Dynamic model for limit profiles and their Gaussian fluctuations in Young diagram ensembles
 Akihito HORA (Hokkaido Univ.)
 Mathematical Aspects of Quantum Fields and Related Topics
 RIMS Kyoto Univ., 26 June 2017

I met Obata san for the first time in the summer of 1983

Ensemble of Young diagrams $\mathbb{Y}_{n} \quad$ (n : number of boxes)

$$
\left|\mathbb{Y}_{n}\right|=\frac{e^{\pi \sqrt{2 n / 3}}}{4 \sqrt{3} n}\left(1+O\left(\frac{1}{\sqrt{n}}\right)\right)
$$

Pick up a diagram of \mathbb{Y}_{n} at random according to probability \mathbb{P}_{n}.
Derivation of a macroscopic shape (if any) and its time evolution under appropriate scaling limit as $n \rightarrow \infty$

$$
\lambda \in \mathbb{Y}_{n} \longleftrightarrow \text { profile } \lambda(x) \quad \longrightarrow \quad \lambda^{\sqrt{n}}(x)=\frac{1}{\sqrt{n}} \lambda(\sqrt{n} x)
$$

Probability \mathbb{P}_{n} determines nature of the model.

- \mathbb{Y}_{n} labels the equivalence classes of irreducible representations of \mathfrak{S}_{n} (symmetric group of degree n).
\Longrightarrow representation-theoretical ensemble of Young diagrams
- Random structure originating from irreducible decomposition or branching rule
Plancherel measure $\quad \mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda)=\frac{(\operatorname{dim} \lambda)^{2}}{n!}, \quad \lambda \in \mathbb{Y}_{n}$
- irreducible decomposition of the bi-regular representation of \mathfrak{S}_{n} :

$$
L_{2}\left(\mathfrak{S}_{n}\right) \cong \bigoplus_{\lambda \in \mathbb{Y}_{n}} V^{\lambda} \otimes V^{\bar{\lambda}}
$$

- Robinson-Schensted correspondence
$\mathfrak{S}_{n} \cong\left\{(P, Q) \mid P, Q: \lambda\right.$-type standard tableaux, $\left.\lambda \in \mathbb{Y}_{n}\right\}$
length of the longest increasing subsequence in $x=$ length of the first row of λ

Young graph
(number of paths from $\varnothing=$ dimension of the irreducible representation)

Static model for the Plancherel ensemble $\left(\mathbb{Y}_{n}, \mathbb{M}_{\mathrm{Pl}}^{(n)}\right)$
Vershik - Kerov (1977), Logan - Shepp (1977)

$$
\Omega(x)= \begin{cases}\frac{2}{\pi}\left(x \arcsin \frac{x}{2}+\sqrt{4-x^{2}}\right), & |x| \leqq 2 \\ |x|, & |x|>2\end{cases}
$$

$$
\lim _{n \rightarrow \infty} \mathbb{M}_{\mathrm{Pl}}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_{n}\left|\sup _{x \in \mathbb{R}}\right| \lambda^{\sqrt{n}}(x)-\Omega(x) \mid \geqq \epsilon\right\}\right)=0 \quad(\forall \epsilon>0)
$$

Other representation-theoretical ensembles of Young diagrams

- Kerov, Biane,

Approximate factorization property for ensemble of Young diagrams - a weak ergodicity

- positive-definite function on \mathfrak{S}_{n} corresponding to probability $\mathbb{M}^{(n)}$ on \mathbb{Y}_{n}

$$
f^{(n)}(x)=\sum_{\lambda \in \mathbb{Y}_{n}} \mathbb{M}^{(n)}(\lambda) \widetilde{\chi}^{\lambda}(x), \quad x \in \mathfrak{S}_{n}
$$

- For $x, y \in \mathfrak{S}_{n}$ such that $\operatorname{supp} x \cap \operatorname{supp} y=\varnothing$

$$
f^{(n)}(x y)-f^{(n)}(x) f^{(n)}(y)=o\left(n^{-\frac{|x|+|y|}{2}}\right)
$$

where $|x|$ is the minimal number of transpositions needed to present x

Case of the Plancherel measure : $f^{(n)}=\delta_{e}$

Gaussian fluctuation

Fundamental fact :

