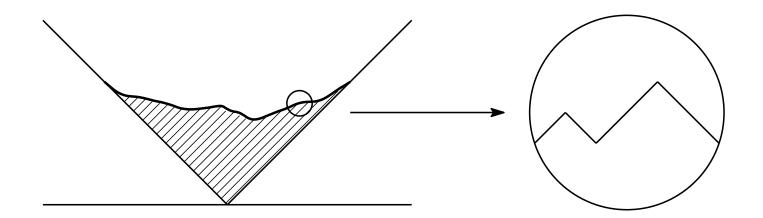
Dynamical scaling limit of the restriction-induction chain on Young diagrams in terms of free probability

Akihito HORA (Hokkaido University)

Random Matrices and Their Applications

Kyoto University, 21–25 May 2018

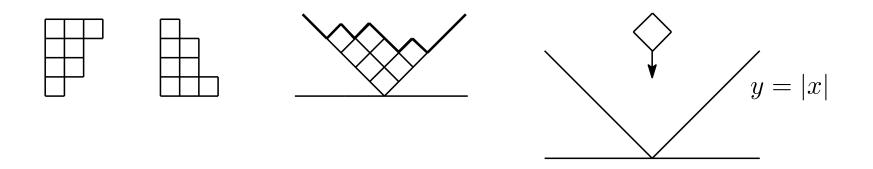


$\S1$ Introduction

Representations of a group of matrices/permutations in a large scale have much to do with free probability theory.

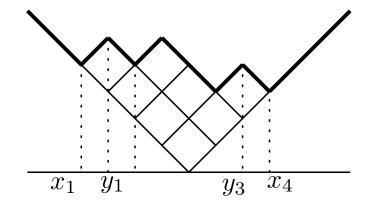
From microscopic randomness of branching rule of irreducible representations To macroscopic (deterministic) behavior with free-probabilistic structure

- scaling limit of continuous time Markov chain on Young diagram ensemble
- evolution of interfaces (formed by profile of Young diagram)



Young diagram λ is characterized by

its profile $y = \lambda(x)$ or transition measure $\mathfrak{m}_{\lambda} = \sum_{i=1}^{\prime} \mu_i \delta_{x_i} \in \mathcal{P}(\mathbb{R})$



$$\frac{(z-y_1)\cdots(z-y_{r-1})}{(z-x_1)\cdots(z-x_r)} = \frac{\mu_1}{z-x_1} + \dots + \frac{\mu_r}{z-x_r}$$

 \implies extended to continuous diagram: $y = \omega(x) \iff \mathfrak{m}_{\omega}$

(Markov transform)

★ Plancherel growth process (\iff induction chain) on Young diagrams ↓ diffusive scaling limit, as effect of LLN time evolution of macroscopic profile $\omega_0 \longrightarrow \Omega_t \longrightarrow \cdots$

$$\mathfrak{m}_{\Omega_t} = \mathfrak{m}_{\omega_0} \boxplus \mathfrak{m}_{\Omega_t^0}$$

 $\mathfrak{m}_{\Omega^0_t}$: semi-circle distribution with mean 0 and variance t

$$\mathfrak{m}_{\Omega_{t}^{0}}(dx) = \frac{1}{2\pi t} \sqrt{4t - x^{2}} \, \mathbf{1}_{[-2\sqrt{t}, 2\sqrt{t}]}(x) dx$$
$$\Omega_{t}^{0}(x) = \begin{cases} \frac{2}{\pi} \left(x \arcsin \frac{x}{2\sqrt{t}} + \sqrt{4t - x^{2}}\right), & |x| \leq 2\sqrt{t} \\ |x|, & |x| > 2\sqrt{t} \end{cases}$$

 $(\Omega_1^0 \text{ is limit shape due to Vershik-Kerov and Logan-Shepp})$

$$\frac{\partial g}{\partial t} = -g \frac{\partial g}{\partial z} \qquad \text{for} \quad g(t,z) = \int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\Omega_t}(dx)$$

