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ABSTRACT. This is a lecture note for the course I gave at Wroclaw University
in Poland in April — June of 2007.

1. OVERVIEW (LECTURE 1)

The first lecture is an overview of the course. The presentation document will
be available in a separate form.

Throughout the course we treat growing random Young diagrams and investigate
how they describe asymptotic behaviour of corresponding representations and char-
acters of symmetric groups as the sizes of Young diagrams and symmetric groups
tend to infinity. Let &,, and Y,, denote the symmetric group of degree n and the
set of Young diagrams of size n respectively. The transposed diagram of A € Y,, is
denoted by X'.

We focus on two different regimes of scales:

e Vershik—Kerov condition
A€ Y, A, A} ~ (constant) xn
e balanced Young diagram
AEY,; A1, \] ~ (constant) x v/n.

The course is divided into three parts. In the first part, we introduce basic
concepts and tools concerning Young diagrams and the Young graph, including
irreducible representations of symmetric groups, spectral properties of the Jucys—
Murphy element, Kerov’s transition measure for a Young diagram, harmonic func-
tions on the Young graph, the Plancherel measure, characters of the infinite sym-
metric group, and characterizations for extremality (or ergodicity). In the sec-
ond part, we treat growing balanced Young diagrams. Main topics are on the
limit shape of Young diagrams and fluctuations around it. Some aspects related
to quantum probability theory are also interwoven. The third part is devoted
to growing Young diagrams with the Vershik-Kerov condition. As corresponding
representation-theoretic objects, we deal with characters and finite factorial repre-
sentations of the infinite symmetric group &, and a wreath product of a compact
group with 6.
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2. YOUNG DIAGRAMS AND THE YOUNG GRAPH I (LECTURE 2)

2.1. Young diagrams. A Young diagram A of size n, i.e. A € Y, is specified
by non-increasing integers: A; > Ay > -+ > 0 such that Zj A; = n, where }); is
the length of the jth row. The size and the number of rows [resp. columns] of
A € Y, are denoted by |A| and r(A) [resp. ¢(A)] in this note. Alternatively, A € Y,
is expressed as (171(M2m2(N) ...y ' ()) denoting the number of rows of length j
of \. In Figure 2.1, A = (3,2,2,1) = (1'1223!) with |\| =8, r(A) =4 and ¢()\) = 3.

English French Russian
Fic. 2.1. Young diagram (1'2%3!)

Y,, parametrizes both the conjugacy classes and the equivalence classes of irre-
ducible representations (IRs for short) of the symmetric group &,, of degree n. Let
(), denote the conjugacy class of &,, corresponding to p € Y,. An element of C,
has by definition the cycle decomposition of type p. It is easy to see that

n! - R
Cl=5 = I Omn

Given A € Y,,, a Young tableau of shape A is an array of {1,2,...,n} put into
the boxes of A one by one. A Young tableau is said to be standard if the arrays
are increasing along both rows and columns. The set of tableaux [resp. standard
tableaux] of shape A is denoted by Tab(A) [resp. STab(A)]. The number of standard
tableaux of shape A, denoted by f*, is given by the following hook formula.

Proposition 2.1.
n!

fAlee——"——
[loer ha(0)”
Here hy(b) is the hook length of the box b in A. See Figure 2.2.

AEY,.

J  column —

row

|LAr

Fi1G. 2.2. Hook of the (i, j)-box
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2.2. Irreducible representations of &, and the branching rule. There are
several manners to construct an IR of &,, associated with A € Y,,. Here we mention
the actions on the Specht polynomials. Set

e S IO
U S P |
A(zy,...,zn) = H (x; — x;) = det :
1<i<j<n : oo
it 2?2 m, 1

First let A € Y,, be a one-column diagram. For a tableau T' € Tab(\) filled with
11,42, - from the top, set

A(T) = A(xiuxiz: T )
If A €Y, is a general shape, for T € Tab(\) with T} as the jth column, set

c(A)
A = [T @)

The actions of g € &,, on tableau T' and polynomial F'(xy,--- ,z,) are given re-
spectively by

(gT)(ZJJ) = g(T(Zaj))a (gF)(wla---amn) = F(xg(l)a---axg(n))a

where T'(i, j) denotes the letter in the (i, 7)-box of T'. Since A(gT") = gA(T') holds,
{A(T)|T € Tab(\)} spans an &,,-invariant linear space Sy, called a Specht module.
U, denoting this action, we have a representation (Uy, Sy) of &,,.

Proposition 2.2. The set {A(T)|T € STab(\)} forms a basis of Sx. In particular,
A = dim Sy (= dim \).

Let us see 6,,_1-invariant subspaces of Sy for A € Y,,. We enumerate the corners
of X as Oy,0s, -+ ,0,. Foreach¢=1,...,q, set

A =X\D0O; € Y,_1,

and let V; be the linear space spanned by the Specht polynomials A(T") with T' €
STab(A) such that the ith corner O; of T is filled with the letter n. Setting

Vi= Vit 4V,
we have a descending sequence of subspaces
S =Vi2W%2---2V,=V,.

Each vector in V; is a sum of those in V; and f/,qu: > arA(T) + v where ar € C,
T € STab()) containing n at 0;, and v € Viy. Setting T = T\ O; (filled with )
€ STab(A(¥)), we define linear map ¢; : V; — Sy, by assigning 3 arA(T) to the
above vector.

Lemma 2.3. (1) Vi is &,,_1 -invariant.
(2) ¢; intertwines the actions of &,_1.

We hence have

‘/i/‘/i+1 =6, 1 SA(i) , t=1,...,9—-1, Vq =6, SA(‘Z) )
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since ker ¢; = ~i+1. Applying complete reducibility succesively, we obtain &,,_;-
invariant subspaces Wy, Wy_1,---,Wi:

Vq—l = Wq—l D Wq, Wq = Vq = Vq; Wq—l E6n_1 S,\(q*1)7

‘N/q—2 = Wq—2 ® Wq—l S Wq; Wq—2 gﬁn_l S)\(Q—Z);

to reach the following.

Theorem 2.4. We have a sequence of subspaces Wi,--- , W, of Sx such that S\ =
Wi @---® W, and

(2.1) W,=V,%s,_, Sy, Wi%s,_,Sw, t=1,...,q—1.
Namely
(2.2) Resg" Ux = @ Uy, AeY,.

pip A

Theorem 2.5. For A € Y,, let (Uy, S)) be the representation of &,, defined above.
(1) Uy is an IR of &,,.

(2) Ux and U, are not equivalent if X # p.

(3) {Uxr; A € Y,.} is a system of complete representatives of the equivalence classes
of IRs of &,,.

Proof. Assertions (1) and (2) are simultaneously proved by induction on n. Then
(3) follows from a general fact that the cardinality of the set of the equivalence
classes of IRs coincides with that of the conjugacy classes. d

The branching graph for &,,’s is called the Young graph, whose vertex set consists
of all Young diagrams:
Y=|]Y.
n=0

where Yo = {@}. An edge is given by the relation A 7 p where |\ + 1 = |yl.
The number of paths connecting @ to A on the Young graph coincides with f*.
Repeating the decomposition of (2.1), we specify a unique one-dimensional subspace
of Sy to each path from A back to @. This yields the Young basis {v,} of Sx:

S)\ = @ (C’Uu.
w: path @ 7--- 7\
2.3. The Jucys—Murphy elements. We call
Joio1=An)+2n)+---+(n—-1n) €(6,]

a Jucys—Murphy element. J, ; commutes with &, _; embedded in &,, as before.
For A € Y,,, Ux(Jn—1) is called a Jucys—Murphy operator on Sy.

Proposition 2.6. Let A € Y,, has the (ix, jx)-box as the kth corner Oy. If S €
STab(N\) contains n at O, then

Ur(Ju1)A(S) = (i — i) A(S) + (vector in Vig1).

This yields an upper triangularization of the Jucys—Murphy operator with re-
spect to an appropriate ordering of tableaux.
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Corollary 2.7. The spectrum of Ux(Jp—1) is given by

Ji—t1  Ja—idz - Jg—lg
dimA®  dimA® ... dim A9 .

Actually, a further discussion yields the following diagonalization.

Theorem 2.8. In the decomposition
S =W ®d---® Wy, Wi =s,._, Sk,
Wy, is the eigenspace of Uy (Jn—1) associated with eigenvalue ji — -

Thus the eigenspace decomposition of Jucys—Murphy operator Uy(J,—1) de-
scribes the branching ResngU)\.

Remark 2.9. In this section we skipped cumbersome parts of proofs. However, they
are all covered by a relation between Specht polynomials called the Garnir relation.
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3. YOUNG DIAGRAMS AND THE YOUNG GRAPH II (LECTURE 3)

3.1. Profiles and rectangular diagrams.

Definition 3.1. Function w : R — R is called a rectangular diagram if
(i) w is continuous and piecewise linear,

(ii) w'(z) = £1 except finite z € R,

(iii) w(x) = || if |z| is large enough.

The set of rectangular diagrams is denoted by Dy .

We assign the interlacing sequence z; < y; <--- < Zp_1 < Ypr_1 <Yr tow € Dy
where z; and y; indicate a valley (local minimum) and a peak (local maximum)
respectively as in Figure 3.1. In the present note, this interlacing sequence is called
the min-max coordinates of w.

r1Y1 22 Y2 O Tp—1 Yr—12,
Fic. 3.1. Min-max coordinates
A Young diagram is regarded as a rectangular diagram through its profile as

shown by thick lines in Figure 3.2. Here each box is a v/2 x /2 square. A Young
diagram is thus a rectangular diagram whose min-max coordinates are all integers.

—r(A) 0 c(N)

Fia. 3.2. The profile of A = (1*2%3!), where ¢(\) = 3 and r()\) = 4

Lemma 3.2. (1) The min-maz coordinates of w € Dy satisfy

r r—1
(31) ZCUZ :Zyi.
=1 =1

(2) An interlacing sequence 1 < y1 < --- < y,_1 < &, satisfying (3.1) recovers a
rectangular diagram.



ASYMPTOTIC THEORY FOR REPRESENTATIONS 7

Proof. Assertion (1) is proved by induction on the number of valleys r. For (2)
observe first that ; < 0 and z, > 0. Starting at the point (z;,—z;), count gain
and loss in the vertical direction to reach exactly (x,., ). O

Definition 3.3. For w € Dy with min-max coordinates z; < y; < --- < &, set

r r—1
() = loly"

and call it the Rayleigh measure of w.

The Rayleigh measure of a rectangular diagram is an atomic signed probability
on R. Its moment is given by

(3.2) My (r) = Zw" - Z:lyk = /O:o wk(w)”dwa

e.g. Mo(r,) =1, My(1,) =0, and

M) = [ " (w(e) — |a))da

— 00
which is 2n if w € Y,,.
3.2. Kerov’s transition measure. For w € Dy with min-max coordinates z; <
y1 < -+ < x,, consider partial fraction expansion of a rational function on C:

(3.3) oy) o Goyeny) o om0

)
(z—z1)-- (2 — ) z—1T z— T
explicitly
Ti — Y1 Ti—Yi-1 Ti—Yi Li = Yr—1
ll’i — PR e > 0
Ti— X1 T — i1 Ti — Tip1 T — T,

Taking lim._ o 2%(3.3), we have >\, p; = 1.
Definition 3.4. We call the probability

my, = zT: Hile,
=1

on R the transition measure (due to Kerov) of w € Dy.

Equation (3.3) is the Cauchy—Stieltjes (simply, Cauchy or Stieltjes) transform of
m,. As seen later, my of A € Y gives the transition probability of the Plancherel
growth process.

Proposition 3.5. The moments of m,, and 7, of w € Dy satisfy

(e} (e}

Mn(mw) Mk(Tw) 1
D T Eem) T
n=0 k=1
Proof. Expand both sides of (3.3) into series in z7!. O

Proposition 3.5 gives mutual polynomial relations between M, (m,,)’s and My(7,,)’s.
For example, M; (m,,) = M;(7,) =0 and

My(my) = 3 (M(r)* + Ma(r.)) = 2 Mo (1)

which is n if w € Y,,.
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Proposition 3.6. The map w — m,, gives a bijection between Dy and the set of
probabilities 11 on R such that suppp is a finite set and My (u) = 0.

Proof. We construct a map p — w which is inverse to w — pu.

Given p = Y;_, e, such that oy < -+ < @, gy > 0, >0, i = 1 and
Yoy wip; =0, set
(3.4) 1 o f(z)

z—1 +”'+z—a:,, - (z—21)-(z—x)

where f(z) is a polynomial with deg f = r — 1. Taking lim._,, 2x(3.4), we see that
f(2) is monic. Furthermore,
fl@1) = p(z1 —x2) - (21 — 21)

f(z2) = p2(ze — 21) (22 — 23) -+ (T2 — T1)

f(xr) = ,ur(mr - 371) T (wr - 337‘71)-
Since these have alternative signs, there exist zeros of f(z): y1,---,yr—1 such that
1 <yr <o <Yz <o < Tpoy < Ypo1 < . Then f(2)=(z—y1) (2 — Yro1)-

Equation (3.4) yields
r r—1
Zﬂfi - Z?Ji = M;(p) = 0.
i=1 i=1

Hence the interlacing sequence produces w € Dy. O

3.3. A trace formula. The irreducible character of &,, corresponding to A € Y,
and the normalized one are denoted by x* = trUy and Y = x*/ dim X respectively.
Let linear map E, : C[6,41] — C[S&,] be defined by E,(g) = g for g € &,, and
E.(g) =0 for g ¢ &,,. More generally for finite group G and its subgroup H, the
map E : C[G] — C[H] is similarly defined. It has the property of a conditional
expectation that E(ba) = (Eb)a and E(ab) = a(Eb) for a € C[H], b € C[G]. Since
the Jucys—Murphy element J,, commutes with &,,, E, J¥ belongs to the center of
C6&,].
Theorem 3.7. For A € Y,,, we have
)NC)‘(EnJﬁ) :Mk(m,\), keN
The proof of Theorem 3.7 is divided into two parts. Let A € Y,, have min-max

coordinates 1 < y; < --- < . The Young diagram formed by putting one box at
the ith valley (coordinate ;) of X is denoted by A € Y,,;;.