- Kerov's central limit theorem for the Plancherel measure (Kerov 1993)

$$
\begin{aligned}
&\left\{n^{\frac{k}{2}} \widetilde{\chi}_{\left(k, 1^{n-k}\right)}^{\lambda}\right\}_{k=2,3, \ldots} \quad \text { on } \quad\left(\mathbb{Y}_{n}, \mathbb{M}_{\mathrm{Pl}}^{(n)}\right) \\
& \xrightarrow[n \rightarrow \infty]{ } \quad\left\{X_{k}\right\}_{k=2,3, \ldots} \quad: \text { independent, } \quad X_{k} \sim N(0, k)
\end{aligned}
$$

- Equivalently,
conjugacy class $C \subset \mathfrak{S}_{n} \leftrightarrow$ adjacency operator $A=\sum_{x \in C} x \curvearrowright \ell^{2}\left(\mathfrak{S}_{n}\right)$,
$\lim _{n \rightarrow \infty}\left\langle\delta_{e},\left(\frac{A_{\left(2,1^{n-2}\right)}}{\sqrt{\left|C_{\left(2,1^{n-2}\right)}\right|}}\right)^{p_{2}} \cdots\left(\frac{A_{\left(k, 1^{n-k}\right)}}{\sqrt{\left|C_{\left(k, 1^{n-k}\right)}\right|}}\right)^{p_{k}} \delta_{e}\right\rangle=\prod_{j=2}^{k} \int_{\mathbb{R}} x^{p_{j}} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x$
for $\forall k \in\{2,3, \cdots\}, \forall p_{2}, \cdots, p_{k} \in \mathbb{N} \cup\{0\}$

Kerov's CLT is extended to many directions
quantum decomposition $A_{\left(j, 1^{n-j}\right)}=A_{\left(j, 1^{n-j}\right)}^{+}+A_{\left(j, 1^{n-j}\right)}^{-}+A_{\left(j, 1^{n-j}\right)}^{o}$

$$
A_{\left(j, 1^{n-j}\right)}^{+}=\sum_{x \in C_{\left(j, 1^{n-j}\right)}} x^{+}, \quad x^{+} \delta_{y}=\left\{\begin{array}{ll}
\delta_{x y}, & \text { if } c(x y)<c(y) \\
0, & \text { otherwise }
\end{array} \quad\right. \text { etc. }
$$

$$
c(y)=\sharp \text { of cycles in decomposing } y
$$

- In the sense of convergence of any matrix element of any mixed product of operators (quantum CLT in HO book 2007):
$\left\{\left(\frac{A_{\left(j, 1^{n-j}\right)}^{+}}{\sqrt{\left|C_{\left(j, 1^{n-j}\right)}\right|}}, \frac{A_{\left(j, 1^{n-j}\right)}^{-}}{\sqrt{\left|C_{\left(j, 1^{n-j}\right)}\right|}}, \frac{A_{\left(j, 1^{n-j}\right)}^{o}}{\sqrt{\left|C_{\left(j, 1^{n-j}\right)}\right|}}\right)\right\}_{j} \xrightarrow{n \rightarrow \infty}\left\{\left(B_{j}^{+}, B_{j}^{-}, 0\right)\right\}_{j}$
$B_{j}^{+}=a^{+}\left(v_{j}\right)$ (creation), $B_{j}^{-}=a^{-}\left(v_{j}\right)$ (annihilation), $\left\{v_{j}\right\}:$ ONB in H, $B_{j}^{ \pm}$act on the Boson Fock space $\Gamma(H)=\bigoplus_{n} H^{\hat{\otimes} n}$

To describe fluctuation of the profile :
profile ω vs its transition measure \mathfrak{m}_{ω} via the Markov transform

$$
\begin{aligned}
\frac{1}{z} \exp \left\{\int_{\mathbb{R}} \frac{1}{x-z}\left(\frac{\omega(x)-|x|}{2}\right)^{\prime} d x\right\} & =\int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega}(d x) \\
& =\sum_{n=0}^{\infty} \frac{M_{n}\left(\mathfrak{m}_{\omega}\right)}{z^{n+1}}, \quad z \in \mathbb{C}^{+}
\end{aligned}
$$

