{d}{2} \log d+\frac{\tau}{2} \frac{d}{2}\right) \begin{cases}>1-\epsilon & \text { if } \tau<-\tau_{\epsilon} \\ <\epsilon & \text { if } \tau_{\epsilon}<\tau\end{cases}
$$

where inverse of spectral gap and multiplicity of 2 nd eigenvalue of $\frac{1}{\kappa} A$
 time axis rescaled by $d \log d$ fig. 3 graph of D in macroscopic time scale

- macro time \ll fluctuation $d \ll$ micro time $d \log d$ \ll mean recurrence time 2^{d}

§2.3 Random walk on association scheme

large multiplicity (degeneration) of 2nd eigenvalue of transition matrix
\Longleftarrow high symmetry for Markov chain \Longleftarrow "random walk"
Let group G act on S transitively, $S \cong G / K$, and

$$
p(g x, g y)=p(x, y), \quad x, y \in S, g \in G
$$

Then $\exists \mu \in \mathcal{P}(K \backslash G / K)$ s.t. $P=\mu * \cdot$ (convolution operator), i.e.
the Markov chain is product of independent G-valued random variables with K-bi-invariant distribution
" random walk \Longleftrightarrow spatially symmetric Markov chain"
Natural and fruitful extension is
" random walk \Longleftrightarrow transition matrix belongs to Bose-Mesner algebra of association scheme"
finite set $S, \quad S \times S \supset R_{i}(i=0,1, \cdots, d)$
i th adjacency matrix $\quad\left(A_{i}\right)_{x, y}= \begin{cases}1, & (x . y) \in R_{i} \\ 0, & (x, y) \notin R_{i}\end{cases}$
($S,\left\{R_{i}\right\}_{i=0}^{d}$) is called an association scheme if
(i) $A_{0}=I$ (identity matrix), $A_{1}+\cdots+A_{d}=J$ (all entries 1)
(ii) $\forall i, \exists i^{\prime}$ s.t. ${ }^{t} A_{i}=A_{i^{\prime}}$
(iii) $A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}, \quad p_{i j}^{k} \in \mathbb{Z}_{\geqq 0}$: intersection number

$$
p_{i i^{\prime}}^{0}=\sharp\left\{y \in S \mid(x, y) \in R_{i}\right\}=\kappa_{i}: i \text { th valency (independent of } x \text {) }
$$

Furthermore
(iv) $A_{i} A_{j}=A_{j} A_{i}$: commutative (v) ${ }^{t} A_{i}=A_{i}$: symmetric

$$
\mathcal{A}=\left\{\text { linear combination of } A_{0}, \cdots, A_{d}\right\}: \text { Bose-Mesner algebra }
$$

Markov chain on S is called random walk if transition matrix $P \in \mathcal{A}$
(S, E) : finite graph with graph distance ∂, \quad diameter $d=\max _{x, y \in S} \partial(x, y)$ $R_{i}=\{(x, y) \in S \times S \mid \partial(x, y)=i\}$
(S, E) is called distance-regular graph if $\left(S,\left\{R_{i}\right\}_{i=0}^{d}\right)$ is an association scheme. Then A_{i} is expressed as polynomial of A_{1} (P-polynomial).

Markov chain on S is called simple random walk if transition matrix $P=A / \kappa$

$$
A=A_{1}: \text { adjacency matrix, } \quad \kappa=\kappa_{1}: \text { valency (degree). }
$$

- Hamming graph $H(d, n)$ see $\S 2.2$
- Johnson graph $J(v, d): S=\{d$-subset of a v-set $\} \ni x, y$

$$
\partial(x, y)=d-\sharp(x \cap y)
$$

In commutative association scheme, simultaneously diagonalize A_{i} 's by family of projections $\left\{E_{0}, E_{1}, \cdots, E_{d}\right\}, \quad E_{0}=J /|S|$

$$
\left(A_{0} \cdots A_{d}\right)=\left(E_{0} \cdots E_{d}\right) \mathrm{P}, \quad \mathrm{P}=\left(p_{i}(j)\right)_{j, i}: \text { character table }
$$

§2.4 Cut-off phenomenon II

Consider continuous time simple random walk on distance-regular graph S, more precisely, directed family of simple random walks on growing distanceregular graphs
$D(s)=\frac{1}{2} \|\left(e^{s(P-I)}\right)_{x, \cdot}-($ uniform $) \|_{\text {tot }}=\frac{1}{2|S|} \sum_{x, y \in S}\left|\left(e^{s(P-I)}-\frac{1}{|S|} J\right)_{x, y}\right|$

