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81 Introduction
Interplay between randomness and algebraic(-combinatoric) structure

Algebraic structure plays twofold essential roles:
e produce specific randomness
e give nice tools for analyzing random phenomena

— frameworks of harmonic analysis

(Bose-Mesner algebra, symmetric functions, Kerov-Olshanski algebra, ...

As probability model,
temporally homogeneous Markov chain on a finite set

(quite simple!)

)



» asymptotic behavior as time (step) — oo

recurrence, convergence to invariant distribution, ...

» asymptotic behavior as time — oo and size of state space — oo

appropriate scaling in time/space

» asymptotic behavior as size of state space — oo

1. Cut-off phenomenon — critical phenomenon in highly symmetric Markov
chain (on group)
2. Interface evolution — Markov chain on Young diagrams (dual object of

symmetric group)

Both probabilistic models show
macroscopic deterministic aspect (law of large numbers)

+ fluctuation (central limit theorem)
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§2.1 Markov chain

For finite set S, given

e transition probability p(z,y) (z,y € 5) : p(z,y) 20, > csp(x,y) =1
e initial distribution v(z) 20 (z € 5) : ) .qv(z) =1

Then, there exist probability space (2, F,P) and a sequence of random
variables (X, )n=012,.. (Xn:Q—8) s.t.

IPD()(n—i—l =Y | Xp = ZC) :p($7y)7 IP)(XO — 'CE) — V('CE)7 T,y € S

(temporally homogeneous Markov chain on 5)

P = (p(a:,y))m g © transition matrix, v = (I/(il?))xes . initial row vector

Y

Pu(z,y) = B(Xyn =y | Xo = 2) = (P")ey,  P(Xn=2)=@P"),



~ ~

Continuous time Markov chain (X;),>gon §: X, = Xy

S

(INVs)s>0: Poisson process, No =0 as.
N : € — {0,1,---} for some probability space (0, F',P") (

o
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fig. 1 sample path of Poisson process

(Q, F,P) x (2, F',P") so that (X,,) and (INs) are independent

~ ~

P(X,=x)=) P(Xy, =z, Ny=n)=>» P(X, =x|N, =n)P(N, =n)
n=0 n=0

n

=S WP, = e D) ses
n=0 )
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> Ehrenfests’ urn (extended)
Imagine n urns and d balls put in them. At each step, pick up a ball among
d at random and move it into another urn chosen at random.

S=1{1,2,---,n}¢>2, vy (x = (z;) indicates ith ball is in z;th urn)

1/d(n—1) if x and y differ at just 1 entry
p(z,y) = .
0 otherwise

> Bernoulli-Laplace diffusion
Imagine two rooms separated by a partition, one containing d particles and
the other v — d. At each step, pick up a particle at random from each room

and interchange the two.
S = {d—subset of {1,2,--- ,v}} Sz, y

1/d(v—d) if z and y have d — 1 common elements
p(z,y) = .
0 otherwise



§2.2 Cut-off phenomenon |I: Hamming graph

lllustrate the cut-off phenomenon — certain critical phenomenon for Markov

chain in which the process of convergence to stationarity is remarkable.
Ehrenfests’ urn (simple random walk on Hamming graph) is a perfect model!

Hamming graph H(d,n) :

vertex sets S = {1,2,--- ,n}?
For x = (x;), y = (y;) € S, O(z,y) =4§ of (i'ss.t. xz; # y;).
L, O(z,y)=1

adjacency matrix A, , =

valency k = d(n — 1)



. _ 1
transition matrix P = — A

K
—> simple random walk on S with uniform invariant distribution

For continuous time simple random walk on H(d,n),

(es(P=1)), . : distribution at time s starting from x

total variation distance between distributions at time s and oo

1

DM (s) = 5”(68(13_1))33,. — (uniform distribution)Htot
1 S 1
~ 9 Z|(e P ey — d
yes
(independent of starting vertex x)
1
D0)=1—-—==1, D(cc)=0