- \mathfrak{m}_{Ω} is the standard Wigner (semicircle) distribution

$$
\mathfrak{m}_{\Omega}(d x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} 1_{[-2,2]}(x) d x
$$

- For Young diagram $\lambda=\left(x_{1}<y_{1}<x_{2}<\cdots<y_{r-1}<x_{r-1}<x_{r}\right)$
(x_{i} : valley, y_{i} : peak),

$$
\frac{\left(z-y_{1}\right) \cdots\left(z-y_{r-1}\right)}{\left(z-x_{1}\right) \cdots\left(z-x_{r}\right)}=\int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\lambda}(d x)=\frac{\mu_{1}}{z-x_{1}}+\cdots+\frac{\mu_{r}}{z-x_{r}}
$$

By Vershik-Kerov and Logan-Shepp, we know

$$
\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\Omega} \quad \underset{n \rightarrow \infty}{ } 0
$$

Interpretation of Kerov's CLT by Ivanov - Olshanski (2002)

Consider

$$
\sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\Omega}\right) \quad \xrightarrow[n \rightarrow \infty]{ } \text { ? }
$$

- Bulk and edge of $\lambda^{\sqrt{n}}$ have different scales of fluctuation
\Longrightarrow distribution-valued r.v.

$$
\begin{aligned}
& M_{n}(\mu)=\int_{\mathbb{R}} x^{n} \mu(d x)=\left\langle x^{n}, \mu\right\rangle \\
& \Sigma_{k}(\lambda)=n(n-1) \cdots(n-k+1) \widetilde{\chi}_{\left(k, 1^{n-k}\right)}^{\lambda} \quad\left(\lambda \in \mathbb{Y}_{n}\right)
\end{aligned}
$$

- Algebra of functions on $\mathbb{Y}:\left\langle M_{n}\left(\mathfrak{m}_{\lambda}\right)\right\rangle_{n}=\left\langle R_{n}\left(\mathfrak{m}_{\lambda}\right)\right\rangle_{n}=\left\langle\Sigma_{k}(\lambda)\right\rangle_{k}$
free cumulant-moment formula, Kerov polynomial

$$
\begin{aligned}
& \left\langle x^{2 p}, \sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\Omega}\right)\right\rangle=\sum_{j=1}^{p-1}\binom{2 p}{p-j-1} n^{-\frac{2 j+1}{2}} \Sigma_{2 j+1}(\lambda)+(\text { remainder }), \\
& \left\langle x^{2 p-1}, \sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\Omega}\right)\right\rangle=\sum_{j=1}^{p-1}\binom{2 p-1}{p-j-1} n^{-j} \Sigma_{2 j}(\lambda)+(\text { remainder }) \\
& \text { on } \left.\mathbb{Y}_{n} \quad \text { (remainder : w.r.t. } \mathbb{M}_{\mathrm{Pl}}^{(n)}\right)
\end{aligned}
$$

\longrightarrow Inversion!
$n^{-\frac{k}{2}} \Sigma_{k}(\lambda)=\left\langle(\right.$ Chebyshev polynomial $\left.), \sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\Omega}\right)\right\rangle+$ (remainder $)$
LHS $\underset{n \rightarrow \infty}{\longrightarrow}$ (independent) Gaussian r.v. by Kerov's CLT
Chebyshev polynomials form ONB in $L^{2}\left((-2,2), \frac{1}{\pi \sqrt{4-x^{2}}} d x\right)$
RHS : Coefficient of a random Fourier series

- $\sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\Omega}\right)$ converges as $n \rightarrow \infty$ to

$$
\begin{aligned}
& \sum(\text { Gaussian r.v. }) \times(\text { Chebyshev polynomials }) \frac{1}{\pi \sqrt{4-x^{2}}} \\
& =\sum_{k=3}^{\infty} \sqrt{k-1} \xi_{k-1} T_{k}\left(\frac{x}{2}\right) \frac{1}{\pi \sqrt{4-x^{2}}}
\end{aligned}
$$