- $e^{s(P-I)}=I$ at $s=0 \longrightarrow=J /|S|$ at $s=+\infty$

From the argument following Theorem of Diaconis-Graham-Morrison, Cut-off phenomenon with (macroscopic) critical time s_{c}

- $s_{c} \rightarrow \infty$ and $s_{c} /|S| \rightarrow 0$
- $\forall \epsilon>0, \exists h_{\epsilon}$ s.t. $h_{\epsilon} / s_{c} \rightarrow 0$

$$
\inf _{0 \leqq s \leqq s_{c}-h_{\epsilon}} D(s) \geqq 1-\epsilon, \quad \sup _{s \geqq s_{c}+h_{\epsilon}} D(s) \leqq \epsilon
$$

Theorem (2000, formerly DFG-JSPS Proc. 1996)
If a growing family of Q-polynomial distance-regular graphs satisfies certain spectral conditions, simple random walks on them yield cut-off phenomenon with

$$
s_{c}=\frac{1}{2}\left(1-\frac{\theta}{\kappa}\right)^{-1} \log m, \quad h_{\epsilon} \asymp\left(1-\frac{\theta}{\kappa}\right)^{-1} .
$$

where θ : 2nd eigenvalue and m : its multiplicity of adjacency matrix A.

The conditions are far from elegant, however, can be verified for

- $H(d, n)$ under $d \rightarrow \infty$ and $n \leqq$ const. d
- $J(v, d)$ under $d \rightarrow \infty$ and $2 d \leqq v \leqq$ const. d^{2}
- q-analogue of them, and many other listed in Bannai-Ito's book

Role of symmetry

- give rise to degeneration of eigenvalues
(eigenspace invariant w.r.t. actions)
- put transition matrix into Bose-Mesner algebra \Longrightarrow functional calculus (characters, spherical functions, \cdots help diagonalizing transition matrix)

Other models of cut-off phenomenon

* card shuffling : random walk on symmetric group with various generators (= various Cayley graphs)
\star framework of hypergroup (finite Gelfand pair, spherical dual) etc.

Theorem (1997)

For simple random walk on $H(d, n)$

- if $n / d \rightarrow 0$,

$$
D^{(d, n)}\left(\frac{1}{2}\left(1-\frac{1}{n}\right) d(\log (n-1) d+\tau)\right) \underset{d \rightarrow \infty}{\longrightarrow} \sqrt{\frac{2}{\pi}} \int_{0}^{\frac{1}{2} e^{-\tau / 2}} e^{-x^{2} / 2} d x
$$

- if $n / d \rightarrow \alpha \in(0, \infty)$,
$D^{(d, n)}\left(\frac{1}{2}\left(1-\frac{1}{n}\right) d(\log (n-1) d+\tau)\right) \underset{d \rightarrow \infty}{\longrightarrow}\left\|\operatorname{Poi}\left(\frac{1}{\alpha}\right)-\operatorname{Poi}\left(\frac{1}{\alpha}+\frac{e^{-\tau / 2}}{\sqrt{\alpha}}\right)\right\|_{\text {tot }}$
$(\tau \in \mathbb{R})$ hold.

Remark $H(d, n): \kappa=(n-1) d, \quad \theta=(n-1) d-n, \quad m=(n-1) d$

Group Representations in Probability and Statistics

Persi Diaconis
Harvard University

§2.5 Asymptotic spectral analysis via quantum decomposition

 spectrum of transition matrix $P=\frac{1}{\kappa} A$ on distance-regular graph$$
\left(\begin{array}{cccc}
\theta_{0}(=\kappa) & \theta_{1} & \cdots & \theta_{d} \\
m_{0}(=1) & m_{1} & \cdots & m_{d}
\end{array}\right), \quad \sum_{j=0}^{d} m_{j}=|S|
$$

r th moment of spectral distribution

$$
\sum_{j=0}^{d} \theta_{j}^{r} \frac{m_{j}}{|S|}=\frac{1}{|S|} \operatorname{tr} A^{r}=\left(A^{r}\right)_{x, x}=\phi_{0}\left(A^{r}\right) \quad \text { (independent of } x \text {) }
$$

in particular $\quad \phi_{0}(A)=0, \quad \phi_{0}\left(A^{2}\right)=\phi_{0}\left(\sum_{k} p_{11}^{k} A_{k}\right)=\kappa$
asymptotic spectral distribution as central limit theorem

$$
\phi_{0}\left(\left(\frac{1}{\sqrt{\kappa}} A\right)^{r}\right) \underset{d \rightarrow \infty}{\longrightarrow} ?=\int_{\mathbb{R}} x^{r} \mu(d x)=M_{r}(\mu)
$$