Lemma 3.8.

dim A
k k
E Ta) Z (n+1) (n + 1) dim A

Lemma 3.9. 0
dim A"
Gt Dy - e
Proof of Lemma 3.8. From general theory of representations of finite groups, we
have

(3.5) XA(EnJﬁ)Zm > dimp tr(Uu(J5)Un(en))

HEY 1
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where ey is the central projection in C[&,,] corresponding to A € Y,. U,(ey) is
nontrivial if and only if A 7 p. Then g = A for some i. Furthermore U, (ey) is
the projector onto the A-component in the Specht module S,. The content of the
box A\ Xis z;. Theorem 2.8 yields that the Jucys-Murphy operator U, (J,,)
acts as multiplication by z; on the A-component in S,«). Hence we have

- 1 . i
NEL TR = T D@m? Zdlm ADtr(zkU, ) (ey))
i=1
1 S ) s
i=1
This completes the proof. d

Proof of Lemma 8.9. From the hook formula (Proposition 2.1), we have
dim A [Tocx ha(b)

(n + 1) dim \ HbeA(i) ha (b) -

For most boxes b, namely unless box b have the box A \ X in its hook, hy(b) =
hac) (b) holds. For the other involved hooks, we rewrite the ratio in the right side
by using the min-max coordinates of . d

Remark 3.10. Taking the dimension of an induced representation

Indg™*' Ux = P Uy,
i=1
we recognize from Lemma 3.9 that the transition measure of a Young diagram is a
probability.
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4. YOUNG DIAGRAMS AND THE YOUNG GRAPH III (LECTURE 4)

4.1. Harmonic functions on Y. Let 6, = UZ‘;l &,, be the infinite symmetric
group. Its element is by definition a finite permutation of N. The identiy element
is denoted by e (until Section 9).

Definition 4.1. CG-valued function f on G is said to be:

(i) positive-definite if ), . @ f(g; *g;) > 0 for any a; € C and g; € &,

(i) central (or invariant, class) if f(ghg=') = f(h) for any g,h € &,

(iii) normalized if f(e) = 1.

The set of positive-definite and central functions on &, is denoted by K (G, ) and
the set of normalized elements in it by K;(6).

Definition 4.2. C-valued function ¢ on Y is said to be:

(i) harmonic if (A) =3, \ », ¢(u) for any A €'Y,

(ii) normalized if (@) = 1.

The set of nonnegative harmonic functions on Y is denoted by H(Y) and the set of
normalized elements in it by H;(Y).

Proposition 4.3. There ezists a bijection between K1 (6o ) and H1(Y) through
(4.1) fls, = D ¢Mx*, neN
XEY

Proof. (f = ¢) Given f € K1(64), expand f|6 as (4.1) to define ¢ and set
¢(@) = 1. Then ¢(A) > 0 for any A € Y,,. Harmonicity of ¢ follows from the
consistency condition f|6n+1 |6n = f|6n. Note 1 = f(e) = p(0O).

(¢ — f) Harmonicity of ¢ ensures well-definedness of f, while positivity of ¢
implies positive-definiteness of f. O

Example 4.4. Orthogonality of irreducible characters yields

dim A
56:2 o X", n €N
AEY,

Thus dim A/|A|! is the harmonic function corresponding to the delta function é. €
K1(6).

4.2. Probabilities on the path space of the Young graph. A path on the
Young graph starting at & is expressed as t = (¢(0) 2 ¢(1) -+ S t(n) S ---)
where t(n) € Y, is the nth level diagram. The first and second level diagrams are
always @ and O respectively. The set of all paths starting at @ is denoted by ¥
(standing for “Tableaux”). An element of T is regarded also as an infinite standard
tableau. For A € Y let T(\) denote the set of finite paths starting at @ and ending
at \. For finite path v = (u(0) A/ w(l) A --- 2 u(n)) of length n, set C,, =
{t € T|t(0) = u(0), - ,t(n) = u(n)} (a cylindrical subset). The topology on ¥
generated by the cylindrical subsets coincides with the relative topology of HZOZO Y.
which makes ¥ compact and totally disconnected. The o-field generated by the
cylindrical subsets is the topological o-field. A finitely additive probability measure
on the finite field generated by the cylindrical subsets of ¥ is always extendable to
a countably additive probability measure on the o-field.

Let &) be the set of permutations of elements of T(\). We consider g € G (y)
to act on ¥. If t € ¥ passes through A, t,, denoting the truncated finite path up to
t(n) = A, set g(t) = (g(tn) S t(n+1) /---). Otherwise set g(t) = t.
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Definition 4.5. Probability M on the path space ¥ is said to be central if it is
invariant under the action of |J rey ©x(n)- The set of central probabilities on T is
denoted by M;(%).

M is central if and only if M (C,) = M(C,) for any A € Y and u,v € T(N).
Proposition 4.6. There exists a bijection between Hqi(Y) and M; (%) through
(4.2) w(A) = M(Cy), ue TN, AeY.

Proof. (¢ — M) Harmonicity of ¢ ensures consistency of M, namely M is well-
defined on the finite field generated by the cylindrical subsets. Then it is extendable
to a true measure.

(M — ¢) ¢ is well-defined by virtue of centrality of M. O

4.3. The Plancherel measure. Example 4.4 and Proposition 4.6 determine the
following.

Definition 4.7. The Plancherel measure 8 on ¥ is defined by
dim A

P(Cu) = > uE€ T(A), AEY,.
Its marginal 3,, defined by
B0 =Bt e Tl =2 =T ey,

is also called the Plancherel measure on Y,,

~

The Fourier transform of f : &,, — Cis defined by f(A) =3 5. f(z)Uxr(z) €
L(S)) where £(S)) denotes the set of linear operators on the Specht module Sy.
Then we have the Plancherel formula

Y A@f@ =Y (AN R200)Ba(N)
z€G, AEY,

where Tr is the normalized trace on £(Sy) so that Tr(I) = 1.
In general, central probability M on ¥ gives rise to a Markov chain on Y since

LA
’ H,
Mum+1)=uhm)=®Jﬂ)=Df~JW)=A):{Sm otherwise

holds. Especially for the Plancherel measure 3, we have

o(p) dim p
= = l ) A
o~ mandamy - e %
by Lemma 3.9, z; denoting the valley of A at which the box u\ A is put. Hence the
transition probability of the Plancherel growth process, the induced Markov chain
above, from ) is given by Kerov’s transition measure my.

4.4. Extremality and ergodicity. We consider the extremal points of convex
sets
K1(6w) +— Hi(Y) +— My (%).

An extremal measure is often said to be ergodic. In general, let M be a G-invariant
probability with respect to some group G. M is said to be G-ergodic if the following
mutually equivalent conditions hold.
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(1) M is an extremal point: if M = e¢M; + (1 — ¢) M holds for G-invariant proba-
bilities M7, M, and 0 < ¢ < 1, it holds that ¢ = 0 or 1.

(2) An orbital mean and an ensemble mean coincide: G-invariant function F is
constant M-a.s. The constant is [ F(t)M (dt). Note that an appropriate limit of a
G-orbital mean is a G-invariant function.

(3) Each orbit passes through every point (with exaggeration): if A is a G-invariant
set wr.t. Mie. M(AAgA) =0forany g € G, it holds that M(A) = 0or 1. Here A
means symmetric difference of sets. Hence M (B) > 0 implies M ((U,cq 9B)°) = 0.

Definition 4.8. Set

E(6x) ={f € K1(6) | f is extremal},

F(6x) ={f € Ki(6)| f is factorizable}.
Here f is said to be factorizable (or multiplicative) if f(zy) = f(z)f(y) holds for
any x,y € 6 such that suppz Nsuppy = @.

Theorem 4.9 (Thoma).
E(6) = F(6x)

Proof. (1) E(6&) C F(6): Given f € E(6) and ¢1,92 € G+ with disjoint
supports, we show f(g192) = f(91)f(g2). Let G1 and G4 be the sets of permutations
on suppg; and N\ suppg; respectively. G is isomorphic to &.. f(gh) regarded
as a function in g is central on (F; since (G; commutes with G5. Expand this with
respect to irreducible characters of G; to have

(4.3) flgh) = > calh)x*(9).

aeé\l
ca(h) is a central and positive-definite function on G5. In fact, we use again G,
commuting with G; and see that

> D Bijcalhi 'hi)x*(9) = D Bibif (ghi ' hy)

aEé\l ) 4,3
is positive-definite on G; as a function in g. Putting ¢ = e in (4.3), we have
decomposition

f(h) = > (dima)cq(h).
e
However, f|G2 € E(G2) because f is central. Hence we conclude (dim «)c,(h) =
ko f(h) for some nonnegative constant k.. Putting this into (4.3), we have

(4.4) fgh) = (Y kax(9)) S (B).
aEé\1
The sum in (4.4) is f(g), which is seen by putting g = e.
(2) E(6x) D F(6): Central function f on & induces a function on
(ZZO){2,37...} by

flma,ms,---) = f((2m23™---)).
Given f € F(64), let s; denote the value of f at a j-cycle. Positive-definiteness,

centrality and normality of f imply f(g9) = f(¢~1) = f(g9) € [-1,1]. Applying
factorizability, we have

F may ,m3

f(m27m37"'):52 837, m27m37"'€Z20‘
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Choquet’s theorem ensures an integral expression
(4.5) f2m23me - 0)) = 5385 - = / Yv(dy) = / ty2tg™ - - v(dt),
B B

where B C E(64,) C F(64) (by virtue of (1)) and B C [—1,1]°°. However, this is
impossible unless 7 = §5, s = (s2, s3,--+). In fact, it is a sort of moment problem.
First let s = m4 = --- =0 in (4.5) to have

S;nZ = /t;nzllz(dtz), mo € Zzo,

where v, is a marginal of 7 such that supprs C [—1,1]. This yields v = Js,.
Similarly all marginals of 7 are Dirac measures, which concludes that 7 itself and
hence v is of Dirac. In (4.5), B is thus taken as a singleton subset of E(Sy,). O
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5. YOUNG DIAGRAMS AND THE YOUNG GRAPH IV (LECTURE 5)

5.1. Symmetric functions. We briefly recall some properties of symmetric func-
tions, especially Schur functions. Let A* be the homogeneous symmetric polyno-
mials of degree k in n variables, equipped also with 0. For A € Y, n > r()),

« @
m)\(wla"'awn): E : wll'”xnn
(a1, ,0n)

denotes a monomial, where («ay,---,a,) runs over all distinct permutations of
(A1,- -, An). The set of monomials {mx(z1, - ,2,) | A € Yg, r(A) < n}is a linear
basis of A¥. Along the projective system given by p,m : A¥, — AF sending
flxy, -+ ,2m) to f(z1, -+ ,mn,0,---,0), m > n, let A¥ be the projective limit of
Ak asn — oco. my € AF denotes the monomial symmetric function of degree k.
Then {my |\ € Y4} is a linear basis of A*. Finally

A= éAk =span{m | A € Y}
k=0

is the algebra of symmetric functions. Power sums are defined by

Pre(T1, T2, ) = my (T1, T2, ) = ay+al+--, po =1,

PA=DaPas A=A 22> )€Y,
The set of power sums {py | A € Y} is a linear basis of A.
Definition 5.1. For A € Y and n > r(\), the Schur polynomial is defined by
_ det(@ ")

det(z!™7)

to be a homogeneous symmetric polynomial of degree |A|. Further set sz = 1.

(5.1) sx(z1, ,Tn)

Equation (5.1) is the Weyl character formula for the unitary group U(n), in which
x;’s are taken to be spectral parameters (eigenvalues) of g € U(n). For A € Y, and
m >n >k, we have sy(z1,--- ,7,,0,---,0) = sx(21,--- ,7,) and hence sy € A¥,
which is called a Schur function. We recall two celebrated formulas.

Theorem 5.2 (Pieri’s formula).
S(1)Sx = Z Sp-
A
Theorem 5.3 (Frobenius character formula).
Pr= Y Xpsr,  pEYn
AEY n

For later use, we mention here the diagonalization of adjacency operators on the
symmetric group in terms of Schur functions. Set

A, = Zaz € C[6,], pEY,
ze€C)p

which acts on £2(&,,) under the left regular representation and is called an adjacency
operator. Consider

1(6,) = Span{fo— =Y 6. |oe Yn} C 2(6,).

zeCy,
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['(6,,) is an invariant subspace for adjacency operators. Setting ®(o) = &,//|Cs|,
we have an orthonormal basis {®(0) |0 € Y, } of I'(&,,). Define a unitary operator

(5.2) I: \/z,®2(p) €I(6,) — p, € A", peEY,,
where the scalar product in A is defined as usual by (px,pu) = dap2a.

Proposition 5.4.
A .
I(ﬁ)]‘lsxzxf}‘sx, A EY,.
p

Proof. We see from general theory for representations of finite groups

Ap = Z |Cp|)~(2E>\; peEY,,
A€EY,

where {Ex | A € Y,,} forms a total system of idempotents in the center of C[&,,].
Setting (\ = E)d., we get from this

(5.3) &= D 1CI00,
€Y,
(5.4) A0 = 1G5

Invert (5.3) by using orthogonality of irreducible characters to have

Applying operator I and using Frobenius character formula (inversion of Theo-
rem 5.3), we have I((y/dim\) = s)/v/n!. Combined with (5.4), this yields the
desired equality. d

5.2. Extremality via symmetric functions. We give a characterization of H; (Y)
(hence K1 (6o) and M (T) also) and its extremal points in terms of symmetric
functions.