Aim of this talk

★ Restriction-induction chain on Young diagrams (canonical setting)

 $\downarrow \quad \text{diffusive scaling limit, as effect of LLN}$ time evolution of macroscopic profile $\omega_0 \longrightarrow \omega_t \longrightarrow \Omega = \Omega_1^0$

$$\mathfrak{m}_{\omega_t} = (\mathfrak{m}_{\omega_0})_{e^{-t}} \boxplus (\mathfrak{m}_{\Omega})_{1-e^{-t}}$$

where initial profile ω_0 taken so that \mathfrak{m}_{ω_0} has mean 0 and variance 1

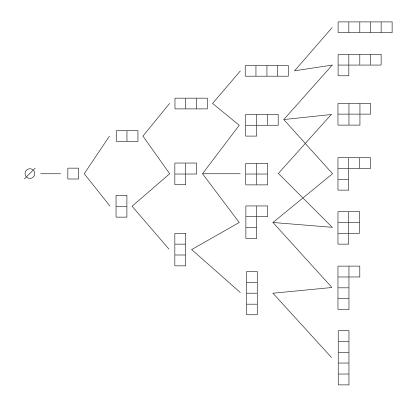
$$\frac{\partial G}{\partial t} = -G \frac{\partial G}{\partial z} + \frac{1}{G} \frac{\partial G}{\partial z} + G \qquad \text{for} \quad G(t,z) = \int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega_t}(dx)$$

• two remarks : grand canonical setting, evolution of global fluctuation

- two problems I cannot solve yet :
 - behavior of logarithmic energy for ω_t
 - derivation of PDE for $\omega(t, x) = \omega_t(x)$

§2 Plancherel measure and Plancherel growth process (review) : Kerov, Vershik–Kerov, ...

Young graph vertices:
$$\mathbb{Y} = \bigsqcup_{n=0}^{\infty} \mathbb{Y}_n, \quad \mathbb{Y}_0 = \{ \varnothing \}$$



Plancherel growth process is Markov chain (Z_n) on Young diagrams with transition matrix P^{\uparrow} and initial distribution δ_{\emptyset} s.t.

$$\begin{split} P^{\uparrow}_{\lambda,\mu} &= p^{\uparrow}(\lambda,\mu) : \text{ proportional to } \dim \mu \\ &= \frac{\dim \mu}{(|\lambda|+1)\dim \lambda}, \qquad \lambda,\mu \in \mathbb{Y}, \quad \lambda \nearrow \mu \end{split}$$

Irreducible decomposition of induction of irreducible representation

$$\operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \pi^{\lambda} \cong \bigoplus_{\mu \in \mathbb{Y}_n : \lambda \nearrow \mu} \pi^{\mu}$$

Then, the distribution after n step is

$$p_n(\emptyset, \lambda) = \mathbb{P}(Z_n = \lambda) = \frac{(\dim \lambda)^2}{n!} = \mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda)$$

called Plancherel measure on \mathbb{Y}_n

macroscopic profile : $1/\sqrt{n}$ both horizontally and vertically

$$\lambda \in \mathbb{Y}_n \longrightarrow [\lambda]^{\sqrt{n}}(x) = \frac{1}{\sqrt{n}}\lambda(\sqrt{n}x), \quad [\lambda]^{\sqrt{n}} \in \mathbb{D}_0 \subset \mathbb{D}$$

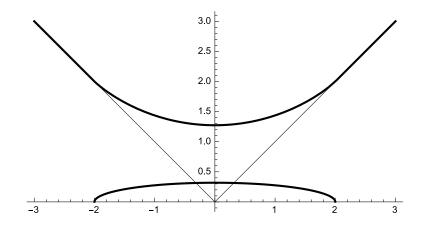
• rectangular diagram

$$\begin{split} \mathbb{D}_0 &= \big\{ \lambda: \mathbb{R} \longrightarrow \mathbb{R} \, \big| \, \text{continuous, piecewise linear,} \\ \lambda'(x) &= \pm 1, \ \lambda(x) = |x| \ (|x| \text{ large enough}) \big\} \end{split}$$