Then, for any $r \in \mathbb{N}$

$$
\phi_{0}\left(A^{r}\right) \sim M_{r}(\mu) \kappa^{r / 2} \quad \text { as } \quad d \rightarrow \infty
$$

However, for cut-off phenomenon, one estimates $D(s)$ containing

$$
e^{s(P-I)} \sum_{n=0}^{\infty} \frac{e^{-s} s^{n}}{n!} P^{n} \quad \text { (Poisson distribution with mean and variance } s \text {) }
$$

i.e. $\quad \phi_{0}\left(A^{s}\right)$ as $d \rightarrow \infty$ and $s=s(d) \rightarrow \infty$

Central limit theorem for adjacency matrix (static scaling limit) has different nature from cut-off phenomenon (dynamic scaling limit), however,

- applicable ?
- interesting asymptotics itself

Viewpoint of quantum probability

- quantum decomposition $A=A^{+}+A^{-}\left(+A^{o}\right)$ with certain commutation relation
- limit picture drawn by creation/annihilation operators on appropriate Fock space
- other state than (vacuum) ϕ_{0}

Hashimoto-Obata-Tabei (2001) : for Hamming graph by using Hermite polynomial, Gauss measure, Boson Fock space

Collaboration with Obata school...
A. Hora, N. Obata: Quantum Probability and Spectral Analysis of Graphs, Theoretical and Mathematical Physics, Springer, 2007

Scheme of quantum decomposition approach

$$
\left.\begin{array}{llll}
A^{+}, A^{-}, A^{o}, \phi & \longleftarrow & A\left(=A^{+}+A^{-}+A^{o}\right), \phi & \underset{(\sharp)}{\longrightarrow}
\end{array}\right) \phi\left(A^{r}\right) .
$$

- limit $+(\not)$ is much transparent than $(\sharp)+$ limit
- (\bigsqcup) doesn't need full spectral data of A while (\sharp) does
- (\downarrow) is often controlled by well-known orthogonal polynomials and one-mode interacting Fock space

Quantum decomposition of adjacency matrix A on graph (S, ∂)

$$
\begin{aligned}
& S \ni o, \quad S_{n}=\{x \in S \mid \partial(o, x)=n\}: n \text {th stratum } \\
& S=\bigsqcup_{n=0}^{d} S_{n} \quad \text { (d: diameter) }
\end{aligned}
$$

$$
A^{+} \delta_{x}=\sum_{y: x \uparrow y} \delta_{y}, \quad A^{-} \delta_{x}=\sum_{y: x \downarrow y} \delta_{y}, \quad A^{o} \delta_{x}=\sum_{y: x \rightarrow y} \delta_{y}
$$

$\uparrow:$ to upper stratum, $\downarrow:$ to lower stratum, \rightarrow : to the same stratum

For distance-regular graph

$$
\Gamma=\text { linear hull of }\left\{\Phi_{0}, \cdots, \Phi_{d}\right\} \subset \ell^{2}(S), \quad \Phi_{n}=\frac{1}{\sqrt{\left|S_{n}\right|}} \sum_{x \in S_{n}} \delta_{x}
$$

is invariant w.r.t. A^{+}, A^{-}, A^{0}, by using intersection numbers $p_{i j}^{k}$,

$$
\begin{array}{ll}
A^{+} \Phi_{n}=\sqrt{p_{1, n}^{n+1} p_{1, n+1}^{n}} \Phi_{n+1}, & n=0,1,2, \cdots \\
A^{-} \Phi_{0}=0, \quad A^{-} \Phi_{n}=\sqrt{p_{1, n-1}^{n} p_{1, n}^{n-1}} \Phi_{n-1}, & \\
A^{o} \Phi_{n}=p_{1, n}^{n} \Phi_{n}, & n=1,2, \cdots \\
n=0,1,2, \cdots
\end{array}
$$

" Theorem "

Convergence of matrix element of any mixed product of A^{+}, A^{-}, A^{o}

$$
\left\langle\Phi_{n}, \frac{A^{\epsilon_{1}}}{\sqrt{\kappa}} \cdots \frac{A^{\epsilon_{p}}}{\sqrt{\kappa}} \Phi_{m}\right\rangle \longrightarrow\left\langle\Psi_{n}, B^{\epsilon_{1}} \cdots B^{\epsilon_{p}} \Psi_{m}\right\rangle
$$