Theorem (Diaconis-Graham-Morrison 1990)

For simple random walk

1
D(4:2) (Zd(log d+ )

holds.
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\
: K‘
\\\\\\\\\\ : L L L L Il T l
-10 -5 L 5 10

on H(d,2)
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\f / e~ Py = c(r),
d—)oo

For Ve > 0, 7. s.t. ¢(7)

fig. 2 graph of ¢(7)

>1—€, 7<-—7¢

since ¢(Foo) =

< €, Te < T

TeR



Therefore

D(d’Q)(lc—ilogd—cm—i) >1—c€ ?f7'<—7'€
2 2 2 2 <€ if . <7
. o . 1
where inverse of spectral gap and multiplicity of 2nd eigenvalue of — A
K

time axis rescaled by dlogd

macroscopic time

fig. 3 graph of D in macroscopic time scale

» macro time < fluctuation d < micro time dlogd

< mean recurrence time 2d



§2.3 Random walk on association scheme

large multiplicity (degeneration) of 2nd eigenvalue of transition matrix

<= high symmetry for Markov chain <= “random walk”

Let group G act on S transitively, S =2 G/K, and
p(gz,g9y) =p(z,y), w,y€S, geaG.

Then 3y € P(K\G/K) s.t. P = px - (convolution operator), i.e.
the Markov chain is product of independent GG-valued random variables with
K-bi-invariant distribution

‘random walk <= spatially symmetric Markov chain”

Natural and fruitful extension is
“random walk <= transition matrix belongs to Bose-Mesner algebra of

association scheme”



finiteset S, SxSDOR; (i=0,1,---,d)

1, (x.y) € R;

ith adjacency matrix (A;)z,y = {
7 Oa (xay) ¢ Rz

(S,{R;},&,) is called an association scheme if
(i) Ag = I (identity matrix), A; +--- 4+ Ag = J (all entries 1)
(II) \VI’L, 3 s.t. tAi = Ai’

d
(iii) A;A; = prjAk, pfj € Z>( : intersection number
k=0
p?z-/ =t{y € S|(x,y) € R;} = k; : ith valency (independent of x)

Furthermore
(iv) A;A; = A;A; : commutative (v) 'A; = A; : symmetric
A = {linear combination of Ag,---, Ay} : Bose-Mesner algebra

Markov chain on S is called random walk if transition matrix P € A



(S, E): finite graph with graph distance 9, diameter d = max, ,ecs 9(z,y)
R; = {(z,y) € S x 5|0(z,y) =i}
(S,E) is called distance-regular graph if (S,{R;},%,) is an association

scheme. Then A; is expressed as polynomial of A; (P-polynomial).

Markov chain on S is called simple random walk if transition matrix P = A/k

A = Ap: adjacency matrix, k = k1: valency (degree).

e Hamming graph H(d,n) see §2.2
e Johnson graph J(v,d): S = {d-subset of a v-set} > =,y
d(z,y) =d—f(xNy)

In commutative association scheme, simultaneously diagonalize A;'s by
family of projections {Fy, 1, -+, Eq}, Eo = J/|S]
(Ag -+ Ag) = (Ep -+ E4)P, P= (pi(j))ji . character table



§2.4 Cut-off phenomenon ||

Consider continuous time simple random walk on distance-regular graph S,
more precisely, directed family of simple random walks on growing distance-

regular graphs

D(s) = %H(esw—ﬂ)m,. — (uniform)||, == (esF=1) — —J)

|51

,yES

P~ —Tats=0 — =J/|S] ats =400

From the argument following Theorem of Diaconis-Graham-Morrison,
Cut-off phenomenon with (macroscopic) critical time s,

e s. — oo and s./|S| — 0

o Ve >0, Jhe s.t. he/s. — 0

inf D(s)21—c¢, sup D(s) <
0Ss=s.—he $28c+he



Theorem (2000, formerly DFG-JSPS Proc. 1996)

