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§1 Introduction

y = |x|

fig. 1 Young diagram (3 ≧ 2 ≧ 2 ≧ 1) = (112231) and its profile

Yn : the set of Young diagrams of n boxes

|Yn| =
eπ
√

2n/3

4
√
3n

(
1 +O

( 1√
n

))
Young diagram λ is characterized by its profile y = λ(x)



Scheme of the problem

For continuous time Markov chain (X
(n)
s )s≧0 on Yn,

limiting behavior as n→∞ and s→∞ under scaling in space vs time

– macroscopic profile : 1/
√
n both horizontally and vertically

λ ∈ Yn −→ λ
√
n(x) =

1√
n
λ(
√
nx), λ

√
n ∈ D

– macroscopic time : t = s/n (diffusive scale)

Letting n→∞, as an effect of LLN(= law of large numbers), the distribution

of X
(n)
tn concentrates at a point ωt, depending on t.

ωt : macroscopic profile at macroscopic time t

Describe evotuion of ωt along t !



§2 Markov chain

– transition probability p(x, y) (x, y ∈ S) : p(x, y) ≧ 0,
∑

y∈S p(x, y) = 1

– initial distribution ν(x) ≧ 0,
∑

x∈S ν(x) = 1

Then, ∃(Xn)n=0,1,2,··· where Xn : Ω −→ S

P(Xn+1 = y |Xn = x) = p(x, y), P(X0 = x) = ν(x)

(temporally homogeneous Markov chain on S)

P =
(
p(x, y)

)
x,y∈S

: transition matrix, ν =
(
ν(x)

)
x∈S

: initial row vector

pn(x, y) = P(Xn = y |X0 = x) = (Pn)x,y, P(Xn = x) = (νPn)x

Continuous time Markov chain (XNs
)s≧0 where

(Ns)s≧0: Poisson process on {0, 1, · · · }, N0 = 0 a.s., independent of (Xn)

P̃(XNs = x) =
(
νes(P−I)

)
x
, x ∈ S



§3 Plancherel growth process
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fig. 2 standard tableaux for (2 ≧ 1 ≧ 1) = (1221) ∈ Y4

To Young diagram λ, dimension of λ is assigned:

dimλ = number of standard tableaux for λ

= number of paths from ∅ to λ on the Young graph

Ex. dim(1221) = 3



Young graph vertices: Y =

∞⊔
n=0

Yn, Y0 = {∅}

fig. 3 Young graph: dimension in 5th strara — 1, 4, 5, 6, 5, 4, 1 :

12 + 42 + 52 + 62 + 52 + 42 + 12 = 5!



Plancherel growth process is Markov chain (Zn) on Young diagrams s.t.

ν = δ∅

p(λ, µ) = p↑(λ, µ) : proportional to dimµ

=
dimµ

(|λ|+ 1) dimλ
, λ, µ ∈ Y, λ↗ µ

Then, the distribution after n step is

pn(∅, λ) = P(Zn = λ) =
(dimλ)2

n!
= M(n)

Pl (λ)

called Plancherel measure on Yn (← Fourier transform on Sn)

• rectangular diagram
D0 =

{
λ : R −→ R

∣∣ continuous, piecewise linear,

λ′(x) = ±1, λ(x) = |x| (|x| large enough)
}



• continuous diagram
D =

{
ω : R −→ R

∣∣ |ω(x)−ω(y)| ≦ |x−y|, ω(x) = |x| (|x| large enough)
}

λ
√
n ∈ D0 ⊂ D (recall λ

√
n(x) = 1√

n
λ(
√
nx))

Ω(x) =

{
2
π

(
x arcsinx

2 +
√
4− x2

)
, |x| ≦ 2

|x|, |x| > 2
limit shape

fig. 4 limit shape Ω and its transition measure



The following LLN holds (static scaling limit for the Plancherel measure)

Vershik – Kerov (1977), Logan – Shepp (1977)

M(n)
Pl

({
λ ∈ Yn

∣∣∣ sup
x∈R
|λ

√
n(x)−Ω(x)| ≧ ϵ

})
= P

(
∥Z

√
n

n −Ω∥sup ≧ ϵ
)

−−−−→
n→∞

0 (∀ϵ > 0)

Namely, distribution of Z
√
n

n converges to δΩ as n→∞. ■

Continuous time Plancherel growth process Z̃s = ZNs

with initial distribution δ∅, transition matrix es(P−I)

P̃(Z̃s = λ) =
∞∑

n=0

e−ssn

n!
M(n)

Pl (λ), λ ∈ Y

(Poissonization of the Plancherel measures)



Dynamical scaling limit

s: microscopic time, t: macroscopic time s = tn

Then Z̃
√
n

tn −−−−→
n→∞

?