Proposition 5.5. H1(Y), the set of normalized nonnegative harmonic functions
on Y, has a bijective correspondence with

(5.5) {¢p : A — C| o is linear, (1) =1, (sx) >0, keryp D (s1 — 1)A}
through
(5.6) P(A) = ¥(sx)-

Proof. We see the following mutually converse map.
(¢ — 1) Since {sx|A € Y} is a basis of A, 9 is determined by (5.6). The last
property follows from Pieri’s formula for Schur functions:

D((s1—Dsa) = Y dlsu) —v(sn) = Y @) —p(\).
A A

(¥ — ¢) Harmonicity of ¢ follows again from Pieri’s formula and the kernel
property of . O
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Set
Y ={p € Y|mi(p) =0}

Y parametrizes the conjugacy classes of G. The corresponding conjugacy class of
S to p € Y is denoted by C,. Compared with the notation of a conjugacy class of
S, it holds that C, N &,, = C'(pvln_m) for p € Y and n > |p|. Note that Cy = {e},
geY.
Theorem 5.6. Under the correspondence between H1(Y) and (5.5) through (5.6),
@ is extremal if and only if ¥ is an algebra homomorphism.

Proof. This proof is based on Thoma’s theorem for characters of &.,. Let ¢ and
¥ be given as (5.6). Set x : 6o, — C by
(5.7) x(9) =¢(@), g€l peY.

Since 9 ((s1 —1)p,) = 0 holds from (5.5), we have ¢ (p§p,) = ¥(p,) for any k. Then,
for g € C(p1n101) TGy, p € Y and n > |p|, Frobenius character formula yields

X, (@) = V0,) = ¥(P(p1n-101)) = w( > x?,m-M)SA) =Y exMg).
€Y, A€EY,

Hence x is related to ¢ as in Proposition 4.3, in particular x € K1(6). The-
orem 4.9 tells that ¢ is extremal if and only if x € F(6). This factorizability
means that

(5.8) x(er - -eq) = x(e1) -+ x(cq) for any disjoint cycles ¢1,--- , ¢,
where x(c;) = ¥ (py,) if ¢; is an r;-cycle (r; > 2). We have
(5.8) <= ¥(p) = ¥(Pp)Y(p) -+, PEY,
= Y(pp) = (0o )V (Pps) -+ peyY (since ¢(p1) = 1),
= Y(ppps) = V()Y (Po), p, o €Y.
Since {p, | p € Y} is a basis of A, this means that 1 is an algebra homomorphism.

d
5.3. Martin kernel on the Young graph.

Definition 5.7. For A\, u € Y, the number of paths connecting A with u on
the Young graph is denoted by d(A, u) and called the (combinatorial) dimension
function. If there are no such paths, we set d(\, 1) = 0 by definition.

Obviously dim A = d(@, \). If ¢ is harmonic, we have
p(A) = Z d(\ w)e(w), AEY,, n<m.
HEY 1
The ratio of dimension functions
d(A, )
d(@, 1)
is (an analogous object of) the Martin kernel on the Young graph.

Lemma 5.8. If

K\ p) =

p(A) = lim K(A, pim), AeY

m—r0o0

exists, then ¢ € Hi(Y).
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Proof. Harmonicity follows immediately from

m=roo (@, fm) — mooo A, i)

. d(Ay um) . Zu:)\/‘u d(/"’? Nm)
(A) = lim =1 = ().
d

Recalling the correspondence between x, M, ¢ and ¢, we anticipate the following
two results which we will prove in later sections (the third part of the course) in
more general contexts of wreath product groups.

Theorem 5.9 (Thoma). The extremal points in K1(S) are given as the super-
symmetric power sums. Namely, x € E(S) satisfies

X(Ciw) =pi(a, B) =D af + (-D* > pF,  k>2
=1 =1
Here the Thoma parameter runs over
{(04: (i), B=(B)) |Otl >ay >+ 20, f1 2B >--20, Z(Oéi-l‘ﬂi) < 1}-
i=1

Since x is factorizable, we have the value at an element of C, as

X(Cp) = ppu (@, B)ppy (i, B) - = pple, B),  peY.
Remark 5.10. By definition we set p;(a, ) = 1, not necessarily coinciding with
Yo (i + ).
Theorem 5.11 (Vershik—Kerov). Let M € M1(%) be ergodic and ¢ the corre-
sponding extremal element of H1(Y). We have
li_>m K(\t(n)) = p(N), AeEY

for M-a.s. patht € .

Let xo,3 and ¢q s correspond to the Thoma parameter («,3). Taking Re-
mark 5.10 into account, we have

X()(7ﬁ|6n(0(p71"—|/’\)) = P(p,1n—\p|)(a;3); S Y; n > |pl.
Hence we have
(5.9) P, 8) = D Xp¢as(N),  pEY, meN
AEY,
Equation (5.9) suggests us to write
(poz,ﬁ(A) = Sk(aaﬂ)

and call it a supersymmetric Schur function.
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6. LIMIT SHAPE OF YOUNG DIAGRAMS AND FLUCTUATIONS I (LECTURE 6)

6.1. Continuous diagrams and transition measures. We prepare a framework
for limiting objects of growing Young diagrams (in the balanced regime).

Definition 6.1. A continuous diagram is a function w : R — R satisfying
() lw(z1) — w(xe)| < |21 — 22|, 1,22 € R,
(ii) w(z) = |z| if |z| is large enough.

The set of continuous diagrams is denoted by D.

It follows that D D Dy D Y. Let us define Kerov’s transition measure of a
continuous diagram through approximation by rectangular diagrams. Given w € D,
take a sequence of w, € Dy which converges to w in the uniform norm. Then
{M} (1., )} is convergent for any k € N by (3.2). Proposition 3.5 ensures that
{M}.(m,,,)} is also convergent to have the limit M}, as n — co. Note that suppm,,,’s
are included in a common compact set of R. By virtue of the determinate moment
problem, we have a unique probability u whose kth moment agrees with M. It
is obvious that the resulting probability p does not depend on the choice of an
approximating sequence of w,, € Dy.

Definition 6.2. The probability p constructed above for w € D is called the
transition measure of w.

It is seen from the construction that suppm, coincides with the support of the
function w(z) — |z|. Proposition 3.5 gives us the following characterization of the
Stieltjes transform of m,,.

Proposition 6.3.

/C:Zixmw(dm):%exp{/OO xiz(w(az)Q— |m|)ldaz}, weD.

— 00

Further we set

(6.1) T = (M) +d, weD.

T, is called the Rayleigh measure of w € D if it becomes a (signed) measure.

Definition 6.4 (limit shape of Young diagrams).

2 in _ 2 <
Oz) = {W(:Uarcsm2 +V4—2a2), |z| <2,

||, |z| > 2.

Proposition 6.5.

mgq (dz) = % 4 — 2 1y g (w)dx (semicircle law),
1

™4 — 2?2

6.2. Limit shape of Young diagrams. The limit shape of Young diagrams de-

scribes a law of large numbers for the Plancherel measure . In other words,
it is a concentration phenomenon in the irreducible decomposition of the regular

To(dz) = L(—2,2)(7)dz (arcsine law).
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representation of &, as n — oco:

L, = P [dim A Uy,

A€EY ,
dim A .
do= 2 S = 2 R
A€EY , A€EY

For A\ € Y C Dy, we consider rescaled A\V™ € Dy determined by
(6.2) AV (z) = %/\(\/ﬁx).

Theorem 6.6. For P-a.s. path t € T, we have

(1) lim sup |¢t(n)V™(z) — Q(z)| = 0,
TL—)OO$6R
(2) nll_>II;O Mk(mt(n)ﬁ) = Mk(mg), keN

Statements (1) and (2) of Theorem 6.6 show concentration to the limit shape
in the uniform and the moment topologies on D respectively. D is equipped with
the latter topology by the family of semi-distances

dk(w17w2) = |Mk(mw1) - Mk(mw2)|7 k€N

Both topologies are equivalent if they are restricted on Dg = {w € D|supp (w(z) —
|z|) C [-K,K]} (K > 0), while they are not comparable on the whole D. We
intend to approach this result via moment analysis of the Jucys—Murphy element.
Proof of Theorem 6.6 is given in Section 7.2.

6.3. A variation of the Young graph. We introduce a variation of the Young
graph for combinatorics of moments of the Jucys—Murphy element and also for later
use in quantum central limit theorems.

Definition 6.7. Recall Y = {p € Y|m(p) = 0}. _

(1) For g € C,, the conjugacy class of G, corresponding to p € Y, set type(g) = p.
(2) Set U(p) = |p| = r(p) for p € Y.

Lemma 6.8. Consider the length function 0(e,g), denoting the minimal distance
between e and g, on the Cayley graph (S, {transpositions}). Then,

d(e, g9) = [type(g)| — r(type(g)) = l(type(g)), g€ 6.
Lemma 6.9. For g € &, and transposition (i j), set p = type(g) and o =
type((i j)g). Then, either [(c) = (p) £ 1 holds.

Remark 6.10. In Lemma 6.9, expressing g as a tableau of p-type with the infinitely
long leg (i.e. one-box rows), we have

+1 < 4,j in distinct rows of p (merge)
—1 <= 14,j in the same row of p (split).

Definition 6.11 (variation of the Young graph). Adopt Y as the vertex set. Two
vertices p,o € Y are defined to be adjacent if there exit z,y € &4, and (i j) such
that p = type(z), o = type(y) and (i j)x = y. For simplicity of notations, this
graph is denoted also by Y.
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Lemma 6.9 tells that adjacent p and o satisfy I(0) = I(p) £ 1. Thus the vertices
of Y should be stratified according to . To draw the graph Y, glue a copy of the
first column (shaded in Figure 6.1) to the leftmost side for each diagram of the
Young graph. The edges of the Young graph are all inherited, which are referred
to as old edges in Figure 6.1, while some edges are added (as new edges) according
to the adjacency relation in Definition 6.11.

]
|

— old edge

(T
|

rrrrrrr new edge

Fic. 6.1. A variation of the Young graph

6.4. Admissible walks in Y. We consider the Jucys—Murphy element .J,, = (1 n+
D+@2n+1)+--+(mn+1)in C[&,11], or J, in &y, 4, replacing n + 1 by
extra letter *. Expand its kth power as a big sum:

(6.3) Jk = > (i %) - - - (ig %) (i1 %).

i1, ik €{1,...,n}

To a sequence iy,i2,--- % in (6.3), we assign a k-walk on the Cayley graph of
6n+1

(6.4) e — (i1 %) = (i2 *)(i1 %) = -+ = (i %) -+ - (2 %) (i1 %)

and, setting p; = type((i; *) - (i1 *)), a k-walk in Y

(6.5) G = p1—>p2 == pr

Definition 6.12. (1) 41, - - , i in (6.3) is called an admissible sequence if (iy, *) --- (i1 *) €

S, in the k-walk (6.4).

(2) The walk (6.5) is called the projection of (6.4).

(3) A k-walk @ — p; — ps — -+ — pp in Y is said to be admissible if it is
the projection of such a k-walk as (6.4) induced from some admissible sequence
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i1, - ,0, € {1,...,n} for some n € N. If I(pj+1) = l(p;) + 1 [resp. —1], the step
p; = pj+1 is said to be up [resp. down].

Remark 6.13. If iy, -+ i € {1,...,n}is admissible, sois as a sequencein {1,...,m}
for any m > n. Hence Definition 6.12 (3) actually holds for any m > n.

Set Yr, = YxNY = {p € Yi|mi(p) = 0}. We define an operation on Y by
o — o° = (2ms(o)gmalo) ...y

Namely, the shaded boxes are removed to obtain ¢° in Figure 6.2. This operation
is injective when restricted on Y.

FiG. 6.2. The operation ¢ — ¢°

We characterize the ending vertices of the admissble walks in Y.

Proposition 6.14. The following are equivalent for p G_Y and k € N.

(1) p is the ending vertex of some admissible k-walk in Y.

(2) 1(p) = & (mod 2) and |p| +1(p) < k.

(3) p=0° holds for some o € Y.

Proof. (1) = (2). Given admissible walk &@ — p; = --- = p, = p, let v and d be

the numbers of up and down steps respectively. Since u +d = k and u — d = l(p)
hold, we have

k+1p) k—1p)
6.6 = d= .
(66) u= 0 .
In particular, k = I(p) (mod 2). Take an admissible sequence iy, --- ,ix € {1,...,n}

for the given k-walk. (i; %) --- (i1 *) cannot contain a cycle without * until a down
step appears. Hence 7(p) < d. Combined with (6.6), it holds k > I(p) + 2r(p) =

ol +7(p).
(2) = (1). Given p = (p1 > p2 > -+ > pr(p)) and k as (2), take n > k and

distinct 41, --- ,4,, € {1,...,n} with iy, 41 = 41. Then we have a p; +1-walk ending
at

(tpr 41 *) (i *) == (i %) = (i @y -+ 4p,) € G
Next take distinct ji, -, 75, € {1,...,n}\ {i1,-..,4,,} with j,,41 = j1 to have a

similar py + 1-walk. Continuing this procedure, we get an admissible walk of length
(pr + 1)+ -+ (pr(p) + 1) = |p| +7(p). Since there remain k — (|p| +r(p)) steps,
which is even from the assumption, we repeat multiplying (s %) with letter s which
never appeared.

(2) <= (3). Straightforward by the definition of ¢°. O
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7. LIMIT SHAPE OF YOUNG DIAGRAMS AND FLUCTUATIONS II (LECTURE 7)

7.1. Moments of the Jucys-Murphy element. Since E, J* is in the center of
C[6&,,], Proposition 6.14 implies

(7.1) EnJf =Y KonAgoyntooty,  Kom € Lo
UG?k

K, ,, counts the number of those terms in E, J¥ which result in an arbitrarily given
element of o°-type.