If a growing family of ()-polynomial distance-regular graphs satisfies certain
spectral conditions, simple random walks on them yield cut-off phenomenon
with
Se =—=(1—=)"tlogm, h.x<(1—-—=)""1
51— —)" log ( )

where 6: 2nd eigenvalue and m: its multiplicity of adjacency matrix A. W

The conditions are far from elegant, however, can be verified for
e H(d,n) under d — oo and n < const. d
e J(v,d) under d — oo and 2d < v < const. d?

e g-analogue of them, and many other listed in Bannai-Ito’s book



Role of symmetry

e give rise to degeneration of eigenvalues

(eigenspace invariant w.r.t. actions)
e put transition matrix into Bose-Mesner algebra = functional calculus

(characters, spherical functions, --- help diagonalizing transition matrix)

Other models of cut-off phenomenon

% card shuffling : random walk on symmetric group with various generators
(= various Cayley graphs)
% framework of hypergroup (finite Gelfand pair, spherical dual) etc.



Theorem (1997)

For simple random walk on H(d,n)
» if n/d — 0,

p(dn) (% (1- %)d(log(n —1)d+ ) — \/7/ e~ 2 dy
— 00

» if n/d — «a € (0,00),

l\.’)lb—\

pld, n)( (1_l)d(log(n—1)d+7)> —— ||Poi(— ! Poi(l%—e_T/Q)H
5 - ds oo Of ) \/a tot
(r€R)  hold. -

Remark H(d,n): k=(n—1)d, 6 =(n—1)d—n, m=(n—1)d
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§2.5 Asymptotic spectral analysis via quantum decomposition

- . 1 :
spectrum of transition matrix P = — A on distance-regular graph
K

d
90(: /{/) 91 RS gd o
S R >omy =18

rth moment of spectral distribution

ZHT \S\ 5] trAT = (A" )0 = Po(A") (independent of x)

in particular  ¢o(A4) =0, ¢o(A?) = ¢o(>,. Pi1AK) = K
asymptotic spectral distribution as central limit theorem

00((F=4)") 5527 = [ o utda) = M ()



Then, for any r € N

do(A") ~ M, (u)k""? as  d— o0

However, for cut-off phenomenon, one estimates D(s) containing

X —sn
e %s
es(F=1) g ' P" (Poisson distribution with mean and variance s)
n!
n=0

le.  ¢o(A°) as d — oo and s = s(d) = o©

Central limit theorem for adjacency matrix (static scaling limit) has different
nature from cut-off phenomenon (dynamic scaling limit), however,
— applicable 7

— interesting asymptotics itself



Viewpoint of quantum probability

e quantum decomposition A= AT + A~ (+A°)
with certain commutation relation

e limit picture drawn by creation/annihilation operators on appropriate
Fock space

e other state than (vacuum) ¢g

Hashimoto-Obata-Tabei (2001) : for Hamming graph by using Hermite

polynomial, Gauss measure, Boson Fock space

Collaboration with Obata school - - -

A. Hora, N. Obata: Quantum Probability and Spectral Analysis of Graphs,
Theoretical and Mathematical Physics, Springer, 2007



Scheme of quantum decomposition approach
AT AT, A% ¢ — A(=AT+A+ A%, ¢ — (A7)
4 limit 4 limit
BT,B~,B°® — B=BY+B +B° & — &B") =M/
e limit 4 (1) is much transparent than (f) + limit
e ([1) doesn’t need full spectral data of A while (#) does

e () is often controlled by well-known orthogonal polynomials and

one-mode interacting Fock space

Quantum decomposition of adjacency matrix A on graph (.5, 0)

