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81 Introduction

fig. 1 Young diagram (3 222> 2 > 1) = (1'223') and its profile

Y,, : the set of Young diagrams of n boxes

Young diagram X is characterized by its profile y = A(x)



Scheme of the problem

For continuous time Markov chain (X{™) >, on Y,,
limiting behavior as n — oo and s — oo under scaling in space vs time

— macroscopic profile : 1/4/n both horizontally and vertically

1
/n

— macroscopic time : t = s/n (diffusive scale)

AeY, — MW'(2)=—4=AVnz), A\V"eD

Letting n — 00, as an effect of LLN(= law of large numbers), the distribution
of Xt(g) concentrates at a point wy, depending on t.

w; : macroscopic profile at macroscopic time t

Describe evotuion of w; along ¢ !



52 Markov chain

— transition probability p(z,y) (z,y € S) : p(z,y) 20, }_ cop(z,y) =1
— initial distribution v(z) 20, >  _sv(z) =1

Then, 3(X»)n=01,2,.. where X,,: Q@ — S

P(Xnp1 =y Xn =2) =p(z,y), P(Xo=2)=rv()

(temporally homogeneous Markov chain on 5)

P = (p(x,y))xyes . transition matrix, v = (V(x))xES . initial row vector

pn(x7y) — P(Xn =Y | Xo = 33) — (Pn)x,ya ]P)(Xn — l’) — (VPn)x

Continuous time Markov chain (X, ).>o where

(IVs)s>p: Poisson process on {0,1,---}, Nog =0 a.s., independent of (X,,)

P( Xy, =) = (V@S(P_I)) , xS

S x



33 Plancherel growth process

fig. 2 standard tableaux for (2 > 1 > 1) = (122') € Y4

To Young diagram A, dimension of X is assigned:

dim A = number of standard tableaux for A\

= number of paths from & to A on the Young graph

Ex. dim(122!) =3



Young graph  vertices: Y = |_| Y, Yo={9}

n=0

MQ%
]

fig. 3 Young graph: dimension in 5th strara — 1, 4, 5, 6, 5, 4, 1 :
1° + 4% + 5% + 6% + 5% + 4% + 12 = 5!
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Plancherel growth process is Markov chain (Z,,) on Young diagrams s.t.

V = 5@
p(\, 1) = pT(\, ) : proportional to dim p
dim p

_ MuEY, A
N+ Ddmy VRS EH A n

Then, the distribution after n step is

called Plancherel measure on Y,, (< Fourier transform on &,,)

e rectangular diagram
Dy = {)\ : R — R | continuous, piecewise linear,
N(z) = £1, Mz) = |z| (|z| large enough)}



e continuous diagram

D={w:R—R||wx)-w(y)| < |z—y|, w(z)=|z| (|z| large enough)}

AV eDyCD (recall \V"(z) = - A(V/nz))

T

limit shape
||, x| > 2

{ 2 (zarcsing + V4 — 22), |z| £2

fig. 4 limit shape 2 and its transition measure



The following LLN holds (static scaling limit for the Plancherel measure)
Vershik — Kerov (1977), Logan — Shepp (1977)

M ({2 € Y,

sup [\ (z) = 2(2)] Z e} ) = P(|1ZY" = Qljoup 2 )

r€eR
— 0 (Ve > 0)
n—roo
Namely, distribution of Z}L/ﬁ converges to d, as n — 00. |

Continuous time Plancherel growth process Z, = Zy.

with initial distribution 04, transition matrix e5(Z=1)

oo

P(Zy=2=)Y °

n=0

—SS’I’L

MU (A),  AeY

n!

(Poissonization of the Plancherel measures)



Dynamical scaling limit

s: microscopic time, t: macroscopic time s =1tn
Then Z))" — 7

P(|Z" = Qtllsup = €) = PZtn(HM rztusup_)

Z (k)(H)‘\/_ Qt“sup = )

The above Poisson distribution has mean ¢n and standard deviation v/in
Under M%thnj)' AViIn s () e AVT 5 ), where

2 .
= L+ VAt — 2?), < 24/t
2(x) — {W(xarcsm2ﬁ x?), |z| £ 2Vt

], 2| > 2Vt
. VD : .
Proposition 7" —— (2, in probability H
n— oo
(£2; is “similar” to 21 = £ (static limit), so this is not very remarkable as a

dynamic model.)



34 Restriction-induction chain

restriction <> removing 1 box, induction <+ adding 1 box

pT (X, i) as before

dim,u A\
pi()\,,u) (PI’OportionaI to dlm,u) = {d1m>” K ]

0, otherwise

L R YT

fig. 5 Res-Ind chain: transition from X = (3, 3, 2)




Res-Ind chain (Xﬁ;bz))mzo,l,g,... on Y,, has transition matrix

P(n) — P\LPT — (p('n)()\"u))A MEY

p™M (A ) = > prOpt(vp), A peY,
vEY_1:v, ANv,

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:
MUY (A)p™ (A, ) = MU ()p™ (1, A), A peY
Pl ( )p ( ,,U) Pl (:u)p (:Ua )7 WURSED S

hence the Plancherel measure is invariant distribution for Res-Ind chain W

Continuous time Res-Ind chain X! = X](\Z) on Y,, with
transition matrix e5(P" =1
initial distribution M. (see Remark),

invariant distribution Mgf)



Remark For a sequence of probability spaces (Yn,M(”)), we know some

sufficient condition for LLN

M) ({)\ cY, ‘ IV = o = e}) 40 (Ve>0)

n—oo

to hold with some continuous diagram 1 € D, which we call a concentration

property at ¢ (a certain approximate factorization property).

