Effect of microscopic pausing time distribution on evolution of macroscopic profiles in Young diagram ensembles

Akihito HORA (Hokkaido University)

Non-commutative probability and related fields

Hokkaido University, 1–2 November 2018

§1 Introduction

$$\mathbb{Y}_n = \{ \text{Young diagram with } n \text{ boxes} \}, \qquad \mathbb{Y} = \bigsqcup_{n=0}^{\infty} \mathbb{Y}_n$$

Markov chain on \mathbb{Y}_n caused by (non-local) movement of a corner box

called Res-Ind chain $(Z_k^{(n)})_{k\in\{0,1,2,\cdots\}}$ on \mathbb{Y}_n

 $\mathbb{Y}_n \cong \widehat{\mathfrak{S}}_n$: the equivalence classes of irreducible representations of the symmetric group of degree n

restriction \leftrightarrow removing box, induction \leftrightarrow adding box

Irreducible decomposition of restriction and induction of an irreducible representation of symmetric group

$$\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \pi^{\lambda} \cong \bigoplus_{\nu \in \mathbb{Y}_{n-1}: \lambda \searrow \nu} \pi^{\nu}, \qquad \operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \pi^{\nu} \cong \bigoplus_{\mu \in \mathbb{Y}_n: \nu \nearrow \mu} \pi^{\mu}$$

$$p^{\downarrow}(\lambda,\nu) = \begin{cases} \frac{\dim \nu}{\dim \lambda}, & \lambda \searrow \nu \\ 0, & \text{otherwise}, \end{cases} \qquad p^{\uparrow}(\nu,\mu) = \begin{cases} \frac{\dim \mu}{(|\nu|+1)\dim \nu}, & \nu \nearrow \mu \\ 0, & \text{otherwise} \end{cases}$$

both proportional to dimension of terminal diagram
Set

$$p^{(n)}(\lambda,\mu) = \sum_{\nu \in \mathbb{Y}_{n-1}: \lambda \searrow \nu, \nu \nearrow \mu} p^{\downarrow}(\lambda,\nu) p^{\uparrow}(\nu,\mu), \qquad \lambda,\mu \in \mathbb{Y}_n$$

Transition matrix of Res-Ind chain on \mathbb{Y}_n :

$$P^{(n)} = P^{\downarrow}P^{\uparrow} = \left(p^{(n)}(\lambda, \mu)\right)_{\lambda, \mu \in \mathbb{Y}_n}$$

Plancherel measure on \mathbb{Y}_n

$$M_{\text{Pl}}^{(n)}(\{\lambda\}) = \frac{(\dim \lambda)^2}{n!}, \qquad \lambda \in \mathbb{Y}_n$$

Lemma Res-Ind chain is symmetric w.r.t. the Plancherel measure:

$$M_{Pl}^{(n)}(\{\lambda\})p^{(n)}(\lambda,\mu) = M_{Pl}^{(n)}(\{\mu\})p^{(n)}(\mu,\lambda), \quad \lambda,\mu \in \mathbb{Y}_n,$$

hence the Plancherel measure is invariant distribution for Res-Ind chain

 $(Z_k^{(n)})_{k\in\{0,1,2,\cdots\}}$: Res-Ind chain on \mathbb{Y}_n with initial distribution $M_0^{(n)}$

Construct continuous time random walk on \mathbb{Y}_n from transition matrix $P^{(n)}$

 $\{ au_j\}_{j\in\mathbb{N}}$: i.i.d. random variables obeying ψ $(
eq \delta_0)$ on $[0,\infty)$,

independent of $\{(Z_k^{(n)})_{k\in\{0,1,2,\cdots\}}\}_{n\in\mathbb{N}}$

 $(N_s)_{s\geq 0}$: counting process with au_j 's as pausing intervals

$$N_s = \sup\{j \in \mathbb{N} \mid \tau_1 + \dots + \tau_j \leq s\} < \infty \text{ a.s.}, \quad N_0 \equiv 0 \text{ a.s.}$$

Set
$$X_s^{(n)} = Z_{N_s}^{(n)}, \qquad s \ge 0$$

$$\mathbb{P}(X_s^{(n)} = \mu) = \sum_{j=0}^{\infty} \mathbb{P}(Z_j^{(n)} = \mu) \, \mathbb{P}(\tau_1 + \dots + \tau_j \le s, \tau_1 + \dots + \tau_{j+1} > s)$$

$$= \sum_{j=0}^{\infty} (M_0^{(n)} P^{(n)j})_{\mu} \int_{[0,s]} \psi((s - u, \infty)) \, \psi^{*j}(du)$$