S>30, S,={x¢€S5|0(0o,x) =n}: nth stratum

d
S = |_| Sn  (d: diameter)
n=0



ATop =6y, A6,= ) b, A% = )

y: xty y:xly Y: Ty

T : to upper stratum, | : to lower stratum, — : to the same stratum

For distance-regular graph

1
I' = linear hull of {®q,---, B4} C £3(S), @, = > b

is invariant w.r.t. AT, A=, AY, by using intersection numbers pffj,

A—l_(b \/p?llj;lpl n+1 n—|—17 n = 071,2,"'

A_(DO — 07 A_(I)n — \/p?,n—lp?;llq)n—la n = ]-7 27 T
A"y, = py , Pn, n=0,1,2--




“ Theorem ”

Convergence of matrix element of any mixed product of A1, A~ A°

A€ Acp
(@, 20 A

BT, B~, B° on one-mode interacting Fock space EBZO:O Cw,,

) —> (Uy, BY - B,

Example (Hashimoto-Hora-Obata 2003; 2003, 2004)

simple random walk on Johnson graph J(v,d) (2d < v)
S = {d-subset of a v-set} > x,y, O(x,y) =d—t(xNy)
k=d(v—d)

Limit of data of previous page gives Jacobi coefficients of Laguerre and

Meixner polynomials, so as corollary,



1 (v,d)\T 2d/v—p
2a( ORI, N)) S Mo

(¢ (@tD) 1[_1,00)(7)dz, p=1

o

here = 2(1 — .
2—p 2—-p° eV 0P

\ J=0
Furthermore
Gibbs state with energy depending on distance from origin o

B—o0 (zero temperature)\
I4

d— oo (infinite volume)

deformed vacuum state on one-mode interacting Fock space



83.1 Young graph

vertex set : Y = |_| Y., Yo={9}, edge: A\ " pu

n=0
EEEEN
I -
T

- selwaish

®D< B HH :”

H ? 5

g ] ]

CITTT] [T

fig. 4 Young graph: dimension in 5th stratum — 1, 4, 5, 6, 5, 4, 1 :
124+4°24+5%24+62+524+4%+ 12 =5



—

Y, = &, 3 )3 (7}, V?): irreducible representation of &,

Irreducible decomposition of restriction /induction of each

irreducible representations (branching rule)
671 )\ ~Y 1% Gn 1% ~J ’LL
Resg" 77 = @ T, Indg" n° = @ T
vEY,,_1:v A WUEY v

multiplicity free decomposition == canonical Young basis of V'

>~ {paths from @ to A}

Theorem!? Irreducible decomposition of representations of a group is a

rich source of interesting Markov chains on the dual object of the group.

Proof ------ |



§3.2 Restriction-induction chain

Counting the dimensions of the above irreducible decompositions

(in some sense, putting equal rate for each vector of the Young basis)

dim v dim p

i ) V/()\a U imuv’ V/(:ua
pr(A,v) = § dimA C o, pi(vp) =g MDA |

0, otherwise 0, otherwise

Pt =)y, PT=0"m),,

Res-Ind chain (er(rr?))m:(),l,g,... on Y, has transition matrix

pn) _ (P(n)()“r“)))\ ey, (: P*PT restricted on Yn),

p™M (A ) = > AT (vw),  ApeY,
vEY, _1:v, AN v,



restriction <> removing a box, induction <+ adding a box

restriction-induction <+ (non-locally) moving a corner box

L R YT

fig. 5 Res-Ind chain: transition from X = (3, 3, 2)

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:
MUY () pU (A, ) = MUY (1) p (2, A A\peY
Pl ( )p ( 7:“) Pl (/“L)p (:u7 )7 s b€ X,

hence the Plancherel measure is invariant distribution for Res-Ind chain



> Plancherel measure on Y,, is

(dim \)?

n!

MUY (A) =

(< Plancherel formula for Fourier transform on &,,)

> Markov chain (Z,,) on the Young graph with initial distribution §5 and
transition matrix P' is called the Plancherel growth process.

(dim \)?

n!