Proposition 7.1. In (7.1), we have an asymptotic order as
Ky, < n™2(9) o€ Y.

Proof. Recall (6.6) about the numbers of ups and downs along a k-walk from & to

o°:

(7.2) u= B i

—1(0°)
2 ’ d= 2 )
An up step p; = pj+1 can be realized by taking (i )z such that type(z) = p; and
type((i *)x) = pj+1 when (i) i ¢ suppz, * ¢ suppz, (ii) 7 ¢ supp z, * € supp z, (iii)
i € suppz, * ¢ suppz, and (iv) 7, * are contained in distinct cycles of z.

The orders of growth are (i) n, (i) n, (iii) 1 and (iv) 1 respectively. On the
other hand, as is seen from the choice of admissible sequences in the proof of
Proposition 6.14, we have k-walks of order n*, projected onto a k-walk from @ to
0°, by taking only (i) and (ii) cases as up steps. The number of k-walks in Y is
independent of n. Such k-walks of order n* are evenly distributed over Cyo 1n-1001).
Hence K, ,, per each element, has order n to the power

l o
by using (7.2). O

Remark 7.2. Actually we know that

U — = my(0)

 Kyn ——
Jim 22 INC(0) |- = INC(0)] [T 5™+ (o)
i>2
holds where NC(o) denotes the set of noncrossing partitions of {1,2,...,k = |o|}
of block type o.

Proposition 7.3. For even 2p, p € N,

(7.3) 5.(J2P) = Iﬁ <2;’) P 4+ O(nP=Y),

while §.(J2+1) = 0.

Proof. Apply d. to (6.3). The surviving terms satisfy that the projected k-walks
start at @ and end at @. Such a walk can exist only if &k is even. Set k = 2p.

Consider a 2p-walk w on &,,;1 projected onto an admissible 2p-walk in Y, which
necessarily has p up steps and p down steps. Once appeared a nontrivial cycle ¢
without % in w, then we need an up step in w later at which some letter ¢ chosen
from c is involved, namely (i %) acts. However, since these up steps are just of
order 1, those walks on &,,41 containing such a step are of smaller order O(n?~!)
compared with those which have up steps only of order n.
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Let us consider the remaining cases, that is, the 2p-walks in Y moving within
the upper boundary line in Figure 6.1. For each 2p-walk of this sort starting at @
and ending at &, every up step can have almost n choices. Hence the number of
corresponding walks on &,,41 is n?(1 4+ O(1/n)). Thus we have only to count the
2p-walks along the upper boundary. This walk is equivalent to the simple random
walk on the half line Z>( returning to 0 at time 2p, and hence has a bijective
correspondence to a Catalan path of length 2p. g

Proposition 7.4.
0 (B J})?) = 8(JF)* = O(n*h).
Proof. Equation (7.1) and Proposition 7.1 yield
Se(EnJf)?) = D E2|C (e intoony] = Y con®™27) (14 O(1/n))nl""
cEY} oYy
with constant ¢, > 0. We have
2ma (o) + |0°] = 1(0) + ma(o) = k — (m3(o) + ma(o) + ),

which is equal to the maximum & if and only if k is even and o = (2¥/2). If k = 2p
is even, the leading term is at o = (2P) (hence 0° = @). Then

K 2|C oo 1nmteon)| = K30

,n?
which is square of the e-component in E, JF i.e. of 6.(J¥). The remainder con-
tributes as O(nF1). ad

7.2. LLN for the Plancherel ensemble. E, J* being considered as a random
variable in C[&,,] (or actually in its center) with respect to d., Proposition 7.3 and
Proposition 7.4 imply its mean ~ 7n*/? and its standard deviation of o(rn*/?). These
properties immediately show a weak law of large numbers in a usual manner. In
fact, since
0e(JF) = n** My (ma) + O(n**7),  k>2

holds from Proposition 6.5 and Proposition 7.3, using Theorem 3.7, Proposition 7.4
and multiplicativity of normalized irreducible character Y* on the center, we have

E¥[(Mi(my(yve) — Mi(mg))?]
= > PBuV) (07 Me(my) — Mi(me))” = > Bu(N) (072N B, TE) — Mi(mg))?
AeY, A€Y,

Y Bal) XN (0 PE T — Mi(mg))?) = 0 (™" *En T — Mi(mg))?)
AEY,

=n k(6 (J5)? + O(n* 1)) — 20 F/2 M (mq) (M (mo)n™? + O(n*/271)) + My (mg)?
=0(1/n).
Then it holds for any £ € N and € > 0 that
B({r € T[IMulmy(0yv2) = Mima)| > €}) < SE¥[(Ma(my00)2) — Mi(ma))?]
= 0(1/n).
For strong LLN, we first mention the following estimate.

Theorem 7.5.

8 ((n "2E, JE — My (mg))*) = O(1/n?).
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Proof. 1t needs a bit finer estimates than Proposition 7.1, which involve intersection
numbers p, 7. for (the association scheme of) the symmetric group &,, defined by

(74) ACPACU = Z pp‘;Ac_,_, p,0 €Y,
TEY

We omit the details. O

Through a similar argument as before, Theorem 7.5 yields

Zm({t € f| |Mk(mt(n)ﬁ) — My (mgq)| > 6}) < 0.

n=1
Then, taking a sequence €; \, 0 and setting

oo o0 oo OO

To = (VU N{t e TIMelmypyvm) = Mi(mo)| < ¢},

k=1 j=11=1 n=l
we have P(%p) = 1 from Borel-Cantelli’s lemma. Since ¢t € Ty is equivalent to

this completes the proof of Theorem 6.6 (2).
For Theorem 6.6 (1), we reduce the argument to a compact interval of R.

Theorem 7.6. There exists a constant ¢ > 0 such that
i‘Bn({)\ €Y, |r()\) > eyv/noor ¢(A) > eyv/n}) < oo.
n=1
We take ¢ > 2 and set
%= E_OJ ﬁ {t e T|r(t(n)) <cvn, c(t(n)) <cyn}.

=1 n=l

Theorem 7.6 with Borel-Cantelli’s lemma again yields P(%;) = 1. If ¢t € Ty, then
t(n)V™(z) — Qz) = 0 for any z ¢ [—c, ¢] if n is large enough. Hence if t € To 1T,
we conclude that, for any € > 0, sufficiently large n gives

sup [t(n)V"(x) — Qz)| < e.
z€R

We thus showed Theorem 6.6 (1).
Proof of Theorem 7.6 The RSK (or Schensted) correspondence gives us
(7.5) P(L,=1)=B.({N e Y, |c(A) =1}), le{l,2,...,n},

where L,, denotes the length of the longest increasing subsequence of a uniformly
distributed random permutaion of size n. We get a rough estimate

n\ 2 n!
(7.6) P(anz)si<l) n-1ts

n! )2

LCommunicated by P. éniady in the lecture.
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by first picking up members of a longest increasing subsequence and their positions.
Combining (7.5) with (7.6), we have

D OBa({A € Yale(N) > evn}) =D P(Ln > cv/n)

oo n oo 12/62 1 lz

DI ID WL
n=1]= cf I=c n=l I=c

The rightmost infinite series converges if ¢ > e since Stirling’s formula ensures

ar@) ~ ma()”

Estimate for r()\) is similar because of the symmetry. O

Remark 7.7. The Schensted correspondence describes a bijection between &,, and
the set of pairs of standard tableaux with the same shapes. For permutation 7 €
S,, the first tableau P(7) results from the bumping procedure while the second
tableau @ () records the history of the growth. For example, given permutation
325164 in &g, we proceed as

9 9 5 1 5 1 5 6 1 46 1 3 5
3—>3—>3 - 2 - 2 - 2 5 =P, 2 6 =Q.
3 3 3 4

Then the length of the longest increasing subsequence of 7 coincides with the length
of the first row of P(7) (though the first row itself need not be a longest increasing
subsequence of 7 in general, just as seen above). This yields (7.5).
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8. LIMIT SHAPE OF YOUNG DIAGRAMS AND FLUCTUATIONS III (LECTURE 8)
8.1. Kerov’s CLT and fluctuations in the Plancherel ensemble.

Definition 8.1. For p € Y set

. N ~ -
0 = n(n—1)-(n—j+ 11X, 1n-s [Al=n ZJ. = Ipl,
" Al =n<j=]p|

In particular, set ¥; = ¥(;) for a one-row diagram.

Theorem 8.2 (Kerov’s central limit theorem). Random variable X; on (Y,,,Bn),
having mean 0 and variance jn(n — 1) ---(n — j + 1), satisfies

k
. Tj 1 2 .
lim P, { e Y, nTIRY N <wi, j=2,3,...,k}) = II/ e My
n ({ | ]( ) J }) - /27_[_]

for k > 2 and x3, -,z € R. In other words, {¥;};>2 are asymptotically inde-
pendent and Gaussian with respect to the Plancherel measure.

This subsection is devoted to explaining why Kerov’s CLT is fundamental in
describing fluctuation of random Young diagrams in the Plancherel ensemble. Proof
of Theorem 8.2 will be included in a wider context of QCLT later.

For that purpose it is suitable to mention here polynomial functions on Young
diagrams introduced by Kerov—Olshanski. Recall that {Mp(7x)} and {M;(my)}
are mutually related in polynomial relations. Mjy(7y) is clearly a polynomial in z;’s
and y;’s, the min-max coordinates of A € Y.

Definition 8.3. The algebra generated by {My(7a)}ren is called the algebra of
polynomial functions on Y and denoted by A. Polynomial function M (7)) is by
definition homogeneous with weight degree k. This weight degree gives a filtration
in A.

Classical, free and Boolean cumulants, denoted by xg, Ry and By respectively,
of both of Rayleigh and transition measures are generators of A by virtue of the
moment-cumulant formulas. A remarkable fact is that {X;(A\)} also forms a gener-
ator set of A. We see more as the following.

Theorem 8.4. We have
Zr(A) = Reg1(ma) + Pe(Ra(my), -+, Re—1(my)) = Kp(Rer1(my), Re—1(my),---)

where Py is a polynomial of Z-coefficients in which each term has weight degree
< k —1 and of the same parity with k + 1, R;(my) being regarded to have weight
degree j.

Remark 8.5. Ky, is called a Kerov’s polynomial. Positivity of their coefficients is a
famous open problem.

We know from Theorem 6.6 that scaled Young diagram AV™, A € Y,,, converges
to the limit shape:

AV (z) — Qz) — 0, n — 0o
in the Plancherel ensemble. Note that, for k € N,

81 [0 - 0@ = g Mera () — M)
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Incorporating (8.1) into Kerov’s CLT, we deduce fluctuation of shapes of random
Young diagrams picked up from the Plancherel ensemble as follows.?

Consider a family of (8.1) indexed by k € N. The kth moment of a 1/,/n-rescaled
diagram gets n~*/2-multiple. Theorem 8.4 (or a rather weaker version would be
enough) yields that the right hand side of (8.1) is equivalently replaced by

(8.2) n~E+D/2p($. ) 8, ---) — (constant)
where a term in the polynomial P(Xj11,Xg,---), say
(83) Ekl Ekz . -EkZE{, kz Z 2, r Z 0

has weight degree (k1 +1)+- - -+ (ki+1)+2r < k+2. On the other hand, Kerov’s CLT
tells us that ¥,’s behave as independent n//2-multiple Gaussian random variables
asymptotically as n — co. Hence the contributing order of (8.3) in (8.2) is n to the

power
E+2 ki k l

Note that the constant term together with the [ = 0 term in (8.2) vanishes as

n — oo since we already know that (8.2) tends to 0. The dominant terms are thus

those of [ = 1. Then, rescaled by /n-multiple, (8.2) and hence (8.1) converge to

a sum of Gaussian random variables. This means that /n(AV" — Q) viewed as a

random variable in A\ with respect to the Plancherel measure 3,, converges to a

“Gaussian object” at least in some weak sense as n — oo.

Remark 8.6. The limiting Gaussian object above was captured as a generalized
Gaussian process supported on [—2,2] by Kerov and Ivanov—Olshanski by consid-
ering Chebyshev polynomials as test functions in (8.1).

8.2. Quantum decomposition of adjacency operators. Since irreducible char-
acter values )2;} appear as eigenvalues of adjacency operators A, (e.g. Proposi-
tion 5.4), we can reformulate Kerov’s CLT in terms of adjacency operators. This
enables us to express the asymptotic Gaussian fluctuation in question by using cre-
ation and annihilation operators on the Boson Fock space. In this procedure, the
notion of quantum decomposition appears to be of use.

Using spectral decomposition of A, as Proposition 5.4, we have

(8.4) <5 i Ap, 5> Z (dim)\)2>~<>\ P

Y10l NG, T Gl e e

Lemma 8.7. Kerov’s CLT is equivalent to the following convergence of mized
moments of adjacency operators with respect to the vacuum state J:

Ay e A o—/2
lim (5, (UYL (e ) H/ e
e 1C2,1n-2)| 1Ck,1m-r)
for k> 2 and ps,--- ,pr € N.
Proof. Straightforward from (8.4). O

2The argument in p.300 of our monograph [17], which concerns this deduction, should be
replaced by the following, or more precisely, according to statements in the “corrections page” of
that monograph which will appear in web pages of the authors.
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We define quantum decomposition of an adjacency operator:

(8.5) AGan—s) = A s + A

(4,1m=7) Gam=i) T A(;yl"")

according to the length function [ (up, down and in the same stratum). Then, quan-
tum plus and minus components converge to creation and annihilation operators on
the Boson Fock space. The limit picture of spectral structure is quite transparent
and immediately yields Gaussian fluctuation. We do not have to be troubled over
complications at finite levels.

