Corrections to :

A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, TMP, Springer, 2007

Chapter 11

- In p. 300 the text from Equation (11.3) until the bottom of that page is subject to the following replacement. (Equation (11.3) is incorrect. M_{k+1} is to be replaced by free cumulant R_{k+1}, while we do not use this in the following corrected text.) After the sentence containing Equation (11.2), we proceed as follows.

Then $M_{k}\left(\mathfrak{m}_{\lambda}\right)$ is expressed as a polynomial in $\Sigma_{k-1}(\lambda), \Sigma_{k-2}(\lambda), \cdots$ in which each term has at most weight degree k. See Sect. 11.6 for details.

We consider a family of (11.1) indexed by $k=1,2, \ldots$. Since the k th moment of a $1 / \sqrt{n}$-rescaled diagram gets $n^{-k / 2}$-multiple, the right hand side of (11.1) is equivalently replaced by

$$
\begin{equation*}
n^{-(k+2) / 2} P\left(\Sigma_{k+1}, \Sigma_{k}, \cdots\right)-(\text { constant }), \tag{11.3}
\end{equation*}
$$

where a term in the polynomial $P\left(\Sigma_{k+1}, \Sigma_{k}, \cdots\right)$, say

$$
\Sigma_{k_{1}} \Sigma_{k_{2}} \cdots \Sigma_{k_{l}} \Sigma_{1}^{r}, \quad k_{i} \geq 2, r \geq 0
$$

has weight degree $\left(k_{1}+1\right)+\cdots+\left(k_{l}+1\right)+2 r \leq k+2$. On the other hand, Kerov's central limit theorem for irreducible characters of $S(n)$ below ensures that Σ_{j} 's behave as independent $n^{j / 2}$-multiple Gaussian random variables asymptotically. Hence the contributing order of $\Sigma_{k_{1}} \cdots \Sigma_{k_{l}} \Sigma_{1}^{r}$ in (11.3) is

$$
-\frac{k+2}{2}+\frac{k_{1}}{2}+\cdots+\frac{k_{l}}{2}+r \leq-\frac{l}{2} .
$$

Note that the constant term in (11.3) vanishes asymptotically (together with the $l=0$ term) since we already know that (11.3) tends to 0 as $n \rightarrow \infty$. The dominant terms are thus those of $l=1$. Then, rescaled by \sqrt{n}-multiple, (11.3) converges to a sum of Gaussian random variables.