B^{+}, B^{-}, B^{o} on one-mode interacting Fock space $\bigoplus_{n=0}^{\infty} \mathbb{C} \Psi_{n}$

Example (Hashimoto-Hora-Obata 2003; 2003, 2004)
simple random walk on Johnson graph $J(v, d) \quad(2 d \leqq v)$

$$
\begin{aligned}
& S=\{d \text {-subset of a } v \text {-set }\} \ni x, y, \quad \partial(x, y)=d-\sharp(x \cap y) \\
& \kappa=d(v-d)
\end{aligned}
$$

Limit of data of previous page gives Jacobi coefficients of Laguerre and
Meixner polynomials, so as corollary,

$$
\begin{gathered}
\qquad \phi_{0}\left(\left(\frac{1}{\sqrt{d(v-d)}} A^{(v, d)}\right)^{r}\right) \xrightarrow[d \rightarrow \infty]{2 d / v \rightarrow p} M_{r}(\mu) \\
\text { where } \quad \mu= \begin{cases}e^{-(x+1)} 1_{[-1, \infty)}(x) d x, & p=1 \\
\sum_{j=0}^{\infty} \frac{2(1-p)}{2-p}\left(\frac{p}{2-p}\right)^{j} \delta_{\frac{2(1-p)}{\sqrt{p(2-p)}}\left(j-\frac{p}{2(1-p)}\right)}, & 0<p<1\end{cases}
\end{gathered}
$$

Furthermore
Gibbs state with energy depending on distance from origin o

$$
\xrightarrow[d \rightarrow \infty \text { (infinite volume) }]{\beta \rightarrow \infty \text { (zero temperature) }}
$$

deformed vacuum state on one-mode interacting Fock space

§3.1 Young graph

vertex set : $\mathbb{Y}=\bigsqcup_{n=0}^{\infty} \mathbb{Y}_{n}, \quad \mathbb{Y}_{0}=\{\varnothing\}, \quad$ edge : $\lambda \nearrow \mu$

fig. 4 Young graph: dimension in 5th stratum - 1, 4, 5, 6, 5, 4, 1 : $1^{2}+4^{2}+5^{2}+6^{2}+5^{2}+4^{2}+1^{2}=5$!
$\mathbb{Y}_{n} \cong \widehat{\mathfrak{S}_{n}} \ni \lambda \ni\left(\pi^{\lambda}, V^{\lambda}\right)$: irreducible representation of \mathfrak{S}_{n}
Irreducible decomposition of restriction/induction of each irreducible representations (branching rule)

$$
\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} \pi^{\lambda} \cong \bigoplus_{\nu \in \mathbb{Y}_{n-1}: \nu \nearrow \lambda} \pi^{\nu}, \quad \operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} \pi^{\nu} \cong \bigoplus_{\mu \in \mathbb{Y}_{n}: \nu \nearrow \mu} \pi^{\mu}
$$

multiplicity free decomposition \Longrightarrow canonical Young basis of V^{λ}

$$
\cong\{\text { paths from } \varnothing \text { to } \lambda\}
$$

Theorem!? Irreducible decomposition of representations of a group is a rich source of interesting Markov chains on the dual object of the group.

Proof

§3.2 Restriction-induction chain

Counting the dimensions of the above irreducible decompositions (in some sense, putting equal rate for each vector of the Young basis)

$$
\begin{gathered}
p^{\downarrow}(\lambda, \nu)=\left\{\begin{array}{ll}
\frac{\operatorname{dim} \nu}{\operatorname{dim} \lambda}, & \nu \nearrow \lambda, \\
0, & \text { otherwise }
\end{array}, \quad p^{\uparrow}(\nu, \mu)= \begin{cases}\frac{\operatorname{dim} \mu}{(|\nu|+1) \operatorname{dim} \nu}, & \nu \nearrow \mu \\
0, & \text { otherwise }\end{cases} \right. \\
P^{\downarrow}=\left(p^{\downarrow}(\lambda, \nu)\right)_{\lambda, \nu}, \quad P^{\uparrow}=\left(p^{\uparrow}(\nu, \mu)\right)_{\nu, \mu}
\end{gathered}
$$