• continuous diagram

$$\mathbb{D} = \left\{ \omega : \mathbb{R} \longrightarrow \mathbb{R} \left| \left| \omega(x) - \omega(y) \right| \leq |x - y|, \ \omega(x) = |x| \ (|x| \text{ large enough}) \right\} \right.$$
$$\Omega(x) = \left\{ \begin{aligned} \frac{2}{\pi} \left(x \arcsin \frac{x}{2} + \sqrt{4 - x^2} \right), & |x| \leq 2 \\ |x|, & |x| > 2 \end{aligned} \right. \text{ limit shape}$$

The following LLN holds (static scaling limit for the Plancherel measure)



Vershik – Kerov 1977, Logan – Shepp 1977

$$\mathbb{M}_{\mathrm{Pl}}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_n \mid \sup_{x \in \mathbb{R}} |[\lambda]^{\sqrt{n}}(x) - \Omega(x)| \ge \epsilon\right\}\right) = \mathbb{P}\left(\|[Z_n]^{\sqrt{n}} - \Omega\|_{\sup} \ge \epsilon\right) \\
\xrightarrow[n \to \infty]{} 0 \qquad (\forall \epsilon > 0)$$

Namely, $[Z_n]^{\sqrt{n}}$ converges to Ω in probability as $n \to \infty$.

Continuous time Plancherel growth process $\tilde{Z}_s = Z_{N_s}$

- $(N_s)_{s \ge 0}$: Poisson process on $\{0, 1, \dots\}$, $N_0 = 0$ a.s., independent of (Z_n)
- initial distribution δ_{\varnothing}
- transition matrix $e^{s(P^{\uparrow}-I)}$

$$\tilde{\mathbb{P}}(\tilde{Z}_s = \lambda) = \sum_{n=0}^{\infty} \frac{e^{-s} s^n}{n!} \mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda), \qquad \lambda \in \mathbb{Y}$$

(Poissonization of the Plancherel measures)

Dynamical scaling limit

s: microscopic time, t: macroscopic time s = tnThen $[\tilde{Z}_{tn}]^{\sqrt{n}} \xrightarrow[n \to \infty]{} ?$

$$\tilde{\mathbb{P}}\big(\|[\tilde{Z}_{tn}]^{\sqrt{n}} - \Omega_t^0\|_{\sup} \ge \epsilon\big) = \tilde{\mathbb{P}}^{\tilde{Z}_{tn}}\big(\|[\lambda]^{\sqrt{n}} - \Omega_t^0\|_{\sup} \ge \epsilon\big)$$
$$= \sum_{k=0}^{\infty} \frac{e^{-tn}(tn)^k}{k!} \mathbb{M}_{\mathrm{Pl}}^{(k)}\big(\|[\lambda]^{\sqrt{n}} - \Omega_t^0\|_{\sup} \ge \epsilon\big)$$

The above Poisson distribution has mean tn and standard deviation \sqrt{tn} Under $\mathbb{M}_{\mathrm{Pl}}^{(\lfloor tn \rfloor)}$, $[\lambda]^{\sqrt{tn}} \to \Omega_1^0 \iff [\lambda]^{\sqrt{n}} \to \Omega_t^0$ where

$$\Omega_t^0(x) = \begin{cases} \frac{2}{\pi} \left(x \arcsin \frac{x}{2\sqrt{t}} + \sqrt{4t - x^2} \right), & |x| \leq 2\sqrt{t} \\ |x|, & |x| > 2\sqrt{t} \end{cases}$$

Proposition $[\tilde{Z}_{tn}]^{\sqrt{n}} \xrightarrow[n \to \infty]{} \Omega^0_t$ in probability