P̃
(
∥Z̃

√
n

tn −Ωt∥sup ≧ ϵ
)
= P̃Z̃tn

(
∥λ

√
n −Ωt∥sup ≧ ϵ

)
=

∞∑
k=0

e−tn(tn)k

k!
M(k)

Pl

(
∥λ

√
n −Ωt∥sup ≧ ϵ

)
The above Poisson distribution has mean tn and standard deviation

√
tn

Under M(⌊tn⌋)
Pl , λ

√
tn → Ω ⇐⇒ λ

√
n → Ωt where

Ωt(x) =

{
2
π

(
x arcsin x

2
√
t
+
√
4t− x2

)
, |x| ≦ 2

√
t

|x|, |x| > 2
√
t

Proposition Z̃
√
n

tn −−−−→
n→∞

Ωt in probability ■

(Ωt is “similar” to Ω1 = Ω (static limit), so this is not very remarkable as a

dynamic model.)



§4 Restriction-induction chain

restriction ↔ removing 1 box, induction ↔ adding 1 box

p↑(λ, µ) as before

p↓(λ, µ) (proportional to dimµ) =

{
dimµ
dimλ , µ↗ λ

0, otherwise

fig. 5 Res-Ind chain: transition from λ = (3, 3, 2)



Res-Ind chain (X
(n)
m )m=0,1,2,··· on Yn has transition matrix

P (n) = P ↓P ↑ =
(
p(n)(λ, µ)

)
λ,µ∈Yn

p(n)(λ, µ) =
∑

ν∈Yn−1:ν↗λ,ν↗µ

p↓(λ, ν)p↑(ν, µ), λ, µ ∈ Yn

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:

M(n)
Pl (λ)p

(n)(λ, µ) = M(n)
Pl (µ)p

(n)(µ, λ), λ, µ ∈ Yn,

hence the Plancherel measure is invariant distribution for Res-Ind chain ■

Continuous time Res-Ind chain X̃
(n)
s = X

(n)
Ns

on Yn with

transition matrix es(P
(n)−I),

initial distribution M(n)
0 (see Remark),

invariant distribution M(n)
Pl



Remark For a sequence of probability spaces (Yn,M(n)), we know some

sufficient condition for LLN

M(n)
({
λ ∈ Yn

∣∣∣ ∥λ√n − ψ∥sup ≧ ϵ
})
−−−−→
n→∞

0 (∀ϵ > 0)

to hold with some continuous diagram ψ ∈ D, which we call a concentration

property at ψ (a certain approximate factorization property).

Ex. Plancherel measures (Yn,M(n)
Pl ) satisfy this concentration property.

Dynamic scaling limit

s: microscopic time, t: macroscopic time s = tn

Then X̃tn
(n)

√
n −−−−→

n→∞
? (macroscopic profile depending on t)

Let M(n)
t = P̃X̃

(n)
tn : distribution of X̃

(n)
tn on Yn



Theorem The concentration property is propagated as time goes by, i.e.

if initial distributions M(n)
0 satisfy the concentration property at ω0 ∈ D,

then for ∀t > 0 M(n)
t also satisfy the concentration property, hence there

exists ωt ∈ D s.t. LLN

M(n)
t

({
λ ∈ Yn

∣∣∣ ∥λ√n − ωt∥sup ≧ ϵ
})
−−−−→
n→∞

0 (∀ϵ > 0)

holds. ■

– ω0 can be taken arbitrarily in D
– ωt converges to Ω (limit shape) in D as t→∞

– The area is kept invariant:
∫
R(ωt(x)− |x|)dx = 2 for ∀t

– ωt is described precisely by using free probability

(see the following sections)



initial distribution M(n)
0 −→ ω0

↓ 1/
√
n, n → ∞

distribution at time tn M(n)
t −→ ωt

↓

invariant distribution M(n)
Pl −→ Ω

limit shape Ωω0
ωt

fig. 6 evolution of macroscopic profile



§5 Technical digressions — Markov transform and free probability

x1 y1 x4y3

fig. 7 peak-valley coordinates of a Young diagram

peak-valley coordinates of λ ∈ D0 : (x1 < y1 < x2 < · · · < yr−1 < xr)

Gλ(z) =
(z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr)
=

µ1

z − x1
+ · · ·+ µr

z − xr



Then, µi > 0 and
∑r

i=1 µi = 1, so mλ =
∑r

i=1 µiδxi
∈ P(R)

Lemma D0
∼= {µ ∈ P(R) |mean 0, suppµ is a finite set} by λ↔ mλ

Lemma Extended to embedding D −→ P(R) : Markov(-Krein) transform

ω 7→ mω : transition measure of continuous diagram

1

z
exp

{∫
R

1

x− z

(ω(x)− |x|
2

)′
dx

}
=

∫
R

1

z − x
mω(dx), z ∈ C+

Remark Add a box at the ith valley xi of λ ∈ Y to make µ(i), then

mλ(xi) =
dimµ(i)

(|λ|+ 1) dimλ
= p↑(λ, µ(i))

(transition probability for Plancherel growth process)



Freeness is a notion for describing relation between random variables.