Ex. Plancherel measures (Yn,Mg?) satisfy this concentration property.

Dynamic scaling limit
S: microscopic time, t: macroscopic time s =1tn

Then X, (™ V" —? (macroscopic profile depending on t)

n—oo

Let M'™ = PXin’ . distribution of X" ony,



Theorem The concentration property is propagated as time goes by, i.e.
if initial distributions Mén) satisfy the concentration property at wg € D,
then for V& > 0 Min) also satisfy the concentration property, hence there
exists w; € D s.t. LLN

M§”>({A cY,

AV = willsup = e}) .0 (Ye>0)

n—oo

holds. |

— wq can be taken arbitrarily in D

— wy converges to {2 (limit shape) in D as t — oo
— The area is kept invariant: [, (w(z) — |z|)de =2  for V¢

— wy Is described precisely by using free probability

(see the following sections)



initial distribution M{" — wo

1 1/v/n, n— oo
distribution at time tn M\™ N W,
i
invariant distribution M — 0
Wo > Wt > limit shape {2

fig. 6 evolution of macroscopic profile



3D Technical digressions — Markov transform and free probability

fig. 7 peak-valley coordinates of a Young diagram

peak-valley coordinates of A€ Dy : (21 <y1 < a2 < -+ < Yr_1 < T)

Cmy)B—yem1) . m M
Gxlz) = (z—z1) (2 — zr) T




Then, p; >0and > pu; =1, so my =>"_, oz, € P(R)
Lemma Dy = {x € P(R) | mean 0,suppp is a finite set} by A <> m,

Lemma Extended to embedding D — P(R) : Markov(-Krein) transform

w — m,, : transition measure of continuous diagram

Lo [ (R ) - [ e, o

Remark Add a box at the ith valley z; of A € Y to make u(¥, then

_ dimp® )

(transition probability for Plancherel growth process)



Freeness is a notion for describing relation between random variables.

Free structure often appears in large random matrices/permutations.

In several mathematical contexts,
independence vs freeness for random variables

results in/from interesting contrasts such as

e direct product vs free product (as group or algebra structure)
e lattice vs tree (as Laplacian)
e Gauss vs Wigner (as central limit theorem)

e Boson Fock vs full Fock (as creation and annihilation)

etc.



Let a,b be real random variables (typically, self-adjoint elements in

function or operator algebra) with distributions u, v respectively

R

E[a"] = /R " u(dz), BB = /R 2"w(dz) = El(a+b)"] = / 2" ? (dx)

a+b— puxv convolution if a,b are independent

— nHuy free convolution if a,b are free

p : projection free to a — pap : free compression
c = expectation of p € (0,1) i.e. E[p]=E[p?]=c¢

(e - distribution of pap  (no commutative analogue)

El(pap)"] = / " pie(d)

R



56 Characterization of the macroscopic profile at time ¢

Theorem (recall) [Publ. RIMS 2015, SpringerBriefs Math-Phys. 2016]

The concentration property is propagated as time goes by.

If initial distributions M(()n) satisfy the concentration property with wy € I,
then for V¢t > 0 Mﬁ”) also satisfy the concentration property, hence there
exists wy; € D s.t. LLN

(™ ({)\ Y, | NV — willsup = e}) .0 (Ye>0).

n—0o0

Here w; is determined by
My, = (mwo)e_t H (mQ)l—e—t

(free convolution of free compressions of transition measures).

Furthermore time evolution of the distributions is described through its

Stieltjes transform:  G(t,2) = [, ==m,,, (dz). H



» PDE describing time evolution of transition measure m,,,

oG oG 190G N

Remark Transition measure of {2, (limit shape of Plancherel growth process

at time t) is semicircle distribution of mean 0 and variance ¢,

1 2z — /22 — 4t
olt, 2) = / g, (de) =
R

zZ—X 2t

satisfying PDE :
dg 0Oy

ot~ 7oz

e Equation for w(t,x) = w(x) is still open.

e 1 step transition of Res-Ind chain is non-local.



37 Global fluctuation
Dynamic model : initial ——— Plancherel

Fluctuation for other (non-Plancherel) ensembles

Sniady (2005) “character factorization property”

> (Yo, M™) or (Z(C[&4]), '),
C : cumulant functional w.r.t. Eygn) or ¢(™

Assume ,
J1t- i —k42

C[Ejl,---,ij]zO(n 2 )

{\/ﬁ(n—%zj—EM(n) [n—%zjn}_n — {X,} : Gaussian, mean 0.
j=2 e
(%)



Theorem ( )

In our model, character factorization property is propagated at any

macroscopic time t.

Hence \/ﬁ(m/\\/ﬁ — mwt) on (Yn,I\\/Jlgn)) converges as 1. — 00 to

the fluctuation at ¢, i.e.

> { (27, /n(m,m — mwt)>}j ——— Gaussian system with mean 0

n— o0

» Covariance of (X;) in (x) for M(™) = MS” has complicated ¢-dependence,

vanishes as t — 0. |



(©. @]
Grand canonical setting Y = I_I Yo,
n=0

Poissonization of the Plancherel measure

—§¢n
'3 € 5 n
M;>_Z ~ —— MU, >0
n=0

is kept invariant under transition probability P(¢) on Y :

PO — ag(n) P 4 (1 = ag(n)) P,

/56_55” —x)"dx

Continuous time Markov chain (Xég))szo

» Rescale for time ¢, for space %i)\(\/gx) (A eY)

Behavior as & — oo ......
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