Definition 8.8 (quantum decomposition). (1) For g € &,, we define linear opera-
tors g, g7, ¢° on (?(&,,) by

>, €=+
cs )04z, ltype(gz)) e l(type(w)), _ _
g 6w — . ﬁe - <7 € -
0, otherwise,
=, €=o0

Immediately (g% + g~ + ¢°)0. = 840, (97)* =97, (9°)* = ¢°.
(2) For p € Y,, we set

= Z gea €€ {+7_70}'

geC,

We call A, = AT + A + A7 quantum decomposition of 4,. Clearly AF and A
are mutually adjoint while A is self-adjoint.

Recall &, ®(0) and ['(&,,) in Section 5.1. However, we often express an element
of Y, as (0,17 1°l) where o € Y, |o| < n by indicating the one-box rows explicitly.
This is useful when type o is fixed and n tends to co. Recall the intersection
numbers determined in (7.4). To avoid too heavy notations, we set

r 1n=ll —
ppo'( n) = p(f,Tln—m))(Jln lol)> p,0,T €Y, |p|,|0’|,|7‘| <n.

Choosing x € C(T71n_|r|) arbitrarily, we have

(8.6) pre(n) = [{(z,2)|z€ Cipin=iolys 2" € Cg 1n—ioly, 2z =z}
= |{Z S C(pyln—‘pl) |Z T € C(a,ln*\ﬂ)}|-

Lemma 8.9. For j € {2,...,n} and o € Y such that |o| < n, we have

(J 1n-)8(o,1n-171) Z Z Pyo (M 1m-11)5

=1 |7|<n:l(r)=l(c)Li

A(;,l"—f)g(fnl""”') = Z P(] (n)&(r,1n—171)

|7 |<m:l(m)=l(c)

In particular, I'(S,,) is invariant under A in—iy-
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Proof. Straightforward from the definitions:

+
A(jyl"—])£(0'71"_|al)

= > Y gt= Y > gto,

wec(,,ln—lﬂl) 9€C; 1n—j) zEC(U‘ln_‘,\) gEC’(].‘ln_]):l(type(g:c))>l(0')
= Z |{(g,$) |J§ € C(o’,l"—\“\)ag € C(j,l"*j)al(type(y)) > l(O'),gJ? = y}|5y
yeG,

j—1

- > > PGy = > P(jo (ME1m-1m1)

TGY:‘T‘STL,[(T)>Z(O’) yEC(T’1n7|,—|) 2 1TEY| |<n l(T) l(o‘) i

and similarly for — and o. O

8.3. The Fock space on Y. Let {¥(0)|o € Y} denote the canonical orthonormal
basis in ¢2(Y). ¥(@) is referred to as the vacuum vector.

Definition 8.10. Set for j > 2

B ¥(o) = \/m;(0) + 1 ¥(o U (j))
By ¥(0) = \/m;(0) Uo \ () (=0 if m;(o) =0).

We call (2(Y),{B]},{B; }) the Fock space on Y. As usual B} and B; are called
a creation operator and an annihilation operator respectively.

The commutation relation is immediately seen as
[B;,B;]=B},Bf]=[B;,B;]=0,i#j; [B;,Bf]=1

on I'(Y) = span{¥ (o) |o € Y}.

Proposition 8.11. The Fock space on Y is isomorphic to the Boson Fock space over
an infinite-dimensional separable Hilbert space. To be more precise, let {va,v3,- -}
be an ONB in Hilbert space H. The unitary operator from (*(Y) to T'(H) determined
by

V(o) — (Jo T b By vy Gy B
szz m;(o)! T —_—
ma(o m; (o)
intertwines the actions of Bji and A*(vj) (see below) respectively for j =2,3,. ...

In particular, the one-particle space is Span{\I'((j)) |j > 2}. The number of parti-
cles in state p is indicated by r(p).

We recall the Boson Fock space over H. Let I'(H) = @:LO:() HO™ where HO™ is
spanned by such symmetric tensors as 41 & - - - Qu,, = n!~ degn Ug(1) @+ @Ug(n),

Ui, ,u, € H, and equipped with the scalar product inherited from H®™. (7—[®0 =
C.) The scalar product on I'(H) is just sum of those on components. Creation and
annihilation operators are defined by

AT (W) v® - ®v=vVn+1uRv®---&v, A (W)v®- - Qv =/n(u,v)vd - Quv.
———— ——— —_——— ———
n n n n—1

Thoson(H) = (C'(H), AT, A7) is called the Boson Fock space over H.
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9. LIMIT SHAPE OF YOUNG DIAGRAMS AND FLUCTUATIONS IV (LECTURE 9)

9.1. Quantum central limit theorem for adjacency operators. Consider the
adjacency operator associated with j-cycles and its quantum decomposition

At " ° j
Agan=s) = Ay TAGan-) TGy, 722

each quantum component acting on I'(&,) = span{{,, 1»-i-1) |0 € Y}. Since its
vacuum variance is given by

(0e, A 1n=s)0e) = [Cljan-s)| =n(n = 1)~ (n = j + 1) /],
we take normalization by the square root of this factor for CLT. Lemma 8.9 yields

(9.1)

AE i1 IC |
(4,1"77) _ (r,1n=I71)
(I)(a-71n—|0|) — Z Z ])o’ \/|C(] (7-71n—|-r|)7

|C(j,1n-1) =1 |7|<nil(r)=l(c)+i 1) [ [Cg,an=1o)]
(9.2)
A s 1Cr1n=171)|
(4,1m—7) 1=l
P 1n-tol) = P(e(n) rin=lTl)
Coannl ) |r|gn:zz<:r>:z() e sy epam )

Lemma 9.1. Let j > 2 and 0,7 € Y satisfy neither T = (0,j) nor o = (7,j). Then

p&)a(n)\/ |C(J.71|ff§’|1|"c(':i|n_lal)| =0(/VA),  n .
Proof. Here is just a hint. Recall
p(]) HZGC(M" NER CUECg1n—| |)}|
where z is arbitrarily picked up from C(Tylnfm). For j-cycle z = (a1 ay --- aj), we
consider
(9.3) 2t = (aja; 1) (a3 az)(az ay)x

and the associated (j — 1)-walk on Y starting at 7 and ending at 0. As done in
analysis of moments of the Jucys-Murphy element, we perform order counting along
a walk. Situations are a bit more complicated than before because we deal with a
chain of transpositions like (9.3), not only of (a *)’s. Note that the square root part
in question is of order n{|7I=171=7)/2_ At every up/down step along the (j —1)-walk,
we take into account gain/loss of the size also. For a step 7/ — 7", it holds clearly
that |7"| = |7'| £4, ¢ =0, 1,2. Figure 9.1 illustrates the steps of left multiplication
of transposition (o x) to x (denoted by a tableau). The left [resp. right] three
ones are up [resp. down] steps. Gain or loss of size is +2, +1, 0, £0, —1 and —2
respectively from left to right. The actions of +2-size rarely happen and give a clue
for classification of the walks. Look at the whole (5 — 1)-walk from 7 to o, count
the order of growth at each step, and recognize the exceptional two cases to obtain
the desired estimate. |
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o
X

F1G. 9.1. Action of transposition (o x) with up/down of length
and gain/loss of size

Theorem 9.2 (QCLT). Fork €N, €1, e, € {+,—,0}, ji, =+ ,jr € {2,3,...,}
and 7,0 € Y, we have

€1 €k

A n—j1 A n—j
9.4) lim <<I>(T,1”*|T| Grin=i) TGl (Ujlnfw)>

n—oo \/|CJ1 1n=in)] \/|CJ’° ol

= (U(7), Bj, --- Bj; ¥(0)) 2 (v)-

I'(6n)

(Recall that B; =0.)

Proof. We combine (9.1) and (9.2) with Lemma 9.1. A simple argument yields
P L = (@)

e (n=lol+4)--(n=lol+1)/j, 7=0\().

Together with Lemma 9.1, we then have

C m](0)+17 T:(Uaj)a
(9.5) lim p(;), e i = mj(o), =0\ (j),
n—o0 |CJ71n—j)| |C(o-71n—|0|)| .
0, otherwise.

Equation (9.4) is now verified by induction on k. We just mention the inductive
step for € = + since the other arguments are more or less similar. Assume that
(9.4) holds for k. Using (9.1) and (9.5), we have

At <k ) A + e
(o(r, 171", Ao A e <I>(a,1"“°")>r
VICamml 106 1€y am s &)

] —1
:Jki > P \/ Cipan-iey)

=1 |p|<n:l(p)=l(p)+i G 1€ an=min) 1€ 1n-101)|

Ak
< (P 1n7\‘r (.71 1m—it) (Ji, 1" 77k) ) 1n7\p\ >
(o(r, G o)

\/|C(J171n il \/|C(jk,1"*fk)|

— My a (U) +1 <\II(T) Be'l U B;:W(UJJ»Z?(Y)
=(¥(r),B;} -+ By B} ¥(0)) g2 w-

Jk+1

This shows (9.4) for k + 1. O
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Remark 9.3. Theorem 9.2 implies the convergence of a system of noncommutative
random variables

+n] AinJ A
hm( (4,1 —9) (4,1m—9)

n— 00

G |j=2,3,..)

ICG 11 \/ICG1n=n | \/IC0-5)

=(B;,B;,B}|j=2,3,...)

in the sense of matrix elements of mixed products

. This is a common notion for
convergence in QCLT.

Kerov’s CLT, or equivalently Lemma 8.7, follows from Theorem 9.2 through a
so-called classical reduction. In fact, since {B} + B;|j=2,3,...} is a system of
independent Gaussian random variables with respect to the vacuum state, we have

n—2 p2 A n—k Pk
lim (4., Aeare e 0 N
= (‘I’(Q),(Bz+ +Bz) "'(B;T+Bk) ‘1’(®)>
= (¥(2),(By + By)"¥(2)) - (¥(2),(B] +B;)"¥(2))

LS 1 .
= P ——e " 2dy.
]-:1_[2 /;oo V 2r
For adjacency operators associated with general conjugacy classes, we have the
following asymptotic (Gaussian) behaviour.

Theorem 9.4. For k € N, 1,0 € Y, T1, -

e € N oand p) - p®) € Y, we
have

lim <‘I>(T,1”7‘T ( Lm0y A m-1501) )Tk‘I’(U,lnf\a\)>
A \/p(l)l—"wl)\) |C(p(k)71n—|p(k)|)| I'(&n)

- (v T 0 (P P ),

i>2 m; (p(l))! m; (p(k))!

where H,.(x) is a monic Hermite polynomial determined by

Ho(z)=1, Hi(x)=w, xzH.(x)=H,1(x)+rH._1(z) (r>1).

Remark 9.5. It may be useful to note in the above expression that

BB+ B =Y ()@,

i=0
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To see the vacuum expectation explicitly, set 7 = 0 = @ in Theorem 9.4. Then
the right hand side is

(e, [T (P2 LBy (Frted B2 BNy )

B\ V) ! e
H, .« Bf +B;)\n H,,. BY + B )\
— H<\I’(g)7( i(p ))( J J )) ( J(P(k))( J J )) \IJ(Q)> B
j>2 m;(p))! m;(p()! e2(Y)
- H/ my () )) (mep(k))( ))“ e
ji>2 v m p(l) m](p(k))' 2

9.2. LLN and CLT in several ensembles. We collect some remarks on LLN
and CLT in other statistical ensembles of Young diagrams.

9.2.1. Berry-Esseen type CLT in the Plancherel ensemble.

Theorem 9.6 (Fulman). There exists constant C' > 0 such that

1 1 v 2
‘mn({AeYn|ﬁE2(A) gx})—\/—Q_ﬁ/_ e P2dy| < on A,

9.2.2. Fluctuation of the longest row and column in the Plancherel ensemble. Recall

A1, AL~ 2¢/n for X € (Y,,, B.).
Theorem 9.7 (Baik-Deift—Johansson).

Tim g, ({re v, | n1/3(% -2) <a}) = F(a).

The right hand side is the Tracy—Widom distribution function expressed by using the
solution of Painlevé 11 equation with Airy asymptotics, which appeared in describing
the fluctuation of the largest eigenvalue of a random matriz in GUE.

Furthermore, similar asymptotics for an arbitrary number of rows and colums
were conjectured by Baik—Deift—Johansson. Several proofs of this result are due to
Okounkov, Johansson, and Borodin—Okounkov—Olshanski.

9.2.3. Representations with approximate character factorization property. Given a
representation p of &,,, we have probability P, on Y,, by assigning to A the total
dimension of isotypic components of irreducible representation Uy normalized by
dim p. Biane introduced the notion of approximate factorization property for a
family of representations {p,} and their characters {x,}, which tells that

X (9192 - 9k) = Xn(92) X (92) - - X ()|

is of an appropriate small order as n — oo for g1, - ,gxr € S with disjoint
supports. Those systems of ensembles which have such asymptotically vanishing
correlations are rich sources of models admitting LLN and CLT. They include as
examples

e The ensembles determined by the Littlewood—Richardson coefficients

e The Thoma characters restricted onto &,, where both parameters a( ") and

Bl( ™ tend to 0 as n — oo (appropriately fast).
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Actually Biane showed LLN for these models. Extending approximate character
factorization property to certain decay conditions of classical cumulants (g1, - - , g ),
Sniady showed CLT and obtained the universal feature of Gaussian fluctuation in
a wide variety of ensembles.