Continuous time random walk $(X_s^{(n)})_{s\geq 0}$ on \mathbb{Y}_n as microscopic dynamics \longrightarrow scaling limit in space and time

– macroscopic profile : $1/\sqrt{n}$ both horizontally and vertically

$$\lambda \in \mathbb{Y}_n \longrightarrow [\lambda]^{\sqrt{n}}(x) = \frac{1}{\sqrt{n}}\lambda(\sqrt{n}x)$$
 constant "area"

- macroscopic time : $t = s/\alpha(n)$ $\alpha(n)$: micro/macro scaling factor

Dynamic scaling limit

 $[X_{t\alpha(n)}^{(n)}]^{\sqrt{n}} \stackrel{n\to\infty}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-}$ (deterministic) macroscopic shape depending on t

from LLN (concentration phenomenon)

§2 Concentration phenomenon (static model)

LLN in probability theory

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow{n \to \infty} \text{constant}$$

if X_1, X_2, \cdots : independent + some conditions

$$\mathbb{E}[e^{i(\xi_1 X_1 + \dots + \xi_n X_n)}] = \prod_{k=1}^n \mathbb{E}[e^{i\xi_k X_k}] \quad \text{(factorizability of characteristic function)}$$

Continuous diagram

$$\mathbb{D} = \{\omega : \mathbb{R} \longrightarrow \mathbb{R} \mid |\omega(x) - \omega(y)| \leq |x - y|, \ \omega(x) = |x| \ (\text{for } |x| \ \text{large enough}) \}$$

The following LLN holds (static scaling limit for the Plancherel measure) Vershik – Kerov 1977, Logan – Shepp 1977

$$\Omega(x) = \begin{cases} \frac{2}{\pi} \left(x \arcsin \frac{x}{2} + \sqrt{4 - x^2} \right), & |x| \leq 2 \\ |x|, & |x| > 2 \end{cases}$$
 limit shape

$$\mathcal{M}_{\mathrm{Pl}}^{(n)}\left(\left\{\lambda \in \mathbb{Y}_n \mid \sup_{x \in \mathbb{R}} \left| [\lambda]^{\sqrt{n}}(x) - \Omega(x) \right| \ge \epsilon \right\}\right) \xrightarrow{n \to \infty} 0 \qquad (\forall \epsilon > 0)$$

For a sequence of probability spaces $\{(\mathbb{Y}_n,M^{(n)})\}_{n\in\mathbb{N}}$, we know some sufficient condition for LLN

$$M^{(n)}\left(\left\{\lambda \in \mathbb{Y}_n \mid \left\| [\lambda]^{\sqrt{n}} - \psi \right\|_{\sup} \ge \epsilon \right\}\right) \xrightarrow[n \to \infty]{} 0 \quad (\forall \epsilon > 0)$$

to hold with some continuous diagram $\psi \in \mathbb{D}$

$$\lambda \in \mathbb{Y}_n \ \cong \ \widehat{\mathfrak{S}}_n, \qquad \rho \in \mathbb{Y}_n \ \cong \ \{ \text{conjugacy classes of } \mathfrak{S}_n \}$$

$$\chi_\rho^\lambda = \text{value at an element in conjugacy class labeled by } \rho \text{ of }$$
 irreducible character labeled by
$$\widetilde{\chi}^\lambda = \chi^\lambda / \dim \lambda : \text{ normalized irreducible character}$$

$$\mathbb{Y}^\times = \{ \rho \in \mathbb{Y} \, | \, \rho \text{ has no one-box rows} \}$$

$$l(\rho) = \sharp \text{ of rows of } \rho \in \mathbb{Y}$$

Approximate factorization property of Biane: for any $\rho, \sigma \in \mathbb{Y}^{\times}$

$$\mathbb{E}_{M^{(n)}} \left[\widetilde{\chi}_{(\rho \sqcup \sigma, 1^{n-|\rho|-|\sigma|})}^{\cdot} \right] - \mathbb{E}_{M^{(n)}} \left[\widetilde{\chi}_{(\rho, 1^{n-|\rho|})}^{\cdot} \right] \mathbb{E}_{M^{(n)}} \left[\widetilde{\chi}_{(\sigma, 1^{n-|\sigma|})}^{\cdot} \right]$$

$$= o \left(n^{-\frac{1}{2}(|\rho| - l(\rho) + |\sigma| - l(\sigma))} \right) \quad (n \to \infty)$$

combined with some conditions implies concentration at some $\psi \in \mathbb{D}$.