Res-Ind chain $\left(X_{m}^{(n)}\right)_{m=0,1,2, \ldots}$ on \mathbb{Y}_{n} has transition matrix

$$
\begin{gathered}
P^{(n)}=\left(p^{(n)}(\lambda, \mu)\right)_{\lambda, \mu \in \mathbb{Y}_{n}}\left(=P^{\downarrow} P^{\uparrow} \text { restricted on } \mathbb{Y}_{n}\right), \\
p^{(n)}(\lambda, \mu)=\sum_{\nu \in \mathbb{Y}_{n-1}: \nu \nearrow \lambda, \nu \nearrow \mu} p^{\downarrow}(\lambda, \nu) p^{\uparrow}(\nu, \mu), \quad \lambda, \mu \in \mathbb{Y}_{n}
\end{gathered}
$$

restriction \leftrightarrow removing a box, induction \leftrightarrow adding a box restriction-induction \leftrightarrow (non-locally) moving a corner box

fig. 5 Res-Ind chain: transition from $\lambda=(3,3,2)$

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:

$$
\mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda) p^{(n)}(\lambda, \mu)=\mathbb{M}_{\mathrm{Pl}}^{(n)}(\mu) p^{(n)}(\mu, \lambda), \quad \lambda, \mu \in \mathbb{Y}_{n}
$$

hence the Plancherel measure is invariant distribution for Res-Ind chain
\triangleright Plancherel measure on \mathbb{Y}_{n} is

$$
\mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda)=\frac{(\operatorname{dim} \lambda)^{2}}{n!}
$$

$\left(\leftarrow\right.$ Plancherel formula for Fourier transform on $\left.\mathfrak{S}_{n}\right)$
\triangleright Markov chain $\left(Z_{n}\right)$ on the Young graph with initial distribution δ_{\varnothing} and transition matrix P^{\uparrow} is called the Plancherel growth process.
The distribution after n step is $\quad \mathbb{P}\left(Z_{n}=\lambda\right)=\frac{(\operatorname{dim} \lambda)^{2}}{n!}=\mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda)$

Continuous time Res-Ind chain $\tilde{X}_{s}^{(n)}=X_{N_{s}}^{(n)}$ on $\mathbb{Y}_{n} \quad\left(N_{s}\right.$: Poisson process)

- transition matrix $e^{s\left(P^{(n)}-I\right)}$
- invariant distribution $\mathbb{M}_{\mathrm{Pl}}^{(n)}$

§3.3 Irreducible characters of symmetric group

$P^{(n)}=\left.\left(P^{\downarrow} P^{\uparrow}\right)\right|_{\mathbb{Y}_{n}}$: transition matrix of Res-Ind chain on \mathbb{Y}_{n}
Diagonalize $P^{(n)}$ by using irreducible characters of \mathfrak{S}_{n}
(generally available for non-multiplicity-free branching rule also)
For representation $(\pi, V), \quad \chi(x)=\operatorname{tr} \pi(x) \quad \tilde{\chi}=\chi / \operatorname{dim} V$
\mathbb{Y}_{n} parametrizes both the equivalence classes of irreducible representations and the conjugacy classes of \mathfrak{S}_{n}
Character table $\left(\chi_{\rho}^{\lambda}\right)_{\rho, \lambda \in \mathbb{Y}_{n}}$
Dual approach in asymptotic theory - fix ρ, then $|\lambda| \rightarrow \infty \quad$ i.e. consider

$$
\tilde{\chi}_{\left(\rho, 1^{n-k}\right)}^{\lambda}, \quad \rho \in \mathbb{Y}_{k}, \quad \lambda \in \mathbb{Y}_{n}, \quad k \leqq n
$$

where $\left(\rho, 1^{n-k}\right)=\rho \sqcup\left(1^{n-k}\right) \in \mathbb{Y}_{n}$ so that one can let $n \rightarrow \infty$

Lemma For $|\rho| \leqq n$ s.t. $\quad \rho=\left(1^{m_{1}(\rho)} 2^{m_{2}(\rho)} \ldots\right)$,

$$
P^{(n)}\left(\tilde{\chi}_{\left(\rho, 1^{n-|\rho|}\right)}^{\lambda}\right)_{\lambda \in \mathbb{Y}_{n}}=\left(1-\frac{|\rho|-m_{1}(\rho)}{n}\right)\left(\tilde{\chi}_{\left(\rho, 1^{n-|\rho|}\right)}^{\lambda}\right)_{\lambda \in \mathbb{Y}_{n}}
$$

where $(\cdot)_{\lambda \in \mathbb{Y}_{n}}$ is a column vector
For transition matrix of continuous time Res-Ind chain,

$$
e^{s\left(P^{(n)}-I\right)}\left(\tilde{\chi}_{\left(\rho, 1^{n-|\rho|)}\right.}^{\lambda}\right)_{\lambda \in \mathbb{Y}_{n}}=e^{-\left(|\rho|-m_{1}(\rho)\right) s / n}\left(\tilde{\chi}_{\left(\rho, 1^{n-|\rho|}\right)}^{\lambda}\right)_{\lambda \in \mathbb{Y}_{n}}
$$