9.2.4. Kerov—Olshanski—Vershik’s representation of ©,. Kerov—Olshanski—Vershik
introduced an interesting generalization of the regular representation of G.,. The
generalized regular representation L(*) depneds on complex parameter z, which
reduces to the regular representation L as z — oo. Contrasted with factoriality
of L, factorial decomposition of L(*) gives rise to an interesting probability (z-
measure) on the Thoma parameter space. Taking irreducible decomposition of
LY = L(z)|G . we have probability P{* on Y,. This ensemble would miss the
character factorization property above. Nevertheless it seems to be nice to seek for
limiting objects under a balanced rescale as n,z — oo.

9.2.5. Jack ensemble. The Jack measure on ¥ (the path space on the Young graph)
is given by replacing the role of Schur functions sy by Jack symmetric functions
Pf\a). Namely, the coefficient x(®) (), ) appearing in Pieri’s formula for Jack sym-
metric functions assigns edge multiplicity to A * p. This causes deformation of the
notions of harmonic functions on Y and central probabilities on ¥. A Jack version
of Theorem 9.6 is due to Fulman, which involves a-deformed character value at a
2-cycle. However, a desctiption of the whole fluctuation of the Jack ensemble which
is as satisfactory as Kerov’s CLT for the Plancherel one seems to be still open.
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10. CHARACTERS OF INFINITE WREATH PRODUCT GROUPS I (LECTURE 10)

10.1. Factor representations and characters. We mention some generalities
mainly for terminologies.
Let G be a Hausdorff topological group. Similarly in Sect. 4, set

e K(G) = {continuous positive-definite central functions on G},
e K(G) = {f € K(G) | f(e) = 1},
e E(G) ={f € Ki(G)| f is extremal}.

Let 7 be a continuous unitary representation (UR) of G and A = 7(G)" the
von Neumann algebra generated by n(G). If A is a factor, 7 is called a factorial
UR. Moreover if A4 is of finite type (I, with n < oo or II;), there exists a unique
finite faithful normal normalized trace on the cone A™ of the nonnegative elements,
linear extension of which to A is denoted by ¢. Then,

(10.1) f=(g) =#(7m(9)), g€G,

is called the character of .

Theorem 10.1. There exists a bijective correspondence between E(G) and the set
of quasi-equivalence classes of finite factorial URs of G. [r] — f is given by (10.1)
while f — [r] by the Gelfand—Raikov representation.

Definition 10.2. Taking Theorem 10.1 into account, we refer to an element of
E(G) as a character of G.

10.2. Finite and infinite wreath products of a compact group.

Definition 10.3 (wreath product). Let T' be a compact group with identity el-
ement er. For n € NU {oo}, set D, = D, (T) = {d = (t:;)}" 1 |t: € T, t; =
er with finite exceptions}. &,, acts onto D, (T) from the left as usual:

d=(t;)iey — o(d) = (te-1(s))iz1-

Under this action the semidirect product &,,(T) = D, (T) x &,, is defined. D, (T)
and &, are often regarded as subgroups (the former is normal) of &,(7"). Under
this identification, we have o(d) = odo~!. An element of G, (T) is expressed as

g = (d,0) = do. The identity element of &,, is denoted by 1.

Remark 10.4. If T is an infinite set and n = 0o, 6 (T") equipped with the natural
inductive limit topology is a topological group which is not locally compact. Al-
though theory of finite factorial representations and characters works well in a case
of general compact group 7', we mainly keep the simplest case of T' = Z, in mind
in what follows.

We begin with an extension of cycle decomposition in &,,.

Definition 10.5. Let n € NU{oco}. For cycle o € &, ¢(o) denotes the cardinality
of its support.
(1) g = (d,0) € 6,,(T) is called a basic element if

(i) o is a cycle with ¢(o) > 2 and it holds suppd C suppo, or

(ii) 0 =1 and d = (¢;) with ¢; = ep except one index i = q.
For a basic element of (i), set ¢(g) = ¢(o). For a basic element of (ii), we use the
notation of & = (t4, (¢)) and call {q} the support of &;. Set ¢(&;) = 1.
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(2) g € 6,(T) is uniquely (up to the order) decomposed into product of basic
elements with disjoint supports, which we call the standard decomposition of g:

(102) ngql "'qugl"'gma giﬁ = (tqu(qi))a g; = (djaaj)'
Note that ¢ = o1 - - - 0, gives cycle decomposition.

We describe the conjugacy classes of &,(T), n € NU {oo}, through standard
decompositions (10.2).

Lemma 10.6. (1) Conjugation of a basic element of &,,(T") produces again a basic
element.

(2) Basic element (d,o) can be tranferred to (do,o) after conjugation by d' with
suppd' C suppo, where dy has a unique nontrivial entry ty,. The position gy can
be chosen arbitrarily in suppd.

Proof. (1) First o&,0™" = a(ty,(q))o™" = (t4,(c(g)). For basic element (d,0),
we see that 7(d, o)™t = (rdr',7o77!) is basic. Indeed, 7(iy --- i,)7 ' =
(r(i1) --- 7(ip)). Moreover, d'(d,o)d' ! = (d'dod'~to™!,0) satisfies that, if ¢ ¢
suppo, the g-entry of the D,-part is

(d'dod o), = (d)y(d),(cd o™, = (d)ger(d ™), = er.

(2) Given basic element (d,0), take any ¢ € suppo and set d' = ((d),, (c7'(q))).
For any entry index ¢', (d'dod'to™ 1)y = (d')y (d)y (od "Lo™1), satisfies

(dl)q/ — {(d)qa q’ — 0'—1(Q)7 (Udl_lg_l)q, _ {(d—l)q, ql =q,

er, otherwise, er, otherwise.

Conjugation by this d’' thus acts as
d= ( ;(d)o—l(q);"' 7(d)q7...) — ( 7(d)q(d)o——1(q)7"' 7€T7...)7

changing only the ¢- and o~!(g)-entries. Repeating such conjugations, we get the
desired form in which (d),(d),-1(4)(d)s—2(y) -+ lies at the end position of cycle
(g 071(q) 07 2(q) --+). This position is arbitrary according to the choice of the
initial g. g

Example 10.7 (T = Zy = {1,—1}). A basic element (d,o) € &,(Z,) is called a
positive [resp. negative] cycle, or p-cycle [resp. n-cycle] for short, if the number of
(—1)’sin d € D4 is even [resp. odd]. A basic element &, = (t,,(q)), t, = —1, is
regarded as a negative (or n-) cycle of length 1. Then, Lemma 10.6 combined with
standard decomposition tells us that a conjugacy class of &,,(Z») is characterized
by the type of p/n-cycle decomposition. Putting together positive and negative
cycles separately, we have a pair of Young diagrams, one consisting of p-cycle rows
and the other consisting of n-cycle rows. If n < oo, the sum of two sizes is n. On
the other hand, the conjugacy classes of &, (Z2) are parametrized by

{(p+,p )P+ €Y,p_ €Y},
infinitely many 1-p-cycles being removed.

Lemma 10.6 enables us to get parametrization of the conjugacy classes of general
6,(T) also (for n € NU{oo}). In fact, we have only to extend p and n for &,,(Z5) to
|T'/ ~ | colours, where T'/ ~ denotes the conjugacy classes of T'. The colour of basic
element (d, o), where d = (¢;) and o = (i1 --- ix), is given by the conjugacy class of
T which contains ¢;, - - - t;,. See the conjugation in (2) of the proof of Lemma 10.6.
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The colour of basic element £, is obviously given by the conjugacy class containing
the unique nontrivial element %,.

10.3. IURs of 6,(T) (n < o0). Recall the definition of an induced representation.
Let H be a subgroup of G and © a UR of H on V(x). Assume for simplicity
[G : H] < o0 and dim V (1) < oo. The induced representation II = Ind$z on V (II)
is a UR defined as follows. Set

V(1) = {¢: continuous V (r)-valued function on @ |
p(hz) = m(z)(p(x)), h€ H, z € G},

. 1 .
2 2
||90||V(H) = m i Z ||<P($)||V(n);
T€H\G
and (II(g)p)(z) = ¢(zg) for g,z € G. Note that dim V (II) = [G : H] dim V (7).
All TURs of finite wreath product &,,(T) are constructed by using induced rep-
resentations. Here we mention the procedure only for the simplest case of T' = Zo.
Let G,, = 6,,(Z2) = D,, ¥ &,, where D,, = (Z3)™. We express as Zs = {(1,(-1} by
setting (;(+1) =1 and (_;(£1) = £1. &,, acts on D,, through the action on D,
ie.
n€Dp e Dy, M) =n(o~"(d) =nlo~"do).

Set S, = {c € 6,|n=n}. Bachn € D,, determines decomposition {1,2,...,n} =
I, U1, _ according as the kth entry of n is (41 if K € I, +1. For example,

I, 1 = @ for the trivial character . We may write as n = ¢;**¢™™*. Then,
Sy = 6y, , X 8y, _, where &y, ,, is canonically embedded in &,,. Consider the
subgroup of G, defined by H,, = D,, x S,, = &y, ,(Z2) x &1, _,(Z>). 1 determines
a character (one-dimensional UR) of H,, by

n(d,o) = n(d), deD,, og€S,.

Indeed, the definition of S,, yields n(dod'c~') = n(d)(© (') = n(d)n(d'). TUR &
of S, on V(§) also determines an IUR of H,, by

€(d,0) =€(0),  dED,, 0 €S,
Then, 7 =n® ¢ is an IUR of H,, on C® V(§) = V(£). We set
I =07 =Indf*n, ne Dy, [€eS,

G, acting on l/)\n as before, we have S-,, = aSna_l forn € l/)\n and o € 6,,. Then,
the equation

(%6)(1) = &(oTo), 0 €GB, TE Sy,

defines an IUR 7€ of S,. Thus &,, acts on the bundle {(n, [¢]) |7 € D,, €] € 3;} ~
Unef): SW'

Theorem 10.8. (1) II"¢ is an IUR of G,.

(2) 7€ = 1178 if and only if (n, [€]) and (1, [€']) belong to the same &,,-orbit i.e.
there exists o € 6,, such that ' =y, £ = %¢.

(3) For any IUR 11 of G, there exist ) € D, and [€] € 3’; such that I1 = II7:€.

Hence G = &,\{(n,[¢]) [n € Dn, [€] € S} = {(A, i) |\, € Y, |\ + || = n}.
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Proof. After proving (1) — (3), the last part immediately follows from that a com-
plete system of representatives of Gn\l/)\n is given by {Cfl""’m}(ﬂ”_l"'""} |m €
{1,...,n}} and that the IURs of &1} X Sfmy1,....n} are covered by {AKpu| A €
Ym; ©e Ynfm}

(1) We show that the dimension of the intertwiners for II is equal to 1. L €
L(V(II)), a linear operator on V(II), is expressed as an integral operator

(Le)(9) :/G K(g,9")na,(dg), @€V,

with kernel K : G,, x G,, — L(V (7)). (In our case of T' = Z», a finite group, this
is just a matrix representation.) K satisfies the following properties: first

(10.3) K(hg,h'g") = w(h)K(g,¢")x(h")"*,  g,4' € Gn, h,h' € H,,
which comes from the invariance property of elements of V(II), and secondly
(10.4) K(99".9'9") = K(9,9),  9,9,9" € Gn,

which results from the intertwining property of II(¢")L = LII(g"). Set
k(g) = K(g,e), g € G, (e: identity of G,,).
Then, K is recovered by K(g,9') = k(gg’~!) and it holds that
(10.5) k(hgh') = w(h)k(g)m(h'), g€ Gy, h,h € H,.
We thus look at k£ on the double cosets H,\G../H, ~ S,\&,/S,. For a represen-
tative 7 € &,, of a double coset, we have
(10.6) m(h)k(T) = k(r)m(r7 h1), heH,NnTH, "
o If [7] # H,, ") # n on D,. However, D,, C H, N 7H,7~! and (10.6) imply
k(r)=0.
o If [7] = H, i.e. 7 =1, (10.6) with irreducibility of 7 implies that k(1) is scalar.

The choice of k is thus one-dimensional. Hence so are K and L.
(2) If ¥ = % and & = % for 0 € &, then II"¢ = I’ = 7. To

show the converse, let {zg,---,Zm—_1} be a complete system of representatives of
H\G, ~ S,\6,, where zp = 1,21, ,Tm—1 € &,,, m =[6,, : §,]. We have
m—1
- w_l
(10.7) |, = PIdim V(E](* n).
j=0

In fact, taking an ONB {vy,--- v} of V(&) =V (7), set

w(h)v;, x € Hzj;, x = hxj,
pij(x) = ") ’ !
0, x ¢ Hz;,

Then we have II(d)y;; = (wf_ln)(d)goij, which implies (10.7). Also

m'—1

’ ! . :1»"-71
(10.8) s, = @ dim V(E)(™ 7).
=0
Assume I17€ = I17 €', Restricting them onto D,, and comparing (10.7) and (10.8),

.1‘0 O,

—1
we see ' = ' n' =% n for some j, i.e. there exists o € &,, such that ' = .

Then, II"¢ = [I"¢" =~ H"’FIEI. We will see & ot ¢'. In fact, (10.7) yields that,

in irreducible decomposition I17+¢ |H 2nRED (), (*)|D does not contain 7 any
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o~ 1l —

more. Hence (x) does not contain n®¢. Similarly for II""" |, =n&° @ (xx).
0'71 r -

Since II™" ¢|, = II"¢| . | it necessarily holds that n ® £ =y, n®° "¢, Both

sides being restricted onto S, we have § =g, "715’.

(3) In the case of finite T, especially for T' = Z,, we know the number of the
conjugacy classes of &,,(Z5) in Sect. 10.2 (Example 10.7). We get the same number
of non-equivalent IURs of &,,(Z2) in (2). This completes the proof. O
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11. CHARACTERS OF INFINITE WREATH PRODUCT GROUPS II (LECTURE 11)

11.1. Character formula for &,(Zj;). We establish a formula for irreducible
characters of G,, = 6,,(Zs) = D,, x &,, where D,, = D,,(Z2) = (Z2)™.

