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§1 Introduction

Representations of a group of matrices/permutations in a large scale have

much to do with free probability theory.

From microscopic randomness of branching rule of irreducible representations

To macroscopic (deterministic) behavior with free-probabilistic structure

• scaling limit of continuous time Markov chain on Young diagram ensemble

• evolution of interfaces (formed by profile of Young diagram)

y = |x|



Young diagram λ is characterized by

its profile y = λ(x) or transition measure mλ =

r∑
i=1

µiδxi ∈ P(R)

x1 y1 x4y3

(z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr)
=

µ1

z − x1
+ · · ·+ µr

z − xr

=⇒ extended to continuous diagram: y = ω(x) ←→ mω

(Markov transform)



⋆ Plancherel growth process (⇐⇒ induction chain) on Young diagrams

↓ diffusive scaling limit, as effect of LLN

time evolution of macroscopic profile ω0 −→ Ωt −→ · · ·

mΩt = mω0 ⊞mΩ0
t

mΩ0
t
: semi-circle distribution with mean 0 and variance t

mΩ0
t
(dx) =

1

2πt

√
4t− x2 1[−2

√
t,2

√
t](x)dx

Ω0
t (x) =

{
2
π

(
x arcsin x

2
√
t
+
√
4t− x2

)
, |x| ≦ 2

√
t

|x|, |x| > 2
√
t

(Ω0
1 is limit shape due to Vershik–Kerov and Logan–Shepp)

∂g

∂t
= −g ∂g

∂z
for g(t, z) =

∫
R

1

z − x
mΩt

(dx)



Aim of this talk

⋆ Restriction-induction chain on Young diagrams (canonical setting)

↓ diffusive scaling limit, as effect of LLN

time evolution of macroscopic profile ω0 −→ ωt −→ Ω = Ω0
1

mωt
= (mω0

)e−t ⊞ (mΩ)1−e−t

where initial profile ω0 taken so that mω0
has mean 0 and variance 1

∂G

∂t
= −G ∂G

∂z
+

1

G

∂G

∂z
+G for G(t, z) =

∫
R

1

z − x
mωt(dx)

• two remarks : grand canonical setting, evolution of global fluctuation

• two problems I cannot solve yet :

– behavior of logarithmic energy for ωt

– derivation of PDE for ω(t, x) = ωt(x)



§2 Plancherel measure and Plancherel growth process

(review) : Kerov, Vershik–Kerov, ...

Young graph vertices: Y =
∞⊔

n=0

Yn, Y0 = {∅}



Plancherel growth process is Markov chain (Zn) on Young diagrams with

transition matrix P ↑ and initial distribution δ∅ s.t.

P ↑
λ,µ = p↑(λ, µ) : proportional to dimµ

=
dimµ

(|λ|+ 1) dimλ
, λ, µ ∈ Y, λ↗ µ

Irreducible decomposition of induction of irreducible representation

IndSn

Sn−1
πλ ∼=

⊕
µ∈Yn:λ↗µ

πµ

Then, the distribution after n step is

pn(∅, λ) = P(Zn = λ) =
(dimλ)2

n!
= M(n)

Pl (λ)

called Plancherel measure on Yn



macroscopic profile : 1/
√
n both horizontally and vertically

λ ∈ Yn −→ [λ]
√
n(x) =

1√
n
λ(
√
nx), [λ]

√
n ∈ D0 ⊂ D

• rectangular diagram
D0 =

{
λ : R −→ R

∣∣ continuous, piecewise linear,

λ′(x) = ±1, λ(x) = |x| (|x| large enough)
}

• continuous diagram
D =

{
ω : R −→ R

∣∣ |ω(x)−ω(y)| ≦ |x−y|, ω(x) = |x| (|x| large enough)
}

Ω(x) =

{
2
π

(
x arcsinx

2 +
√
4− x2

)
, |x| ≦ 2

|x|, |x| > 2
limit shape

The following LLN holds (static scaling limit for the Plancherel measure)



Vershik – Kerov 1977, Logan – Shepp 1977

M(n)
Pl

({
λ ∈ Yn

∣∣∣ sup
x∈R
|[λ]

√
n(x)−Ω(x)| ≧ ϵ

})
= P

(
∥[Zn]

√
n −Ω∥sup ≧ ϵ

)
−−−−→
n→∞

0 (∀ϵ > 0)

Namely, [Zn]
√
n converges to Ω in probability as n→∞.



Continuous time Plancherel growth process Z̃s = ZNs

– (Ns)s≧0: Poisson process on {0, 1, · · · }, N0 = 0 a.s., independent of (Zn)

– initial distribution δ∅

– transition matrix es(P
↑−I)

P̃(Z̃s = λ) =
∞∑

n=0

e−ssn

n!
M(n)

Pl (λ), λ ∈ Y

(Poissonization of the Plancherel measures)

Dynamical scaling limit

s: microscopic time, t: macroscopic time s = tn

Then [Z̃tn]
√
n −−−−→

n→∞
?