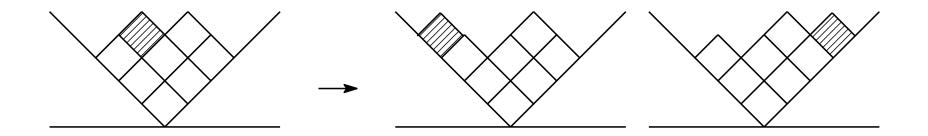
\S **3 Restriction-induction chain**

$$p^{\downarrow}(\lambda,\mu) \quad (\text{proportional to } \dim \mu) = \begin{cases} \frac{\dim \mu}{\dim \lambda}, & \mu \nearrow \lambda \\ 0, & \text{otherwise} \end{cases}$$
$$p^{\uparrow}(\lambda,\mu) \quad \text{as before (proportional to } \dim \mu) \end{cases}$$

Irreducible decomposition of restriction and induction of irreducible representation

$$\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \pi^{\lambda} \cong \bigoplus_{\nu \in \mathbb{Y}_{n-1}: \nu \nearrow \lambda} \pi^{\nu}, \qquad \operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \pi^{\nu} \cong \bigoplus_{\mu \in \mathbb{Y}_n: \nu \nearrow \mu} \pi^{\mu}$$

restriction \leftrightarrow removing 1 box, induction \leftrightarrow adding 1 box



Res-Ind chain $(X_m^{(n)})_{m=0,1,2,\dots}$ on \mathbb{Y}_n has transition matrix $P^{(n)} = P^{\downarrow}P^{\uparrow} = (p^{(n)}(\lambda,\mu))_{\lambda,\mu\in\mathbb{Y}_n}$

$$p^{(n)}(\lambda,\mu) = \sum_{\nu \in \mathbb{Y}_{n-1}: \nu \nearrow \lambda, \nu \nearrow \mu} p^{\downarrow}(\lambda,\nu) p^{\uparrow}(\nu,\mu), \qquad \lambda,\mu \in \mathbb{Y}_n$$

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:

$$\mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda)p^{(n)}(\lambda,\mu) = \mathbb{M}_{\mathrm{Pl}}^{(n)}(\mu)p^{(n)}(\mu,\lambda), \quad \lambda,\mu \in \mathbb{Y}_n,$$

hence the Plancherel measure is invariant distribution for Res-Ind chain

Restriction-induction chain is formerly dealt with e.g. in

• Fulman 2004, 2005 :

to construct exchangeable r.v.s distributed in Plancherel measure to apply Stein method

• Borodin – Olshanski 2009 :

to construct diffusion process on Thoma simplex under rescale of time $t = s/n^2$, space 1/n capturing factorial representations of \mathfrak{S}_{∞} (instead of limit shape)

Remove or add one box, treating each corner equally

```
Funaki – Sasada 2010 :
```

```
hydrodynamic limit for an evolutional model
```

Recall scheme of the problem

For continuous time Markov chain $(Y_s^{(n)})_{s \ge 0}$ on \mathbb{Y}_n ,

limiting behavior as $n \to \infty$ and $s \to \infty$ under scaling in space vs time

- macroscopic profile : $1/\sqrt{n}$ both horizontally and vertically

$$\lambda \in \mathbb{Y}_n \longrightarrow [\lambda]^{\sqrt{n}}(x) = \frac{1}{\sqrt{n}}\lambda(\sqrt{n}x), \quad [\lambda]^{\sqrt{n}} \in \mathbb{D}$$

- macroscopic time : t = s/n (diffusive scale)

Letting $n \to \infty$, as an effect of LLN, the distribution of $[Y_{tn}^{(n)}]^{\sqrt{n}}$ concentrates at a point ω_t , depending on t.

 ω_t : macroscopic profile at macroscopic time t

Describe evotuion of ω_t along t !