Letting ν be an initial distribution on \mathbb{Y}_{n},

$$
\tilde{\mathbb{P}}\left(\tilde{X}_{s}^{(n)}=\lambda\right)=\tilde{\mathbb{P}}^{(n)}(\lambda)=\left(\nu e^{s\left(P^{(n)}-I\right)}\right)_{\lambda}, \quad \lambda \in \mathbb{Y}_{n}
$$

- Expectation of irreducible character w.r.t. initial distribution
\Longrightarrow w.r.t. the distribution at time s

§3.4 Kerov-Olshanski algebra

Irreducible characters are (one of) the most important random variables to analyze group-theoretical ensemble of Young diagrams.

For $k=|\rho| \leqq|\lambda|=n$, set a function on \mathbb{Y}

$$
\Sigma_{\rho}(\lambda)=n(n-1) \cdots(n-k+1) \tilde{\chi}_{\left(\rho, 1^{n-k}\right)}^{\lambda} \quad(=0 \text { if } k>n)
$$

For one row diagram $\rho=(k), \Sigma_{k}=\Sigma_{(k)}$
$\triangleright \mathbb{A}=\left\{\right.$ linear combination of $\left.\Sigma_{\rho} \mid \rho \in \mathbb{Y}\right\}:$ Kerov-Olshanski algebra
Considering \mathbb{A} as an algebra of random variables, one can compute many things about random Young diagrams.

Coordinates for a Young diagram \longrightarrow element of \mathbb{A} as a polynomial function

Peak-valley coordinates of $\lambda \in \mathbb{Y}:\left(x_{1}<y_{1}<x_{2}<\cdots<y_{r-1}<x_{r}\right)$

$$
G_{\lambda}(z)=\frac{\left(z-y_{1}\right) \cdots\left(z-y_{r-1}\right)}{\left(z-x_{1}\right) \cdots\left(z-x_{r}\right)}=\frac{\mu_{1}}{z-x_{1}}+\cdots+\frac{\mu_{r}}{z-x_{r}}
$$

Then, $\mu_{i}>0$ and $\sum_{i=1}^{r} \mu_{i}=1$, so $\quad \mathfrak{m}_{\lambda}=\sum_{i=1}^{r} \mu_{i} \delta_{x_{i}} \in \mathcal{P}(\mathbb{R})$ \mathfrak{m}_{λ} : Kerov's transition measure of λ

fig. 6 peak-valley coordinates of a Young diagram

$$
G_{\lambda}(z)=\int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\lambda}(d x)=\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \int_{\mathbb{R}} x^{n} \mathfrak{m}_{\lambda}(d x), \quad z \in \mathbb{C}^{+}
$$

Young diagram \Longleftrightarrow peak-valley coordinates
\Longleftrightarrow moment sequence of $\mathfrak{m}_{\lambda}:\left\{M_{n}\left(\mathfrak{m}_{\lambda}\right)\right\}$
\Longleftrightarrow cumulant sequence of \mathfrak{m}_{λ} : ordinary $\left\{C_{j}\left(\mathfrak{m}_{\lambda}\right)\right\}$, free $\left\{R_{j}\left(\mathfrak{m}_{\lambda}\right)\right\}$ (polynomial relations by cumulant-moment formula)
$\triangleright \mathcal{P}(n)=\{$ partition into subsets of $\{1,2, \cdots, n\}\}$

$$
\mathcal{P}(n) \ni \pi=\left\{v_{1}, \cdots, v_{l}\right\} \quad\left(v_{i}: \text { block in } \pi\right), \quad l=b(\pi), \quad \sum_{i=1}^{b(\pi)}\left|v_{i}\right|=n
$$

$\left|v_{i}\right|$: cardinality of v_{i}
$\triangleright \mathcal{N C}(n)=\{$ non-crossing partition into subsets of $\{1,2, \cdots, n\}\}$