$\left\{\xi_{k-1}\right\}$: independent standard Gaussian, $\quad T_{k}(\cos \theta)=\cos k \theta$

Dynamic model - scaling limit under not only growth of Young diagrams but also transition between diagrams (Markov chain)

1 step transition :
Move one box (peak \rightarrow valley)
\Longleftrightarrow twice adjacent flips $\bullet \leftrightarrow \circ$ in Maya diagram

Canonical setting

$$
P_{\lambda, \nu}^{\downarrow}=\left\{\begin{array}{ll}
\frac{\operatorname{dim} \nu}{\operatorname{dim} \lambda}, & \nu \nearrow \lambda, \\
0, & \text { otherwise }
\end{array}, \quad P_{\nu, \mu}^{\uparrow}= \begin{cases}\frac{\operatorname{dim} \mu}{(|\nu|+1) \operatorname{dim} \nu}, & \nu \nearrow \mu \\
0, & \text { otherwise }\end{cases}\right.
$$

Irreducible decomposition of restriction/induction of representations

$$
\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} \pi^{\lambda} \cong \bigoplus_{\nu \in \mathbb{Y}_{n-1}: \nu \nearrow \lambda} \pi^{\nu}, \quad \operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} \pi^{\nu} \cong \bigoplus_{\mu \in \mathbb{Y}_{n}: \nu \not \supset \mu} \pi^{\mu}
$$

The Plancherel measure $\mathbb{M}_{\mathrm{Pl}}^{(n)}$ on \mathbb{Y}_{n} is kept invariant by transition probability $P^{(n)}=P^{\downarrow} P^{\uparrow}$.

Continuous time Markov chain $\left(X_{s}^{(n)}\right)_{s \geqq 0}$ on \mathbb{Y}_{n}

- macroscpoic time t, microscopic time $s=t n, \quad$ spatial rescale by \sqrt{n}
initial distribution $\mathbb{M}_{0}^{(n)}$

$$
\longrightarrow
$$

$$
\omega_{0}
$$

$$
\downarrow
$$

$$
1 / \sqrt{n}, \quad n \rightarrow \infty
$$

distribution at time $\operatorname{tn} \mathbb{M}_{t}^{(n)}$

ω_{t} \downarrow
stationary distribution $\mathbb{M}_{\mathrm{Pl}}^{(n)}$
$\longrightarrow$$\Omega$

Funaki - Sasada : [CMP 2010]
Grand canonical

- probability on $\mathbb{Y} \mu^{\epsilon}(\lambda)=Z^{-1} \epsilon^{|\lambda|}, \quad \lambda \in \mathbb{Y} \quad(0<\epsilon<1)$
such that $\mathbb{E}_{\mu^{\epsilon}}[|\lambda|]=N^{2} \quad\left(\Longrightarrow \lim _{N \rightarrow \infty} \epsilon=1\right)$
- number of boxes ± 1 at 1 step transition (at random for peaks or valleys)
- μ^{ϵ} kept invariant

Continuous time Markov chain \longrightarrow distribution ν_{s}^{N} at time s

- Rescale for time $s=t N^{2}, \quad$ for space $\lambda^{N}(x)=\frac{1}{N} \lambda(N x)$

Assumption: weak LLN under initial ensemble $\nu^{N}: \lim _{N \rightarrow \infty} \lambda^{N}=\psi_{0}$
Result: $\forall t>0$, weak LLN under $\nu_{t N^{2}}^{N}: \lim _{N \rightarrow \infty} \lambda^{N}=\psi_{t}$
PDE satisfied by $\psi_{t}(x)$ is obtained.