The distribution after n stepis P(Z, = \) = = MUY (\)

Continuous time Res-Ind chain X!™ = X](\Z) on Y, (Ns: Poisson process)

. : (n)_
e transition matrix esS(F " —1)

e invariant distribution Mg)



83.3 Irreducible characters of symmetric group

P(™) = (P+PM)|y, : transition matrix of Res-Ind chain on Y,
Diagonalize P("™) by using irreducible characters of &,

(generally available for non-multiplicity-free branching rule also)

For representation (m,V), x(z) =tron(x) x=x/dimV

Y,, parametrizes both the equivalence classes of irreducible representations
and the conjugacy classes of G,

Character table (X;\)p,xe\yn

Dual approach in asymptotic theory — fix p, then |A\| — oo i.e. consider
X?p,ln—k)a pEYr, AeY,, k=n

where (p,1"7%) = p LU (1"7%) € Y,, so that one can let n — oo



Lemma For [p| =n st. p= (lml(P)Qm?(P> ),

o ol —mi(p)\ -
P )(X?p,ln—lpl))/\eYn - (1 N n : )(X?p’ln_lm)))‘eY”

where (- )acy, is a column vector

For transition matrix of continuous time Res-Ind chain,

(n) _ ~
e.S(P I ( A

T o)) sy, = € P05/ (A

X(p,l’”—'P'))/\E\Yn

Letting v be an initial distribution on Y,

PX™ = X) =P (A) = (ves®™ D) AEY,

>\7

» Expectation of irreducible character w.r.t. initial distribution

— w.r.t. the distribution at time s



53.4 Kerov-Olshanski algebra

Irreducible characters are (one of) the most important random variables to

analyze group-theoretical ensemble of Young diagrams.

For k = |p| £ |A\| = n, set a function on Y
YA =nn—=1)--(n—k+1)X(,nn (=0 ifk>n)

For one row diagram p = (k), Xy = X,
> A = {linear combination of X, | p € Y} : Kerov-Olshanski algebra

Considering A as an algebra of random variables, one can compute many

things about random Young diagrams.

Coordinates for a Young diagram — element of A as a polynomial function



Peak-valley coordinates of A€ Y : (z1 <y1 <22 < - <yYp_1 < T

_(Z_yl)"'(z_yr—l)_ U1 L
Ga(z) = (z—x1) (2 — ) _Z—x1+ +z—xr

Then, p; >0 and Z'“?? =1, so my = Z,uidmi € P(R)
i=1 i=1
m)y : Kerov's transition measure of A

fig. 6 peak-valley coordinates of a Young diagram



1 =~ 1
Gi(2) = /R L my(dr) = Y /IRx”mA(dx), secCt
n=0

Young diagram <= peak-valley coordinates
<= moment sequence of my : {M,(m))}
<= cumulant sequence of my : ordinary {C,(my)}, free {R;(m,)}

(polynomial relations by cumulant-moment formula)

> P(n) = {partition into subsets of {1,2,--- ,n}}

P(n) > m={v1,--- v} (v blockin@), I=b(m), Y |vi|=n
lv;|: cardinality of v;

> NC(n) = {non-crossing partition into subsets of {1,2,--- ,n}}



For partition m = {uy,--- ,up(r)} of {1,2,---,n}

M|u1| o .M|ub(7r)| — Z C|Ul| T C|Ub(p)|’ (= P(n)
p={v1, vp(p) }EP(n): p<m
M|u1| °”M|Ub(7r)| — Z R|U1| ”'R\vb(pﬂ7 ™ € NC(n)

p={v1, Wp(p) JENC(n): p<m7

Moebius function of each poset yields inversion respectively, each cumulant

expressed by (different) polynomial of moments.
Proposition A = (X, ()\)) = (M, (my)) = (C;(my)) = (Rj(my)) H

e.g. X1(A) = My(my) = Cy(my) = Ro(my) Zx - Zyz

Especially, {X} vs {R;} is given by Kerov polynomials.