Examples

•
$$M^{(n)}=\delta_{\lambda^{(n)}}$$
 for $[\lambda^{(n)}]^{\sqrt{n}}\to\omega_0\in\mathbb{D}$ as $n\to\infty$
$$\left(\omega_0\text{ then satisfies }\int_{\mathbb{R}}(\omega_0(x)-|x|)dx=2\right)$$

Irreducible decomposition of some representation of symmetric group

- ullet $M^{(n)} = \mathrm{M}^{(n)}_{\mathrm{Pl}}$ (Plancherel measure) \longleftarrow regular representation
- Littlewood-Richardson measure

outer product of irreducible representations

§3 Dynamical limit shape (main result)

Young diagram λ is characterized by

its profile
$$y=\lambda(x)$$
 or transition measure $\mathbf{m}_{\lambda}=\sum_{i=1}^{r}\mu_{i}\delta_{x_{i}}\in\mathcal{P}(\mathbb{R})$

$$\frac{(z-y_1)\cdots(z-y_{r-1})}{(z-x_1)\cdots(z-x_r)} = \frac{\mu_1}{z-x_1} + \cdots + \frac{\mu_r}{z-x_r}$$

 \implies extended to continuous diagram: $y = \omega(x) \longleftrightarrow \mathfrak{m}_{\omega}$

Markov transform

$$\frac{1}{z} \exp\left\{ \int_{\mathbb{R}} \frac{1}{x-z} \left(\frac{\omega(x) - |x|}{2} \right)' dx \right\} = \int_{\mathbb{R}} \frac{1}{z-x} \mathfrak{m}_{\omega}(dx), \qquad z \in \mathbb{C}^+$$

e.g.

limit shape $\Omega \longleftrightarrow \mathfrak{m}_{\Omega}$: standard semi-circle distribution

Free convolution, free compression

 (A,ϕ) : probability space

self-adjoint
$$a \in A$$
, $\mu \in \mathcal{P}_c(\mathbb{R})$ with compact support

$$a \sim \mu \iff \phi(a^k) = M_k(\mu) \text{ for any } k \in \{0, 1, 2, \cdots\}$$

Given
$$\mu, \nu \in \mathcal{P}_c(\mathbb{R})$$
, $a \sim \mu$, $b \sim \nu$, a and b are free, then

$$a+b \sim \mu \boxplus \nu \in \mathcal{P}_c(\mathbb{R})$$
: free convolution of μ and ν

$$p \in A$$
: projection free from a , $\phi(p) = \alpha > 0$, pap in $(pAp, \alpha^{-1}\phi|_{pAp}) \sim \mu_{\alpha} \in \mathcal{P}_{c}(\mathbb{R})$: free compression of μ

$$ightharpoonup R_k(\mu \boxplus \nu) = R_k(\mu) + R_k(\nu), \qquad k \in \mathbb{N}$$

$$ightharpoonup R_k(\mu_{\alpha}) = \alpha^{k-1} R_k(\mu), \qquad k \in \mathbb{N}$$

Theorem 1

The continuous time random walk $(X_s^{(n)})_{s\geq 0}$ with distribution at time $s\geq 0$:

$$M_s^{(n)}(\{\lambda\}) = \mathbb{P}(X_s^{(n)} = \lambda), \qquad \lambda \in \mathbb{Y}_n$$

Assume

- ullet the sequence of initial distributions $\{(\mathbb{Y}_n,M_0^{(n)})\}_{n\in\mathbb{N}}$ has concentration property at $\omega_0\in\mathbb{D}$
- ullet the pausing time distribution ψ with characteristic function φ satisfies:
 - $-\varphi$ is differentiable at 0 (ψ having mean m>0)
 - integrability condition for φ : for some $\delta>0$

$$\int_{\{|\xi| \ge \delta\}} \left| \frac{\varphi(\xi)}{\xi} \right| d\xi < \infty.$$

Then

for macroscopic time t > 0 and microscopic time s = tn

i.e. scaling factor $\alpha(n)=n$, concentration property is propagated along t, hence the sequence $\{(\mathbb{Y}_n,M_{tn}^{(n)})\}_{n\in\mathbb{N}}$ has concentration at some $\omega_t\in\mathbb{D}$. The macroscopic profile ω_t is characterized by

$$\mathfrak{m}_{\omega_t} = (\mathfrak{m}_{\omega_0})_{e^{-t/m}} \boxplus (\mathfrak{m}_{\Omega})_{1-e^{-t/m}}$$

and recovered by using the Markov transform.