For partition $\pi=\left\{u_{1}, \cdots, u_{b(\pi)}\right\}$ of $\{1,2, \cdots, n\}$

$$
\begin{aligned}
& M_{\left|u_{1}\right|} \cdots M_{\left|u_{b(\pi)}\right|}=\sum_{\rho=\left\{v_{1}, \cdots, v_{b(\rho)}\right\} \in \mathcal{P}(n): \rho \leq \pi} C_{\left|v_{1}\right|} \cdots C_{\left|v_{b(\rho)}\right|}, \quad \pi \in \mathcal{P}(n) \\
& M_{\left|u_{1}\right|} \cdots M_{\left|u_{b(\pi)}\right|}=\sum_{\rho=\left\{v_{1}, \cdots, v_{b(\rho)}\right\} \in \mathcal{N C}(n): \rho \leq \pi} R_{\left|v_{1}\right|} \cdots R_{\left|v_{b(\rho)}\right|}, \quad \pi \in \mathcal{N C}(n)
\end{aligned}
$$

Moebius function of each poset yields inversion respectively, each cumulant expressed by (different) polynomial of moments.

Proposition $\mathbb{A}=\left\langle\Sigma_{k}(\lambda)\right\rangle=\left\langle M_{n}\left(\mathfrak{m}_{\lambda}\right)\right\rangle=\left\langle C_{j}\left(\mathfrak{m}_{\lambda}\right)\right\rangle=\left\langle R_{j}\left(\mathfrak{m}_{\lambda}\right)\right\rangle$

$$
\text { e.g. } \quad \Sigma_{1}(\lambda)=M_{2}\left(\mathfrak{m}_{\lambda}\right)=C_{2}\left(\mathfrak{m}_{\lambda}\right)=R_{2}\left(\mathfrak{m}_{\lambda}\right)=\frac{1}{2}\left(\sum_{i=1}^{r} x_{i}^{2}-\sum_{i=1}^{r-1} y_{i}^{2}\right)
$$

Especially, $\left\{\Sigma_{k}\right\}$ vs $\left\{R_{j}\right\}$ is given by Kerov polynomials.

Freeness is a notion for describing relation between random variables.
Free structure often appears in large random matrices/permutations.

In several mathematical contexts, independence vs freeness for random variables
results in/from interesting contrasts such as

- direct product vs free product (as group or algebra structure)
- lattice vs tree (as Laplacian)
- Gauss vs Wigner (as central limit theorem)
- Boson Fock vs full Fock (as creation and annihilation)
etc.

Let a, b be real random variables (typically, self-adjoint elements in function or operator algebra) with distributions μ, ν respectively

$$
\begin{aligned}
& \mathbb{E}\left[a^{n}\right]=\int_{\mathbb{R}} x^{n} \mu(d x), \mathbb{E}\left[b^{n}\right]=\int_{\mathbb{R}} x^{n} \nu(d x) \Longrightarrow \mathbb{E}\left[(a+b)^{n}\right]=\int_{\mathbb{R}} x^{n} ?(d x) \\
& a+b \longrightarrow \mu * \nu \quad \text { convolution if } a, b \text { are independent } \\
& \longrightarrow \mu \boxplus \nu \quad \text { free convolution if } a, b \text { are free }
\end{aligned}
$$

p : projection free to $a \longrightarrow p a p:$ free compression
$c=$ expectation of $p \in(0,1)$ i.e. $\mathbb{E}[p]=\mathbb{E}\left[p^{2}\right]=c$
μ_{c} : distribution of pap (no commutative analogue)

$$
\mathbb{E}\left[(p a p)^{n}\right]=\int_{\mathbb{R}} x^{n} \mu_{c}(d x)
$$

§3.5 Limit shape (static model)

Putting information on Young diagrams into Kerov-Olshanski algebra, one can compute (scaling limit of) profiles of random Young diagrams.

- macroscopic profile : $1 / \sqrt{n}$ both horizontally and vertically

$$
\lambda \in \mathbb{Y}_{n} \quad \longrightarrow \quad \lambda^{\sqrt{n}}(x)=\frac{1}{\sqrt{n}} \lambda(\sqrt{n} x) \quad \in \mathbb{D}_{0} \subset \mathbb{D}
$$

\triangleright rectangular diagram
$\mathbb{D}_{0}=\{\lambda: \mathbb{R} \longrightarrow \mathbb{R} \mid$ continuous, piecewise linear,

$$
\left.\lambda^{\prime}(x)= \pm 1, \lambda(x)=|x|(|x| \text { large enough })\right\}
$$

transition measure \mathfrak{m}_{λ} for $\lambda \in \mathbb{D}_{0}$
\triangleright continuous diagram
$\mathbb{D}=\{\omega: \mathbb{R} \longrightarrow \mathbb{R}| | \omega(x)-\omega(y)|\leqq|x-y|, \omega(x)=|x|(|x|$ large enough $)\}$