The conjugacy classes of &,,(Z5) are described by p/n (coloured)-cycle decom-
position. They are parametrized by

{((p, 177171 0) [ p € Y,0 € Y, |p| + |o| < n},
where p and (1”*|”|*|”|) indicate a nontrivial and trivial p-cycle respectively while

o indicates an n-cycle including 1-n-cycle like (-1, (g)).

The equivalence classes of IURs of &,,(Z2) are parametrized by

Yn(Za) = {(A 1) [ A, € Y, [A] + |p] = n}.

A corresponding IUR to (A, p) € Y, (Z2) is constructed as follows. Set |A|] = m,
lul = n —m, and let Zo = {C1,(_1}. Take n = ¢{mr ¢l ¢ D and TUR
E=ARpof S, ={0€6,|M=n} =6, m} X S{min,.. n} Extending n and {
trivially to H,, = Dy, xSy, set m = n® &, which is an IUR of H,. The desired IUR
of Gy, = 6,(Z2) is given by IM#) = Ind§ 7.

Recall the induced character formula. It ensures that normalized character xy
is a centralization of the trivial extension of normalized character X :

fulg) = /C %e('99' D, (dg")

where the integrand is by definition 0 outside of H,,. In particular, x.(g) = 0 if
is not conjugate to an element of H,,. In our case of Il = IIM®) (X, p) € Y,,(Z>),
we have

- 1 1y e -
(IL1) X e = D gepileeg ) P (9g ),
9'€6n (Z2) ’

where n and A X p are regarded as representations of H,,.
Let us consider a standard (or p/n-cycle) decomposition of g as

g :&11 "'fq,‘(dlsl)"'(dpsp) :&11 "'fq,‘dl "'dpsl - - Sp

where s; is a nontrivial cycle. Conjugation of g by ¢’ = (d',s') gives

! 1—1 ! —1 1 1—1
(11.2) g'gg"" =d's'&y, -+ &, 8" " s'di---dps
X 8’55, T T (s sy 5,8 ) T s sy s T

Hence ¢'gg’ ™' € H,, if and only if s's1 -+ 5,81 € 61,y X S, np- Conju-
gation by ¢’ thus induces re-enumeration of the letters in s1,--- , s, satisfying this
condition. Putting + and — to the cycles filled with {1,...,m} and {m+1,...,n}
respectively, we consider p = pT Up~ and @ = " UF~ where & = o \ (1"™1(?)).
Applying 7 to the D,,-component of (11.2), we consider re-enumeration of g1, - - , g

also, either from {1,...,m} or from {m + 1,...,n}. This gives rise to the decom-
position (1"1(7)) = (1m;r) U (1™ ). Altogether we have decomposition p = p* U p~

and 0 = ot U o~ independently. The D,-component of (11.2) is mapped by 75 to
n(d)(=1)™ (=1)"7 In(d =) = (1) ).

The remaining part is to count all possibilities of the re-enumeration of the letters.

We then get the following.
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Theorem 11.1. For (A, ) € Y,,(Z2) and p € Y, 0 € Y such that |p| + |o| < n, it
holds

~(A,
XE@Z)"—‘PI—IUI)J) = >

AMAAL =1 - (A = (et + 1o D+ 1) - Jpl(lpel = 1) - (sl = (o~ [+ 1o ) + 1)
n(n—1)-(n—=(lpl + o)) + 1)

oA 9z
x (=1)r )X(p+70+,1m—up+\+\a+|))X(pf70—71|u|—(|p*|+|a*|))'

11.2. Branching graph for &,(Z,). For (A, p) € Y, (Z2) and (v,0) € Y,,_1(Z>),
we set (v,0) /(A p) if either v /X, 0 =porv =267 pholds.

Theorem 11.2.

Jé

A, ~ v,0
) |Gn71(22) - @ o),
(v,0)€Y n—1(Z2): (v,0) /(A1)

Proof. It might be desirable to give a proof by way of structure of representations
(bases of representation spaces). Here we just verify

(11.3) xMH lonr(z0) = S .
(1,6)./(Aon)

Theorem 11.1 (in non-normalized forms) gives

(Ak)

X((p,1n=lel=1el) o) =
) (n = (lp| + |o]))!
e T=TA T+ D) (il = (o T+ o !
r(c™ A
x (=1) ( )X(p+7g+,1m—(\p+\+\v+|))X€Lp—70—71|u|—(|p—|+|a—|))'

for |p| + |o| < n— 1. Dividing the binomial term in the second line, we have on one
hand

)y (n—1—(pl +o]))!
— 1= + +))! . —_ - =1))!
e T=T= (o T+ 1o DL = (o~ + o)
x (=17 Z X'(/p+7o+,1\v\—up+\+\a+|))x’(ﬁf70—,1\,@\—(\;;*|+|a*\))
v,/ A
_ (o)
= Z X((:1n—1—(\p|+|a|)),g)
v,/ A
and a similar equation on the other hand. Hence
(X;p) _ (v,) (X,0)
X((prin-tot1o0).0) = D X((ptn1-ottion) o) + D2 X((p1n-1-Got+1e1)) o
v/A 0/

ie. (11.3). 0
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11.3. Characters of &, (Zj3) I. We write down the irreducible character values
at basic elements for &,(Z2).
» For 1-n-cycle: p =@, 0 = (1),

~(A,p) _ |/\| - |u|
(11.4) Ximn,0) = —
» For k-p-cycle: p=(k), 0 =2, k > 2,
oW _ A =D - (A -k +1)
(1L.5) X((k1n—4),2) = nn—1)---(n—k+1) Xk, 1131 =k)

=1~ k1),
n(n—l)(n_k+1) X(k71|ul—k)'

» For k-n-cycle: p =@, 0 = (k), k > 2,
o WAL= (A =R+
(116) X((l"—k)7(k)) - n(n — ]_) . (T’L _ k + 1) X(kyl\x\—k)
Cel(pl =1) - (pl =k + 1))2#
nn—1)---(n—k+1) (k,1lnl=k)"

We introduce the Vershik—Kerov condition for growing Young diagrams (A, u) €
Yn(Zz)Z

A
11.7 lim u =cq, lim M =c_,
+
n—oo 1 n—oo 1
1 . 1

Ai Al i . ; .
(11.8) lim — =a;, lim — =p4;, lim Hi _ a_;, lim Hi _ B_i, t€eN

n—oo n—oo N, n—oo 1, n—oo N,
Note that ¢y +c- =1 and Y ;o (ax; + Bri) < cx. Set
(11.9) V£ =Cx = Z(aﬂ:i + Bi)-
=1

We then have -7, (o + i+ a—; + _;) + 74+ +~7— = 1. Since irreducible character
values at cycles for G,, enjoy an asymptotic formula

(11.10)
~ > al()\) k _ bl()\) k
R~ () + o ()Y ot a-ioe
the limits of (11.4) — (11.6) under the Vershik—Kerov condition yield
(11.11) nh_{go XE({" 1) = Z(ai +Bi) + v+ — Z(a,i +B-i) — -
i=1 i=1

(af; + (=1L,

Mg

(1L12)  lim s o) = D (f + (=) 'BE)+

=1

ﬁ
o
Il
-

(af; + (=) 15L)),

MS

n—r 00

(1113)  lim xel, Z )EBE) -

1

7

for k > 2.

These give us characters of &o,(Z2) depending on the parameters (a.;)ien,
(B+i)ien and 7+ if we notice the factorizability of a character and structure of the
conjugacy classes. Actually, these cover the whole set of characters of G (Zs).
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Together with a closer look at the convergence in the Vershik—Kerov regions, we
show this fact in the next section.
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12. CHARACTERS OF INFINITE WREATH PRODUCT GROUPS III (LECTURE 12)

12.1. Harmonic functions and central probabilities on a branching graph.
We recall and extend some notions in Sect. 4.

Definition 12.1. A branching graph has by definition a stratified vertex set G =
LI o Gn, Go = {@}. An edge is denoted by o /3 where o € G, and 8 € Gpq1
lie in consecutive strata. The following conditions are postulated.

(1) For any 8 € G \ Gy, it holds 0 < |[{a € G| 7 B} < o0.

(2) For any « € G, it holds 0 < |{B €Gla / B}| < 00.

(3) Edge multiplicities are given by k(«, 8) > 0 for a 7 8.
Namely, every vertex (except the root @) has finitely many ingoing edges and possi-
bly infinitely many outgoing edges. For a notational convenience, we set x(a, 3) = 0
if @ and 8 are in consecutive strata but not adjacent.

Example 12.2. Let G,, = G/n—(?) =Y, (T) and x(A,M) = dim (s m. Here (a.m
denotes the unique element in T determined by the adjacency A /M. If T is a
continuous compact group, outgoing edges of a vertex are infinitely many ( and can
be of an arbitrary cardinality).

In what follows, we assume that G is countable for simplicity though this restric-
tion can be removed by appropriate modifications ([14]).

Let ¥ = T(G) denote the set of paths ¢ = (¢(0) ~ t(1) & --- S t(n) S ---),
where t(n) € G, on branching graph G. For finite path v = (a A --- & B),
@ € G, B € Gy, set wy, = [[12) w(u(i),u(i+1)) and call it the weight of u. Their
sum

d(a, B) = Z Wy
u=(a, - )
is called a combinatorial dimension function of G. Furthermore, let T(«) be the
set of paths from & to a for any a € G and Sg(4) the set of permutations on
% (a). Note that T(«) is a finite set by Definition 12.1. Cylindrical subset C,, of ¥
is assigned to u € T(a). Each element g € (4 is considered to act on T through

g(t) = {(g(tn) Jtn+1) /--0), if t(n) = a for some n,

t, otherwise.
Here t,, € T(a) denotes the truncated finite path (¢(0) 2 t(1) -+ S t(n) = ).

Definition 12.3. (1) C-valued function ¢ on G is said to be harmonic if it satisfies

p@)= 3 wfef), a€G.
B: o, 'B
The set of nonnegative normalized (¢(@) = 1) harmonic functions on G is denoted
by H(G).
(2) Probability M on ¥ is said to be central if it satisfies such a quasi-invariance
with respect to |J,cq S1(a) that

Mg By = [ PN, Ben(s),
B Wi,
for any g € Gx(qa), @ € Gn, n € N. The set of central probabilities on T is denoted

by Ml(f)
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Proposition 12.4. There exists a bijection between Hi(G) and My (%) through
pla) = ——=, ue%(a), acG.

Central probability M is often said to be ergodic if it is extremal in M, (%).

12.2. Convergence of the Martin kernels. We call

d(a, B)
KO(,B = T A Q,BEG,
@9 = 42,5
a Martin kernel on G.
Theorem 12.5. Let M € M(%) be ergodic and ¢ the corresponding extremnal
element of H1(G). Then, for M-a.s. t € T, we have

pla) = nll)ngo K(a,t(n)), a€G

Proof. Let X, : € — G, be the projection such that X, (t) = t(n) and B, the
o-subfield of B generated by X,,, X;,+1,---. Take an arbitrary a € G. We see that
(K(a,X,))n is a backwards (2B,,)-martingale satisfying

EMK(a, X)) | Brg1] = K(o, Xng), M-a.s.,

EM (K (a, X,)] = pla).
The backwards martingale convergence theorem tells that there exists

lim K(a,X,) =22, M-a.s. and in L*(M).

n—oo

Z2% is measurable with respect to B, = ()., B,. Since M is ergodic and hence
tail-trivial, Zg is constant M-a.s. where the constant is equal to

EM[z2] = lim EM[K(a,X,)] = ¢(a).
n—r o0
We take an exceptional set independently of countable a’s. d

12.3. Characters of & (Z3) II. We specialize the arguments in the previous
two subsections to the case of a countable branching graph G = Y(Z,). Set T =
%(Z2) = T(Y(Z>)). Each vertex o € Y(Z») is a pair of Young diagrams. We express
it as a = (a,a%-1) or (at,a™) for short. The root vertex is @ = (@, @7).

Proposition 12.6. There exists a bijection between K1(Soo(Z2)) and Hi(Y(Zs))
through

f|6n(z2) = Z e(a)x”, neN,
€Y n(Z2)
where X% is a nonnormalized irreducible character of &,,(Z2).

Theorem 12.7. Given f € E(Sx(Z2)), let M be the corresponding ergodic ele-
ment of M1(%) in Proposition 12.6 and Proposition 12.4. Then, for M-a.s. t € ¥,
we have

lim ¢t = 1.

n— 00

Proof. Iterating restrictions onto lower levels one by one, we have

. d(a, t(n))

t(n) ) [e%

X |Gk(zz) Z (2, t(n) X
€Y k(Z2)

Incorporate this with Theorem 12.5 and Proposition 12.6. |
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Combining Theorem 12.7 with computations done in Sect. 11.3, we deduce the
Vershik-Kerov condition.

Theorem 12.8. Along M-a.s. path t € T in Theorem 12.7, there exist:

+
(12.1) cy = nlgrrgo @ (cy +c-=1),
. + . +
(12.2) a4; = lim M, B+; = lim M, i e N
n—oo n n—00 n

Here a;(A) = A\; — i and b;(A\) = A, —i denote the Frobenius coordinates of A € Y.