Continuous time Res-Ind chain $\tilde{X}_s^{(n)} = X_{N_s}^{(n)}$ on \mathbb{Y}_n with

- $(N_s)_{s \ge 0}$: Poisson process independent of $(X_m^{(n)})$
- transition matrix $e^{s(P^{(n)}-I)}$,
- initial distribution $\delta_{\lambda^{(n)}}$,
- invariant distribution $\mathbb{M}_{\mathrm{Pl}}^{(n)}$

Dynamic scaling limit

s: microscopic time, t: macroscopic time s = tnThen $[\tilde{X}_{tn}^{(n)}]^{\sqrt{n}} \xrightarrow[n \to \infty]{} ?$ (macroscopic profile depending on t)

Let
$$\mathbb{M}_t^{(n)} = ilde{\mathbb{P}}^{ ilde{X}_{tn}^{(n)}}$$
 : distribution of $ilde{X}_{tn}^{(n)}$ on \mathbb{Y}_n

Theorem (PRIMS 2015, SBMP 2016)

If initial condition satisfies $[\lambda^{(n)}]^{\sqrt{n}} \longrightarrow \omega_0 \in \mathbb{D}$ as $n \to \infty$, then, for $\forall t > 0$, there exists $\omega_t \in \mathbb{D}$ s.t. LLN

$$\mathbb{M}_{t}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_{n} \mid \|[\lambda]^{\sqrt{n}} - \omega_{t}\|_{\sup} \ge \epsilon\right\}\right) \xrightarrow[n \to \infty]{} 0 \quad (\forall \epsilon > 0)$$

holds.

- ω_0 can be taken arbitrarily in $\mathbb D$ s.t. $\int_{\mathbb R} \bigl(\omega_0(x) |x| \bigr) dx = 2$
- ω_t converges to Ω (limit shape) in $\mathbb D$ as $t \to \infty$
- The area is kept invariant: $\int_{\mathbb{R}} (\omega_t(x) |x|) dx = 2$ for $\forall t$

 $-\omega_t$ is described precisely by using free probability (as seen later)

Remark For a sequence of probability spaces $(\mathbb{Y}_n, \mathbb{M}^{(n)})$, we know some sufficient condition for LLN

$$\mathbb{M}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_n \mid \|[\lambda]^{\sqrt{n}} - \psi\|_{\sup} \ge \epsilon\right\}\right) \xrightarrow[n \to \infty]{} 0 \quad (\forall \epsilon > 0)$$

to hold with some continuous diagram $\psi \in \mathbb{D}$, which we call a concentration property at ψ (approximate factorization property of Biane 2001).

Examples

•
$$\mathbb{M}^{(n)} = \delta_{\lambda^{(n)}}$$
 for $[\lambda^{(n)}]^{\sqrt{n}} \to \omega_0 \in \mathbb{D}$ as $n \to \infty$
(ω_0 then satisfies $\int_{\mathbb{R}} (\omega_0(x) - |x|) dx = 2$)

• $\mathbb{M}^{(n)} = \mathbb{M}^{(n)}_{\mathrm{Pl}}$ (Plancherel measure)

Initial distribution can be generalized to one satisfying this concentration property

Theorem[♯] (PRIMS 2015, SBMP 2016)

The concentration property is propagated as time goes by; i.e. if initial distributions $\mathbb{M}_0^{(n)}$ satisfy the concentration property at $\omega_0 \in \mathbb{D}$, then $\mathbb{M}_t^{(n)}$ also satisfy the concentration property for $\forall t > 0$, hence there exists $\omega_t \in \mathbb{D}$ s.t. LLN

$$\mathbb{M}_{t}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_{n} \mid \|[\lambda]^{\sqrt{n}} - \omega_{t}\|_{\sup} \ge \epsilon\right\}\right) \xrightarrow[n \to \infty]{} 0 \quad (\forall \epsilon > 0)$$

holds.