Initial profile ω_0 is arbitrarily taken to satisfy $\int_{\mathbb{R}} (\omega_0(x) - |x|) dx = 2$.

Let the pausing time obey a heavy-tailed distribution without the mean. As an example of such distribution on $[0,\infty)$, let ψ be the one-sided stable distribution of exponent 1/2:

$$\psi(x) = \frac{1}{\sqrt{2\pi}} x^{-3/2} e^{-1/(2x)} 1_{[0,\infty)}(x),$$

with characteristic function

$$\varphi(\xi) = e^{-\sqrt{|\xi|} (1 - i \operatorname{sign}(\xi))}, \qquad \xi \in \mathbb{R}.$$

Theorem 2

The continuous time random walk $(X_s^{(n)})_{s \ge 0}$ with distribution at time $s \ge 0$:

$$M_s^{(n)}(\{\lambda\}) = \mathbb{P}(X_s^{(n)} = \lambda), \qquad \lambda \in \mathbb{Y}_n$$

Assume

- ullet the sequence of initial distributions $\{(\mathbb{Y}_n,M_0^{(n)})\}_{n\in\mathbb{N}}$ has concentration property at $\omega_0\in\mathbb{D}$
- ullet pausing time obeys the one-sided stable distribution of exponent 1/2.

Then

for macroscopic time t>0 and microscopic time $s=t\alpha(n)$

- 1. if $\alpha(n)/n^2\to 0$ as $n\to\infty$, $\{(\mathbb{Y}_n,M^{(n)}_{t\alpha(n)})\}_{n\in\mathbb{N}}$ inherits concentration property, however, at $\omega_t=\omega_0$
- 2. if $\alpha(n)/n^2 \to \infty$ as $n \to \infty$, $\{(\mathbb{Y}_n, M_{t\alpha(n)}^{(n)})\}_{n \in \mathbb{N}}$ inherits concentration property, however, at $\omega_t = \Omega$
- 3. if $\alpha(n)=n^2$, $\{(\mathbb{Y}_n,M_{tn^2}^{(n)})\}_{n\in\mathbb{N}}$ inherits concentration property if and only if $\omega_0=\Omega$

(essentially no propagation of concentration property)

As an essential step of computation

•
$$\mathbb{E}_{M_s^{(n)}}[M_k(\mathfrak{m}_{\lambda^{\sqrt{n}}})]$$
 $(M_k: k \text{th moment })$

 $\{M_k\}$: moment sequence \iff $\{R_k\}$: free cumulant sequence

•
$$\mathbb{E}_{M_s^{(n)}}[R_k(\mathfrak{m}_{\lambda^{\sqrt{n}}})] = n^{-k/2}\mathbb{E}_{M_s^{(n)}}[R_k(\mathfrak{m}_{\lambda})]$$

$$\{R_{k+1}(\mathfrak{m}_{\lambda})\} \iff \{\chi_{(k,1^{n-k})}^{\lambda}\}$$
 Kerov polynomial

 $(\chi^{\lambda}_{(k,1^{n-k})})_{\lambda\in\mathbb{Y}_n}$: eigenvector of transition matrix $P^{(n)}$ of Res-Ind chain

$$\bullet \ \mathbb{E}_{M_s^{(n)}}\big[\chi_{(k,1^{n-k})}^{\lambda}\big] \ \longrightarrow \ \mathbb{E}_{M_0^{(n)}}\big[\chi_{(k,1^{n-k})}^{\lambda}\big]$$

References

- A. Hora: Effect of microscopic pausing time distributions on the dynamical limit shapes for random Young diagrams, in preparation
- A. Hora: A diffusive limit for the profiles of random Young diagrams by way of free probability, Publ. RIMS Kyoto Univ. 51 (2015)
- A. Hora: The Limit Shape Problem for Ensembles of Young Diagrams, SpringerBriefs in Mathematical Physics 17, Springer, 2016
- 洞彰人: 対称群の表現とヤング図形集団の解析学—漸近的表現論への 序説, 数学の杜 4, 数学書房, 2017
- * G. H. Weiss: Aspects and Applications of the Random Walk, North-Holland, 1994
- * E. Lukacs: Characteristic Functions, Charles Griffin & Co Ltd, 1960