Proof. Recall the computation of irreducible character values at basic elements.
Equation (11.4) for a 1-n-cycle gives

(e _ )] = Jt(n)~|
(12.3) X(an-1),) = o :

Since |t(n)T| + |t(n) | = 1 always holds, convergence of (12.3) yields (12.1).
Equations (11.5) for k-p-cycle and (11.6) for k-n-cycle give

S ) [t (t) [ = 1) - (t() "] =k +1) )+

(124) k-p/n-cycle n(n — 1) T (n —k+ 1) X(kyl\t(n)ﬂ—k)
g P70 =D - ()7 = k4 1) oo
n(n_l)...(n_k+1) (k,l‘t(")i‘*k)7

where p and n on the left hand side correspond to + and — in the second line
respectively. Convergence of (12.4) yields that there exist

o EO)F () F =D - ()T - R+ 1) i

nh%n;o nn—1)---(n—k+1) X, 1o 1=k
Combining this with (11.10), we have existence of
N (@t ) F)\F k1 (bilt() ) \
s () e () )

We check that the four sequences {a;(t(n)*)/n}., {b:(t(n)*)/n}, have unique limit
points respectively for any ¢ € N. Take their limit points ai;, f+; respectively.
Then, if k > 2,

(12.6) Z{(aii)’“ + (=D (Be)" )

agree with (12.5). Hence (12.6) does not depend on the choice of limit points.
However, (12.6) determines ay; and S+, uniquely since it holds that

exp{i(i(af + (—l)k_lﬂf))z—;} = exp{—z i(ai + ﬂz)} ﬁ iigi’ zeC

k=2 i=1 =1

and similarly for a_;, ;. O

Recall that the conjugacy classes of G, (Z2) are parametrized by
(12.7) {(po)|lpeY,oecY}

by way of positive/negative cycle decomposition. As a slight extension of Theo-
rem 4.9, we have the following.
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Theorem 12.9. It holds that
E(Soo(Z3)) = F(Soo(L2))-
Namely, extremality and factorizability are equivalent in K1(Goo(Z2)).

Summing up, we have now all characters of G.,(Z2). They are parametrized by

(12.8) {(,8,7) |a = (@)izt1,22,..., B = (Bi)izt1,42,.., 7 = (),
Qi1 > ayy >0 20, By > Bi2 >0 20, 7+ >0,
Z(ai +Bi +a_i+B-i) + 74+ +7- = 1}.
i=1
Here we set v+ as (11.9). As modifications of power sums, we introduce

(129) pi(e,B,7) =Y (@F + (=D '8 £ (¥ + (-1 '8%),  k>2
i=1 i=1

(12.10) pi(a,B,7) =Y (i +B) +7+ £ D (ai+B3) 7.
=1 =1

Note that p (, 3,7) = 1. The values of character f, g of Goo(Z2) corresponding
to the parameter (o, 8,v) in (12.8) at basic elements are given by

fo.p~(Ln-cycle) = py (e, 5,7),

fapo(k-p-cycle) = pl(a, B,7),  fapq(kn-cycle) =p,(a,8,7), k=2
At a general conjugacy class indicated by (p, o), where p € Y, o € Y, we have
(12.11) fa3r (p,0) = Doy (@, B,7) =pED), - Do Py -
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13. REALIZATION OF FINITE FACTORIAL REPRESENTATIONS OF INFINITE
WREATH PRODUCT GROUPS (LECTURE A)

This section is the content of the seminar talk, which is based on the joint paper
with T.Hirai and E.Hirai [12]. We concentrate on the simplest case among those
where compact group 7' is nontrivial, namely we treat the group

G =60(Z3) = Do X6, Do = Doo(Zs) = restricted direct product of Zs.
The conjugacy classes of G.,(Z2) are parametrized by
{(po)|lpeY, oY}

where p is the collection of types of nontrivial positive cycles while o is that of
negative cycles. The characters (= extremal normalized positive-definite central
functions) of 6,(Z2) are parametrized by the simplex

{(04,5,7) |Oé = (i)i=t1,42,... B = (Bi)i=t1,22,.., v = (7£),
iy > agp >+ 20, frg > P2 > >0, 7+ >0,

oo

Z(ai +0itai+0i)+y+ +v-= 1}.
i=1

Let fu g,y denote the character of G, (Z2) corresponding to the classifying param-
eter («, 3,7). Setting

[ee)

pilafy) =) (af + (=180 £ Z(a'ii + (DY), k22,

i=1
Z az"‘ﬁz —|—’)/+:|:Z a i+ B )ﬂ:’y,,
=1 i=1
we know
fa87((0,0)) = Po.o) (@, B,7) = DD, PPy -
We construct the following representation II in which the role of parameter

(a, B,7y) is quite explicit.

Theorem 13.1. Given character fo g of ©c(Zs2), there exists a finite factorial
UR I = P of & (Zy) on Hilbert space H = H*PY with cyclic vector Q € H
such that

(13.1) fapr(9) = (W92, Mn, g€ Gu(Za)

Main ingredients for the construction are

e twisting by a 1-cocycle for the g-parts
e inflation by a space of multiplicities.

We need, however, careful (and a bit cumbersome) construction of notations even
in the simplest case of T' = Z,. Once we establish (13.1), finiteness and factoriality
of I immediately follows from a general theory of group representations since we

already know that f. s~ is the character of a finite factorial representation of
Soo(Zy).
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13.1. Stepl: Representation 7. Set (see Figure 13.1)
Xiise = NCUNZ UN LN, NP N,
Xeone = I LT, I'y =[0,74],
Xe=NFUNT UL
Recall that we set Z\z = {(1,(_1}. The parts indexed by =+ in Figure 13.1 correspond
to (41 respectively. We set
X = Xgise U Xeony = Ay LA,

NP Ne I
e © o © - O O O O -----
e © o © ----- O O O O -----

NP NP ry

Fia. 13.1. Underlying space X’

Define probability v = vq g,y on X by
V|N§ = auid;, V|N£ =Y Buidi,
ieN ieN

1/|Fi = Lebesgue measure on [

where all ./\/'a’ﬁ are identified with N and set ¥°° to be its product measure on X'*°.
For measurable vector field v = (v(x))zex where the fibre at z is V(z) ~ C, set

lollEey = [ @)l Favido)
and V(&) = {v = (v(z))zex | [[v|lv(x) < oo}. The constant field 1y = (1;)zex,

where 1, =1, has norm 1. Let Z» act on V(X') componentwise:
Cl (t), T € X+,
Z(t)v = (Z,(t cex, UEL, here Z,.(t) =
(B0 = (Zu(o(@)acw, tE€ %  where Z(1) {cmm el

Remark 13.2. Since Z» is abelian, we have only to deal with one-dimensional fibre
V(x) at each € X. This simplifies the construction of desired representations
to some extent. In the case of general compact group T instead of Z,, we put a
representation space of the IUR ( of T" at =, where ¢ depends on base point z.

Let @;cn V(X:), X = A, be the tensor product with respect to the reference
vector (1y,)ien- We set for decomposable element ®;v;, v; € V(X;),

m(d)(®;v;) = ®;Z(t;)vi, d = (t;) € Do,
(o) (®;v;) = ®iVs—1(i), 0 € Gy
and then
m(g)w = n(d)7(0)w, w € ®V(Xi), g=(d,0) € 6(Z2).
ieN

Lemma 13.3. 7 is a UR of G (Z3).
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Proof. Since m gives URs of Dy, and &, it suffices to show m(o)w(d)w (o)™t =
w(o(d)) to see compatibility with the semidirect product structure, which is now

directly verified. o
13.2. Step2: Representation 7. A decomposable element of @), .V (X;), w =
®;v;, is regarded as a measurable vector field on A through

x=(z;) € X® — w(x) = Q;vi(w;) ®V xz;) =W(x)~C

and satisfies
ol =TT = | TTleteolfv=tae) = [ o= (da).
We rephrase 7 z;s a UR of GOO(Z:) on
W) = {w = w@) | o] = /X @)l @™ (de) < oo}

by
(13.2) (r(d)w)(x) = Za(d)(w(x)), r=(z;), de D,
(13.3) (m(o)w)(x) = w(o'x), z = (z;), 0 €6,

where we set Z,(d) = ®;Z,,(t;) for d = (t;) € Do

Remark 13.4. If T is not abelian and V(x;) is multi-dimensional, the value spaces
of both sides of (13.3) are not consistent. Then we should replace the right side by
k(o)w(o~tx), introducing

() ®Ul z ®Vﬂfz '—>®z —1() ®V —1()

In (13.2) also, we can sunply use a product notation since Zggi( ;) is a scalar acting
on one-dimensional space V(z;).

Definition 13.5. For = (z;) € XY> set J(z) = {i € N|z; e NP = Nf uNP}
and
inv(o, z) = the number of inversions in (0())ic(w)-

Lemma 13.6. (—1)1“"(”’“”) 1s a multiplicative 1-cocycle, namely it holds that
(—1)imv(om®) — (_qyiviera)(_qyinvire) o, T € B
Combining 7 with this 1-cocycle, we set
(Fgw)(@) = (~1)™ D Z(duw(o ™ z), @ EX®, g=(d,0) € Gu(Zy).
Lemma 13.7. 7 is a UR of S (Z2).

Proof. Lemma 13.6 yields that 7 gives a UR of &,,. Then it suffices to verify
(o) (d)7 (o)™t = 7(o(d)). O

For instance, take a constant field 1 = ®1x, € W(X) and consider its matrix
element:

(Fon1) = [ -y e V(L2 o), 9= o). d= (0

We have no multiplicative structure on the 1l-cocycle part with respect to cycle
decomposition. This leads us to another trick in the next subsection.
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13.3. Step3: Representation II. We inflate the representation space of 7@ by
putting a multiplicity parameter. Let w = w(x,y) be a measurable vector field
on X x X taking a value w(z,y) € W(x) = @, V(z;) =~ C where the tensor
product is taken with respect to reference vector (1.,)ien, 1z, = 1 though it is

trivial here for one-dimensional V' (z;)’s. For x,y € X*°, we express x ~ y if there
exists T € G4 such that © = 7(y). Setting

(13.9) lul=[ 3 @yl er=d)
xoe !
Y y~e

for vector field w = w(x,y), consider

H = {measurable vector field w = w(z,y) on X' x X> | llwll < o0}
Set for g = (d,0) € G (Z2)
(13.5) ((g)w) (@, y) = ()™ ) Zo (dw(o e,y), weH.
Lemma 13.8. 11 is a UR of 6 (Zs).

Proof. Since IT gives URs of Do, and &, it suffices to show II(¢)[I(d)[I(0) "t =
II(o(d)) as before. O

Remark 13.9. If we consider a general case and put k(o) into the right side of (13.5)
as Remark 13.4, we use

K(0) Zg=12(d)k(0) ™" = Zy(o(d))
to show Lemma 13.8.

13.4. Step4: Representation II = [1*#7. Consider the diagonal A = {(z,z) |z €

|z
X>®} C X x X and its indicator function 1a, which takes value 1a(z,y) €
W(x) =@, V(r;) ~ C. We have

a2 = /X MA@, D)l )™ (da) = 1.

Let H denote the closed linear subspace of H spanned by II(So(Z2))1a. We set
(13.6) I(g) = U7 (g) = M(g)],;, 9 € Soo(Zo).
Then IT is a UR of G4,(Z2) on H with cyclic unit vector 1a.

13.5. Step5: Matrix element and character. Equation (13.6) yields that it
holds for g = (d, o)

(13.7)  (l(g)la, 1a)n :/m Y (WW(g)1a) (@, ), 1a(@,y))wwr™ (d)

Yy:y~e

:/OO Z <(_1)inV(g_1’m)Zw(d)lA(oflmvy)7 1A(way)>W(m)Voo(dw)

Y:y~e

— / (_l)inv(0'7
{rxeX>|oc le=x}

Let g =&, - &4, 91 - - gm be a standard decomposition where &, = (-1, (¢;)) and
g;j = (dj,o;). For x € X, o0~'x = x holds if and only if x is constant on any
suppoj. Then, it holds either J(x) O suppo; or J(x) Nsupps; = & for any j.

1

®) 7o (d)v™ (daz).

Hence (—1)i“V("71’m) can be considered on J(x) and then gets multiplicative since
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it is just the usual sign of a permutation. We thus find multiplicative structure in
(13.7) and continue as

138) [ Zo@rde) [] [ 0=z, @0 i)
S j=17Yi

X H(**

Jj=1

setting V; = {x\) = (zi)icsuppo, | z9) is constant on suppo;}.
Equation (x) in (13.8) is equal to

11 /X Zo(~1uldz) = [[(Xy) - (X)) = pi (@ B,7)"-

Expressing ); as a disjoint union of {a:(j) = (Ti)igsuppo, |¥i = ¢, forany i €
suppo; } and noting c(o;) = |suppo;| > 2, we see that integration for ¢ € I'y U T_
in (#x) of (13.8) vanishes. Hence (%) is equal to

Z ,,(J')({m(j) | z; = ¢ for any i € suppo;})
cENY

+ Z C_1(dD) v ({2 | z; = ¢ for any i € suppo;})
ceEN®

+ Z sgno;) v ({x9) | z; = ¢ for any i € suppo,;})

CENB
+ Z (sgnoj) ¢ 1(dD) v ({x) | z; = ¢ for any i € suppo;})
ceNP
Z e(oj) Z (d(j)) ai(:»rj)
i=1 =1
Z sgno;) B9 +Z sgno;) (L1 (d9) gl
i=1 i=1
= pk (aa B; 7)
according as g; is a k-p/n-cycle (k > 2). Hence
(137) — p; (Oé,ﬂ '7 ﬁ(l n-cycles) H ;r f(k-p-cycles) ( B; ) (k- n—cycles))
k>2
= D(p,o) (a, B,7) where g€ C(, ) C Soo(Zs)
= foz,,&’y(g)'
We have thus obtained
(13.9) fapr(9) = TP (g)1A, 1a)n, g€ GoolZo).

Combined with a general theory of the Gelfand—Raikov representation, (13.9) and
extremality of f, 5 - yield that II*#7 is a finite factorial representation of & (Z2).
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Notes

e The first version on 10 June 2007.
e Minor corrections in Theorem 8.4, Definition 8.10, and References on 27
February 2008. Still incomplete citations in the text.
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