Here ω_t is determined by

$$\mathfrak{m}_{\omega_t} = (\mathfrak{m}_{\omega_0})_{e^{-t}} \boxplus (\mathfrak{m}_{\Omega})_{1-e^{-t}}$$

(free convolution of free compressions of transition measures).

Furthermore time evolution of the distribution is described through its Stieltjes transform

$$G(t,z) = \int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega_t}(dx).$$

PDE describing time evolution of transition measure \mathfrak{m}_{ω_t}

$$\frac{\partial G}{\partial t} = -G \frac{\partial G}{\partial z} + \frac{1}{G} \frac{\partial G}{\partial z} + G, \qquad t > 0, \ z \in \mathbb{C}^+$$

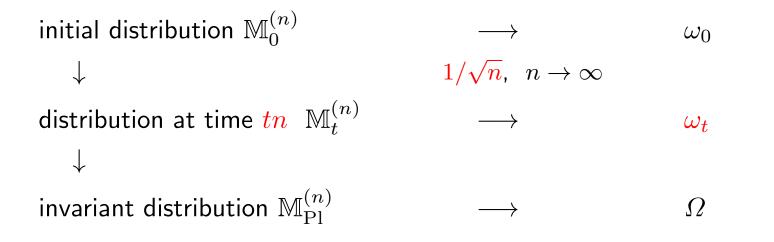
Remark For Plancherel growth process also, consider initial distribution $\mathbb{M}_{0}^{(n)}$ on $\mathbb{Y}_{\lfloor an \rfloor} \subset \mathbb{Y}$ satisfying the concentration property at $\omega_{0} \in \mathbb{D}$ where $\frac{1}{2} \int_{\mathbb{R}} (\omega_{0}(x) - |x|) dx = a$. Then, $[Z_{N_{tn}}]^{\sqrt{n}} \longrightarrow \Omega_{t}$ in probability as $n \to \infty$.

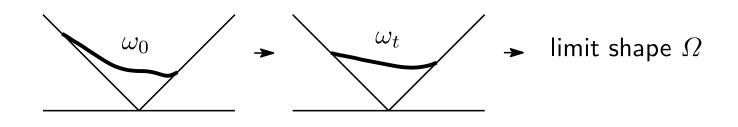
Transition measure of Ω_t^0 (limit shape of Plancherel growth process at time t) is semicircle distribution of mean 0 and variance t,

$$\int_{\mathbb{R}} \frac{1}{z - x} \mathfrak{m}_{\Omega_t^0}(dx) = \frac{z - \sqrt{z^2 - 4t}}{2t}$$
$$\mathfrak{m}_{\Omega_t} = \mathfrak{m}_{\omega_0} \boxplus \mathfrak{m}_{\Omega_t^0}$$

Stieltjes transform $g(t,z) = \int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\Omega_t}(dx)$ also satisfies PDE :

$$\frac{\partial g}{\partial t} = -g \, \frac{\partial g}{\partial z}$$





$\S 4$ Remarks and Problems

Evolution of global fluctuation (in progress)

fluctuation for other (non-Plancherel) ensembles "character factorization property" c.f. Śniady 2005

▶ In the Res-Ind model, character factorization property is propagated at any macroscopic time t.

Hence, if initial ensemble $(\mathbb{Y}_n, \mathbb{M}_0^{(n)})$ has character factorization property, $\sqrt{n}(\mathfrak{m}_{\lambda\sqrt{n}} - \mathfrak{m}_{\omega_t})$ on $(\mathbb{Y}_n, \mathbb{M}_t^{(n)})$ converges as $n \to \infty$ to the fluctuation at t, namely $\{\langle x^j, \sqrt{n}(\mathfrak{m}_{\lambda\sqrt{n}} - \mathfrak{m}_{\omega_t}) \rangle\}_j$ converges as $n \to \infty$ to Gaussian system with mean 0 and some covariance with complicated t-dependence. Res-Ind model in grand canonical setting (in progress)