P̃
(
∥[Z̃tn]

√
n −Ω0

t ∥sup ≧ ϵ
)
= P̃Z̃tn

(
∥[λ]

√
n −Ω0

t ∥sup ≧ ϵ
)

=
∞∑
k=0

e−tn(tn)k

k!
M(k)

Pl

(
∥[λ]

√
n −Ω0

t ∥sup ≧ ϵ
)

The above Poisson distribution has mean tn and standard deviation
√
tn

Under M(⌊tn⌋)
Pl , [λ]

√
tn → Ω0

1 ⇐⇒ [λ]
√
n → Ω0

t where

Ω0
t (x) =

{
2
π

(
x arcsin x

2
√
t
+
√
4t− x2

)
, |x| ≦ 2

√
t

|x|, |x| > 2
√
t

Proposition [Z̃tn]
√
n −−−−→

n→∞
Ω0

t in probability ■



§3 Restriction-induction chain

p↓(λ, µ) (proportional to dimµ) =

{
dimµ
dimλ , µ↗ λ

0, otherwise

p↑(λ, µ) as before (proportional to dimµ)

Irreducible decomposition of restriction and induction of irreducible repre-

sentation

ResSn

Sn−1
πλ ∼=

⊕
ν∈Yn−1:ν↗λ

πν , IndSn

Sn−1
πν ∼=

⊕
µ∈Yn:ν↗µ

πµ

restriction ↔ removing 1 box, induction ↔ adding 1 box



Res-Ind chain (X
(n)
m )m=0,1,2,··· on Yn has transition matrix

P (n) = P ↓P ↑ =
(
p(n)(λ, µ)

)
λ,µ∈Yn

p(n)(λ, µ) =
∑

ν∈Yn−1:ν↗λ,ν↗µ

p↓(λ, ν)p↑(ν, µ), λ, µ ∈ Yn

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:

M(n)
Pl (λ)p

(n)(λ, µ) = M(n)
Pl (µ)p

(n)(µ, λ), λ, µ ∈ Yn,

hence the Plancherel measure is invariant distribution for Res-Ind chain ■



Restriction-induction chain is formerly dealt with e.g. in

• Fulman 2004, 2005 :

to construct exchangeable r.v.s distributed in Plancherel measure to

apply Stein method

• Borodin – Olshanski 2009 :

to construct diffusion process on Thoma simplex under rescale of

time t = s/n2, space 1/n capturing factorial representations of S∞

(instead of limit shape)

Remove or add one box, treating each corner equally

Funaki – Sasada 2010 :

hydrodynamic limit for an evolutional model



Recall scheme of the problem

For continuous time Markov chain (Y
(n)
s )s≧0 on Yn,

limiting behavior as n→∞ and s→∞ under scaling in space vs time

– macroscopic profile : 1/
√
n both horizontally and vertically

λ ∈ Yn −→ [λ]
√
n(x) =

1√
n
λ(
√
nx), [λ]

√
n ∈ D

– macroscopic time : t = s/n (diffusive scale)

Letting n → ∞, as an effect of LLN, the distribution of [Y
(n)
tn ]

√
n concen-

trates at a point ωt, depending on t.

ωt : macroscopic profile at macroscopic time t

Describe evotuion of ωt along t !



Continuous time Res-Ind chain X̃
(n)
s = X

(n)
Ns

on Yn with

– (Ns)s≧0 : Poisson process independent of (X
(n)
m )

– transition matrix es(P
(n)−I),

– initial distribution δλ(n) ,

– invariant distribution M(n)
Pl

Dynamic scaling limit

s: microscopic time, t: macroscopic time s = tn

Then [X̃tn
(n)]

√
n −−−−→

n→∞
? (macroscopic profile depending on t)

Let M(n)
t = P̃X̃

(n)
tn : distribution of X̃

(n)
tn on Yn



Theorem (PRIMS 2015, SBMP 2016)

If initial condition satisfies [λ(n)]
√
n −→ ω0 ∈ D as n→∞, then, for ∀t > 0,

there exists ωt ∈ D s.t. LLN

M(n)
t

({
λ ∈ Yn

∣∣∣ ∥[λ]√n − ωt∥sup ≧ ϵ
})
−−−−→
n→∞

0 (∀ϵ > 0)

holds. ■

– ω0 can be taken arbitrarily in D s.t.

∫
R

(
ω0(x)− |x|

)
dx = 2

– ωt converges to Ω (limit shape) in D as t→∞

– The area is kept invariant:

∫
R
(ωt(x)− |x|)dx = 2 for ∀t

– ωt is described precisely by using free probability (as seen later)



Remark For a sequence of probability spaces (Yn,M(n)), we know some

sufficient condition for LLN

M(n)
({
λ ∈ Yn

∣∣∣ ∥[λ]√n − ψ∥sup ≧ ϵ
})
−−−−→
n→∞

0 (∀ϵ > 0)

to hold with some continuous diagram ψ ∈ D, which we call a concentration

property at ψ (approximate factorization property of Biane 2001).