- Transition measure \mathfrak{m}_{ω} for $\omega \in \mathbb{D}$ is defined by approximating ω by elements of \mathbb{D}_{0}

$$
\begin{array}{ll}
\Omega(x)= \begin{cases}\frac{2}{\pi}\left(x \arcsin \frac{x}{2}+\sqrt{4-x^{2}}\right), & |x| \leqq 2 \\
|x|, & |x|>2\end{cases} & \text { limit shape } \\
\mathfrak{m}_{\Omega}(d x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} 1_{[-2,2]}(x) d x & \text { semi-circle distribution }
\end{array}
$$

fig. 7 limit shape Ω and its transition measure

The following law of large numbers holds (static scaling limit for the Plancherel measure)

Theorem (Vershik-Kerov, Logan-Shepp 1977)

$$
\begin{aligned}
& \mathbb{M}_{\mathrm{Pl}}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_{n}\left|\sup _{x \in \mathbb{R}}\right| \lambda^{\sqrt{n}}(x)-\Omega(x) \mid \geqq \epsilon\right\}\right)=\mathbb{P}\left(\left\|Z_{n}^{\sqrt{n}}-\Omega\right\|_{\text {sup }} \geqq \epsilon\right) \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} \quad(\forall \epsilon>0)
\end{aligned}
$$

Namely, distribution of $Z_{n}^{\sqrt{n}}$ converges to δ_{Ω} as $n \rightarrow \infty$.

Strong law of large numbers also holds by considering the Plancherel measure on the path space of the Young graph.

§3.6 Interface evolution

Dynamic scaling limit
s : microscopic time, t : macroscopic time $s=t n$

- spectral gap of transition matrix of Res-Ind chain is $2 / n$ ($\S 3.3$ Lemma)

Given any initial macroscopic profile $\omega_{0} \in \mathbb{D}$ s.t. $\int_{\mathbb{R}}\left(\omega_{0}(x)-|x|\right) d x=2$,
Take a sequence $\left\{\lambda^{(n)}\right\}_{n \in \mathbb{N}}$ s.t. $\lambda^{(n)} \in \mathbb{Y}_{n}, \quad \lambda^{(n)} \sqrt{n} \rightarrow \omega_{0}$ in \mathbb{D} i.e.

$$
\lim _{n \rightarrow \infty}\left\|\lambda^{(n) \sqrt{n}}-\omega_{0}\right\|_{\text {sup }}=0
$$

Continuous time Res-Ind chain $\tilde{X}_{s}^{(n)}$ with initial distribution on \mathbb{Y}_{n} :

$$
\tilde{\mathbb{P}}\left(\tilde{X}_{0}^{(n)}=\cdot\right)=\delta_{\lambda^{(n)}}
$$

- $\tilde{X}_{t n}{ }^{(n) \sqrt{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow}$? (deterministic macroscopic profile depending on t)

Theorem (2015, SpringerBriefs Math-Phys. 2016)
For $\forall t>0$, there exists macroscopic profile $\omega_{t} \in \mathbb{D}$ s.t.

$$
\tilde{\mathbb{P}}\left(\left\|\tilde{X}_{t n}{ }^{(n) \sqrt{n}}-\omega_{t}\right\|_{\text {sup }} \geqq \epsilon\right) \xrightarrow[n \rightarrow \infty]{ } 0 \quad(\forall \epsilon>0)
$$

holds (law of large numbers). Here ω_{t} is determined by

$$
\mathfrak{m}_{\omega_{t}}=\left(\mathfrak{m}_{\omega_{0}}\right)_{e^{-t}} \boxplus\left(\mathfrak{m}_{\Omega}\right)_{1-e^{-t}}
$$

(free convolution of free compressions of transition measures).
Furthermore time evolution is described through the Stieltjes transform of transition measures $\quad G(t, z)=\int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega_{t}}(d x)$:

$$
\frac{\partial G}{\partial t}=-G \frac{\partial G}{\partial z}+\frac{1}{G} \frac{\partial G}{\partial z}+G, \quad t>0, z \in \mathbb{C}^{+}
$$

fig. 8 evolution of macroscopic profile: the area kept invariant $\int_{\mathbb{R}}\left(\omega_{t}(x)-|x|\right) d x=2$ for $\forall t$

Reference for $\S 3$

A. Hora: The Limit Shape Problem for Ensembles of Young Diagrams, Springer Briefs in Mathematical Physics 17, Springer, 2016