Poissonization of the Plancherel measure

$$\mathbb{M}_{\mathrm{PP}}^{(\xi)} = \sum_{n=0}^{\infty} \frac{e^{-\xi}\xi^n}{n!} \mathbb{M}_{\mathrm{Pl}}^{(n)}, \qquad \xi > 0$$

is kept invariant under transition probability $P^{(\xi)}$ on $\mathbb Y$:

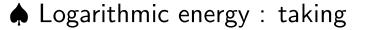
$$P^{(\xi)} = \alpha_{\xi}(n)P^{\uparrow(n)} + (1 - \alpha_{\xi}(n))P^{\downarrow(n)},$$

$$\alpha_{\xi}(n) = \int_{0}^{1} \xi e^{-\xi x} (1-x)^{n} dx$$

Continuous time Markov chain $(X_{N_s}^{(\xi)})_{s \ge 0}$ Rescale for time $s = t\xi$, for space $[\lambda]^{\sqrt{\xi}} = \frac{1}{\sqrt{\xi}}\lambda(\sqrt{\xi}x)$ $(\lambda \in \mathbb{Y})$ ► Let initial ensemble $(\mathbb{Y}, \mathbb{M}_0^{(\xi)})$ satisfy the concentration property as $\xi \to \infty$, for example Poissonization of $(\mathbb{Y}_n, \mathbb{M}_0^{(n)})$, each satisfying concentration property as $n \to \infty$. Then $[X_{N_{t\xi}}^{(\xi)}]^{\sqrt{\xi}}$ converges to some ω_t in probability as $\xi \to \infty$.

Macroscopic profile ω_t is characterized by

$$\mathfrak{m}_{\omega_t} = (\mathfrak{m}_{\omega_0})_{e^{-t/2}} \boxplus (\mathfrak{m}_{\Omega})_{1-e^{-t/2}}, \qquad t > 0$$



$$\mathbb{M}_{\mathrm{Pl}}^{(n)}(\lambda) = (1+o(1))\sqrt{2\pi n} \exp\left\{-n\left(1+\frac{1}{2}\iint_{\{s>t\}} \left(1-([\lambda]^{\sqrt{n}})'(s)\right)\right) \\ \left(1+([\lambda]^{\sqrt{n}})'(t)\right)\log(s-t)dsdt + O\left(\frac{1}{\sqrt{n}}\right)\right)\right\}$$

into account, set for $\omega \in \mathbb{D}$

$$\theta(\omega) = 1 + \frac{1}{2} \iint_{\{s>t\}} \left(1 - \omega'(s)\right) \left(1 + \omega'(t)\right) \log(s - t) ds dt$$

We know

- Limit shape Ω is unique minimizer for θ in \mathbb{D} $(\theta(\Omega) = 0)$.
- In Res-Ind model, ω_t converges to Ω as $t \to \infty$.

Problem Is $\theta(\omega_t)$ decreasing for sufficiently large t?

♠ PDE describing Res-Ind model

Stieltjes transform G(t,z) of \mathfrak{m}_{ω_t} satisfies

$$\frac{\partial G}{\partial t} = -G \,\frac{\partial G}{\partial z} + \frac{1}{G} \,\frac{\partial G}{\partial z} + G, \qquad t > 0, \ z \in \mathbb{C}^+$$

Problem Find PDE for $\omega(t, x) = \omega_t(x)$ itself !

Reference

- A. Hora: A diffusive limit for the profiles of random Young diagrams by way of free probability, Publ. RIMS Kyoto Univ. 51 (2015)
- A. Hora: The Limit Shape Problem for Ensembles of Young Diagrams, SpringerBriefs in Mathematical Physics 17, Springer, 2016
- A. Hora: Representations of the symmetric groups and analysis of ensembles of Young diagrams (in Japanese), Sugaku no Mori 4, Sugakushobo, 2017