Examples

• M(n) = δλ(n) for [λ(n)]
√
n → ω0 ∈ D as n→∞

(ω0 then satisfies

∫
R
(ω0(x)− |x|)dx = 2)

• M(n) = M(n)
Pl (Plancherel measure)

Initial distribution can be generalized to one satisfying this concentration

property



Theorem♯ (PRIMS 2015, SBMP 2016)

The concentration property is propagated as time goes by; i.e. if initial

distributions M(n)
0 satisfy the concentration property at ω0 ∈ D, then M(n)

t

also satisfy the concentration property for ∀t > 0, hence there exists ωt ∈ D
s.t. LLN

M(n)
t

({
λ ∈ Yn

∣∣∣ ∥[λ]√n − ωt∥sup ≧ ϵ
})
−−−−→
n→∞

0 (∀ϵ > 0)

holds.



Here ωt is determined by

mωt
= (mω0

)e−t ⊞ (mΩ)1−e−t

(free convolution of free compressions of transition measures).

Furthermore time evolution of the distribution is described through its

Stieltjes transform

G(t, z) =

∫
R

1

z − x
mωt(dx).

PDE describing time evolution of transition measure mωt

∂G

∂t
= −G ∂G

∂z
+

1

G

∂G

∂z
+G, t > 0, z ∈ C+

■



Remark For Plancherel growth process also, consider initial distribution

M(n)
0 on Y⌊an⌋ ⊂ Y satisfying the concentration property at ω0 ∈ D where

1

2

∫
R
(ω0(x)−|x|)dx = a. Then, [ZNtn

]
√
n −→ Ωt in probability as n→∞.

Transition measure of Ω0
t (limit shape of Plancherel growth process at time

t) is semicircle distribution of mean 0 and variance t,∫
R

1

z − x
mΩ0

t
(dx) =

z −
√
z2 − 4t

2t

mΩt
= mω0

⊞mΩ0
t

Stieltjes transform g(t, z) =

∫
R

1

z − x
mΩt(dx) also satisfies PDE :

∂g

∂t
= −g ∂g

∂z



initial distribution M(n)
0 −→ ω0

↓ 1/
√
n, n → ∞

distribution at time tn M(n)
t −→ ωt

↓

invariant distribution M(n)
Pl −→ Ω

limit shape Ωω0
ωt



§4 Remarks and Problems

♣ Evolution of global fluctuation (in progress)

fluctuation for other (non-Plancherel) ensembles

“character factorization property” c.f. Śniady 2005

▶ In the Res-Ind model, character factorization property is propagated at

any macroscopic time t.

Hence, if initial ensemble (Yn,M(n)
0 ) has character factorization property,

√
n
(
mλ

√
n − mωt

)
on (Yn,M(n)

t ) converges as n → ∞ to the fluctuation

at t, namely
{
⟨xj ,
√
n(mλ

√
n − mωt)⟩

}
j
converges as n → ∞ to Gaussian

system with mean 0 and some covariance with complicated t-dependence.



♣ Res-Ind model in grand canonical setting (in progress)

Poissonization of the Plancherel measure

M(ξ)
PP =

∞∑
n=0

e−ξξn

n!
M(n)

Pl , ξ > 0

is kept invariant under transition probability P (ξ) on Y :

P (ξ) = αξ(n)P
↑(n) + (1− αξ(n))P

↓(n),

αξ(n) =

∫ 1

0

ξe−ξx(1− x)ndx

Continuous time Markov chain (X
(ξ)
Ns

)s≧0

Rescale for time s = tξ, for space [λ]
√
ξ = 1√

ξ
λ(
√
ξx) (λ ∈ Y)



▶ Let initial ensemble (Y,M(ξ)
0 ) satisfy the concentration property as ξ →

∞, for example Poissonization of (Yn,M(n)
0 ), each satisfying concentration

property as n→∞. Then [X
(ξ)
Ntξ

]
√
ξ converges to some ωt in probability as

ξ →∞.

Macroscopic profile ωt is characterized by

mωt
= (mω0

)e−t/2 ⊞ (mΩ)1−e−t/2 , t > 0



♠ Logarithmic energy : taking

M(n)
Pl (λ) = (1 + o(1))

√
2πn exp

{
−n

(
1 +

1

2

∫∫
{s>t}

(
1− ([λ]

√
n)′(s)

)
(
1 + ([λ]

√
n)′(t)

)
log(s− t)dsdt+O

( 1√
n

))}
into account, set for ω ∈ D

θ(ω) = 1 +
1

2

∫∫
{s>t}

(
1− ω′(s)

)(
1 + ω′(t)

)
log(s− t)dsdt

We know

• Limit shape Ω is unique minimizer for θ in D (θ(Ω) = 0).

• In Res-Ind model, ωt converges to Ω as t→∞.

Problem Is θ(ωt) decreasing for sufficiently large t ?



♠ PDE describing Res-Ind model

Stieltjes transform G(t, z) of mωt
satisfies

∂G

∂t
= −G ∂G

∂z
+

1

G

∂G

∂z
+G, t > 0, z ∈ C+

Problem Find PDE for ω(t, x) = ωt(x) itself !
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