Theorem [Publ. RIMS 2015] (canonical setting)
Assumption: Initial ensemble $\left\{\left(\mathbb{Y}_{n}, \mathbb{M}_{0}^{(n)}\right)\right\}_{n}$ satisfies approximate factorization property.
Result : $\forall t>0, \mathbb{M}_{t}^{(n)}$ denoting distribution of $X_{t n}^{(n)}$, the ensemble $\left\{\left(\mathbb{Y}_{n}, \mathbb{M}_{t}^{(n)}\right)\right\}_{n}$ at time t also satisfies approximate factorization property, and weak LLN: $\forall \epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{M}_{t}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_{n}\left|\sup _{x \in \mathbb{R}}\right| \lambda^{\sqrt{n}}(x)-\omega_{t}(x) \mid \geqq \epsilon\right\}\right)=0
$$

holds. Macroscopic shape ω_{t} at t is characterized by

$$
\mathfrak{m}_{\omega_{t}}=\left(\mathfrak{m}_{\omega_{0}}\right)_{e^{-t}} \boxplus\left(\mathfrak{m}_{\Omega}\right)_{1-e^{-t}}
$$

(free convolution of free compressions of Kerov transition measures).

Time evolution of the distributions could be described through their Stieltjes transforms

- Stieltjes transform of semicircle distribution μ_{t} of mean 0 and variance t

$$
\begin{aligned}
g(t, z) & =\int_{\mathbb{R}} \frac{1}{z-x} \mu_{t}(d x)=\int_{-2 \sqrt{t}}^{2 \sqrt{t}} \frac{1}{z-x} \frac{\sqrt{4 t-x^{2}}}{2 \pi t} d x \\
& =\frac{z-\sqrt{z^{2}-4 t}}{2 t}
\end{aligned}
$$

satisfies PDE :

$$
\frac{\partial g}{\partial t}=-g \frac{\partial g}{\partial z}
$$

- PDE describing time evolution of transition measure $\mathfrak{m}_{\omega_{t}}$

$$
\begin{aligned}
& G(t, z)=\int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega_{t}}(d x), \\
& \frac{\partial G}{\partial t}=\frac{1}{G} \frac{\partial G}{\partial z}+G-G \frac{\partial G}{\partial z}, \quad t>0, z \in \mathbb{C}^{+}
\end{aligned}
$$

\triangleright PDE for $\omega(t, x)=\omega_{t}(x) \cdots$

$$
c \frac{\partial \omega}{\partial t}=\frac{\partial^{2} \omega}{\partial x^{2}}-\frac{4}{\pi^{2}}\left(\omega-x \frac{\partial \omega}{\partial x}\right)^{-1} ? ?
$$

(Constraint of constant area ?)

- ODE for Ω :

$$
\frac{\partial^{2} \Omega}{\partial x^{2}}-\frac{4}{\pi^{2}}\left(\Omega-x \frac{\partial \Omega}{\partial x}\right)^{-1}=0
$$

Case of Funaki - Sasada
In French style

$$
\begin{array}{ll}
\text { time evolution } & \partial_{t} \psi=\partial_{u}\left(\frac{\partial_{u} \psi}{1-\partial_{u} \psi}\right)+\frac{\pi}{\sqrt{6}} \frac{\partial_{u} \psi}{1-\partial_{u} \psi} \\
t \rightarrow \infty & e^{-(\pi / \sqrt{6}) u}+e^{-(\pi / \sqrt{6}) \psi(u)}=1
\end{array}
$$

In Russian style

$$
\begin{array}{ll}
\text { time evolution } & \frac{\partial \phi}{\partial t}=\frac{1}{2} \frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\pi}{4 \sqrt{3}}\left(1-\left(\frac{\partial \phi}{\partial x}\right)^{2}\right) \\
t \rightarrow \infty & \phi(x)=\frac{2 \sqrt{3}}{\pi} \log \left(e^{(\pi / 2 \sqrt{3}) x}+e^{-(\pi / 2 \sqrt{3}) x}\right)
\end{array}
$$

Although PDE of time evolution for ω_{t} is unknown, we have a solution in some sense (through Markov transform)

- Relation between profile ω_{t} and its Kerov transition measure $\mathfrak{m}_{\omega_{t}}$ (recall the Markov transform)

$$
\int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega_{t}}(d x)=\frac{1}{z} \exp \left\{\int_{\mathbb{R}} \frac{1}{x-z}\left(\frac{\omega_{t}(x)-|x|}{2}\right)^{\prime} d x\right\}, \quad z \in \mathbb{C}^{+}
$$