Freeness is a notion for describing relation between random variables.

Free structure often appears in large random matrices/permutations.

In several mathematical contexts,
independence vs freeness for random variables

results in/from interesting contrasts such as

e direct product vs free product (as group or algebra structure)
e lattice vs tree (as Laplacian)
e Gauss vs Wigner (as central limit theorem)

e Boson Fock vs full Fock (as creation and annihilation)

etc.



Let a,b be real random variables (typically, self-adjoint elements in

function or operator algebra) with distributions u, v respectively

R

E[a"] = /R " u(dz), BB = /R 2"w(dz) = El(a+b)"] = / 2" ? (dx)

a+b— puxv convolution if a,b are independent

— nHuy free convolution if a,b are free

p : projection free to a — pap : free compression
c = expectation of p € (0,1) i.e. E[p]=E[p?]=c¢

(e - distribution of pap  (no commutative analogue)

El(pap)"] = / " pie(d)

R



83.5 Limit shape (static model)

Putting information on Young diagrams into Kerov-Olshanski algebra, one
can compute (scaling limit of) profiles of random Young diagrams.

— macroscopic profile : 1/4/n both horizontally and vertically

AeY, — MW'(z)=—=AVnz) e€DycD

1
\/7
> rectangular diagram
Dy = {)\ :R— R ‘ continuous, piecewise linear,

N(z) = £1, Mz) = |z| (|z| large enough)}

transition measure my for A € Dy

> continuous diagram
D={w:R—R||wx)-w(y)| < |z—y|, wx) = |z| (|z| large enough)}



» Transition measure m,, for w € D is defined by approximating w by

elements of Dy

2 (parcsin + V4 —2?), |z| <2

Qx) =4 limit shape
D=1l o] > 2 :
1
mo(dx) = oy 4 — a2 1_g9(x)dx semi-circle distribution
T

fig. 7 limit shape §2 and its transition measure



The following law of large numbers holds

(static scaling limit for the Plancherel measure)

Theorem (Vershik-Kerov, Logan-Shepp 1977)

My ({2 e v,

sup AV (z) — Q(z)] 2 e}) = P(||2Y" = Qllsup = €)

zeR
— 0 (Ve > 0)

n—oo

Namely, distribution of Z}L/ﬁ converges to d; as n — o0. |

Strong law of large numbers also holds by considering the Plancherel measure

on the path space of the Young graph.



§3.6 Interface evolution
Dynamic scaling limit

$: microscopic time, t: macroscopic time s =1tn

— spectral gap of transition matrix of Res-Ind chain is 2/n (§3.3 Lemma)

Given any initial macroscopic profile wg € D s.t. /(wo(:v) — |x|)dx = 2,
R

Take a sequence {A(™M}, cn st. A™ e Y,, XWV? 5 inD e

lim ||A™M V" —wl| =0

n— 00 Sup
Continuous time Res-Ind chain X" with initial distribution on Y,:

P(XS" = ) = 8y

> X,,(MWV" 5?7 (deterministic macroscopic profile depending on t)

n—oo



Theorem (2015, SpringerBriefs Math-Phys. 2016)

For YVt > 0, there exists macroscopic profile w; € D s.t.

I@(!’th(”)\/ﬁ — thsup > e) —— 0 (Ve>0)

n—oo

holds (law of large numbers). Here w; is determined by
My, = (mw())e—t H (o) e

(free convolution of free compressions of transition measures).

Furthermore time evolution is described through the Stieltjes transform of

transition measures = [ s=my, (dz):
oG oG 1 0G
5 Gaz GaerG, >0, z€C



initial distribution 9, (n) — wo

\J 1/y/n, n— oo \J
distribution at time ¢n 1’@(ng> = ) — Wy
v !
invariant distribution Mgf) SN
o > vt > limit shape 2

fig. 8 evolution of macroscopic profile: the area kept invariant Sz (wi(z) — |z|)dx = 2 for Vt
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