Free structure often appears in large random matrices/permutations.

In several mathematical contexts,

independence vs freeness for random variables

results in/from interesting contrasts such as

• direct product vs free product (as group or algebra structure)

• lattice vs tree (as Laplacian)

• Gauss vs Wigner (as central limit theorem)

• Boson Fock vs full Fock (as creation and annihilation) etc.



Let a, b be real random variables (typically, self-adjoint elements in

function or operator algebra) with distributions µ, ν respectively

E[an] =
∫
R
xnµ(dx), E[bn] =

∫
R
xnν(dx) =⇒ E[(a+ b)n] =

∫
R
xn ? (dx)

a+ b −→ µ ∗ ν convolution if a, b are independent

−→ µ⊞ ν free convolution if a, b are free

p : projection free to a −→ pap : free compression

c = expectation of p ∈ (0, 1) i.e. E[p] = E[p2] = c

µc : distribution of pap (no commutative analogue)

E[(pap)n] =
∫
R
xn µc(dx)



§6 Characterization of the macroscopic profile at time t

Theorem (recall) [Publ. RIMS 2015, SpringerBriefs Math-Phys. 2016]

The concentration property is propagated as time goes by.

If initial distributions M(n)
0 satisfy the concentration property with ω0 ∈ D,

then for ∀t > 0 M(n)
t also satisfy the concentration property, hence there

exists ωt ∈ D s.t. LLN

M(n)
t

({
λ ∈ Yn

∣∣∣ ∥λ√n − ωt∥sup ≧ ϵ
})
−−−−→
n→∞

0 (∀ϵ > 0).

Here ωt is determined by

mωt
= (mω0

)e−t ⊞ (mΩ)1−e−t

(free convolution of free compressions of transition measures).

Furthermore time evolution of the distributions is described through its

Stieltjes transform: G(t, z) =
∫
R

1
z−xmωt

(dx). ■



▶ PDE describing time evolution of transition measure mωt

∂G

∂t
= −G ∂G

∂z
+

1

G

∂G

∂z
+G, t > 0, z ∈ C+

Remark Transition measure of Ωt (limit shape of Plancherel growth process

at time t) is semicircle distribution of mean 0 and variance t,

g(t, z) =

∫
R

1

z − x
mΩt

(dx) =
z −
√
z2 − 4t

2t

satisfying PDE :
∂g

∂t
= −g ∂g

∂z

• Equation for ω(t, x) = ωt(x) is still open.

• 1 step transition of Res-Ind chain is non-local.



§7 Global fluctuation

Dynamic model : initial →→→ Plancherel

Fluctuation for other (non-Plancherel) ensembles

Śniady (2005) “character factorization property”

▶ (Yn,M(n)) or (Z(C[Sn]), ϕ
(n)),

C : cumulant functional w.r.t. EM(n) or ϕ(n)

Assume
C
[
Σj1 , · · · ,Σjk

]
= O

(
n

j1+···+jk−k+2

2

)
.

Then{√
n
(
n−

j+1
2 Σj−EM(n)

[
n−

j+1
2 Σj

])}
j≧2
−−−−→
n→∞

{Xj} : Gaussian, mean 0.

(⋆)



Theorem (not satisfactory)

In our model, character factorization property is propagated at any

macroscopic time t.

Hence
√
n
(
mλ

√
n −mωt

)
on (Yn,M(n)

t ) converges as n→∞ to

the fluctuation at t, i.e.

▶
{
⟨xj ,
√
n(mλ

√
n −mωt

)⟩
}
j
−−−−→
n→∞

Gaussian system with mean 0

▶ Covariance of (Xj) in (⋆) forM(n) = M(n)
t has complicated t-dependence,

vanishes as t→∞. ■



Grand canonical setting Y =

∞⊔
n=0

Yn

Poissonization of the Plancherel measure

M(ξ)
PP =

∞∑
n=0

e−ξξn

n!
M(n)

Pl , ξ > 0

is kept invariant under transition probability P (ξ) on Y :

P (ξ) = αξ(n)P
↑(n) + (1− αξ(n))P

↓(n),

αξ(n) =

∫ 1

0

ξe−ξx(1− x)ndx

Continuous time Markov chain (X
(ξ)
s )s≧0

▶ Rescale for time tξ, for space 1√
ξ
λ(
√
ξx) (λ ∈ Y)

Behavior as ξ →∞ ......
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