Procedure of computing ω_{t} from $\mathfrak{m}_{\omega_{t}}$:
free convolution, free compression \longrightarrow free cumulants
\longrightarrow Voiculescu R-transform \longrightarrow Stieltjes transform
\longrightarrow taking $\log \longrightarrow$ inversion of Stieltjes transform \longrightarrow integration!
profile

by T.Hasebe

```
profile
```


$$
\frac{1}{3} \delta_{-\sqrt{2}}+\frac{2}{3} \delta_{1 / \sqrt{2}}
$$

by T.Hasebe

Dynamic model: initial $\rightarrow \rightarrow \rightarrow$ Plancherel

Fluctuation for other (non-Plancherel) ensembles
Śniady (2005) "character factorization property"

- $\left(\mathbb{Y}_{n}, \mathbb{M}^{(n)}\right)$ or $\left(Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right), \phi^{(n)}\right)$,
C : cumulant functional w.r.t. $E_{\mathbb{M}^{(n)}}$ or $\phi^{(n)}$
Assume

$$
C\left[\Sigma_{j_{1}}, \cdots, \Sigma_{j_{k}}\right]=O\left(n^{\frac{j_{1}+\cdots+j_{k}-k+2}{2}}\right)
$$

Then

$$
\left\{\sqrt{n}\left(n^{-\frac{j+1}{2}} \Sigma_{j}-E_{\mathbb{M}(n)}\left[n^{-\frac{j+1}{2}} \Sigma_{j}\right]\right)\right\}_{j \geqq 2} \xrightarrow[n \rightarrow \infty]{ }\left\{X_{j}\right\}: \text { Gaussian, mean } 0
$$

Theorem (not satisfactory)

In our model, character factorization property is propagated at any macroscopic time t.

Hence $\sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\omega_{t}}\right)$ on $\left(\mathbb{Y}_{n}, \mathbb{M}_{t}^{(n)}\right)$ converges as $n \rightarrow \infty$ to the fluctuation at t, i.e.

- $\left\{\left\langle x^{j}, \sqrt{n}\left(\mathfrak{m}_{\lambda \sqrt{n}}-\mathfrak{m}_{\omega_{t}}\right)\right\rangle\right\}_{j} \xrightarrow[n \rightarrow \infty]{ }$ Gaussian system with mean 0
- Covariance has complicated t-dependence, vanishes as $t \rightarrow \infty$.

Grand canonical setting $\quad \mathbb{Y}=\bigsqcup_{n=0}^{\infty} \mathbb{Y}_{n}$
Poissonization of the Plancherel measure

$$
\mathbb{M}_{\mathrm{PP}}^{(\xi)}=\sum_{n=0}^{\infty} \frac{e^{-\xi} \xi^{n}}{n!} \mathbb{M}_{\mathrm{Pl}}^{(n)}, \quad \xi>0
$$

is kept invariant under transition probability $P^{(\xi)}$ on \mathbb{Y} :

$$
\begin{aligned}
& P^{(\xi)}=\alpha_{\xi}(n) P^{\uparrow(n)}+\left(1-\alpha_{\xi}(n)\right) P^{\downarrow(n)} \\
& \alpha_{\xi}(n)=\int_{0}^{1} \xi e^{-\xi x}(1-x)^{n} d x
\end{aligned}
$$

Continuous time Markov chain $\left(X_{s}^{(\xi)}\right)_{s \geqq 0}$

- Rescale for time $t \xi, \quad$ for space $\frac{1}{\sqrt{\xi}} \lambda(\sqrt{\xi} x) \quad(\lambda \in \mathbb{Y})$

Behavior as $\xi \rightarrow \infty \ldots .$.

Method of proofs

- profile of Young diagram $\lambda \longleftrightarrow$ transition measure \mathfrak{m}_{λ}
- method of symmetric functions (generators, generating functions)
- free cumulant $R_{k}\left(\mathfrak{m}_{\lambda}\right)$ vs irreducible character value χ^{λ} at cycle \Longleftarrow Kerov polynomial
- diagonalizing transition probability by using irreducible characters
- estimate of ensemble expectation by using approximate (character) factorization property

