Methods in Applied Mathematics I, 2007
 Report Problems

Akihito Hora (Graduate Schoool of Mathematics)

- Write your name, affiliation and year on the top page.
- Submit your report by February 1 (Fri) into the box in the control room. (Choose the correct box because there are several boxes for report submissions.)
- Your report should be written in English.

Problem 1. (1) Let (Ω, \mathcal{F}, P) be a probability space. Show that

$$
P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

holds if $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and $A_{1} \supset A_{2} \supset \cdots$ (i.e. A_{n} 's are decreasing events).
(2) In our coin tossing model, show that $P(\{1,1,1, \cdots\})=0$ holds.

Problem 2. Consider infinite trials of coin tossing, HEAD comig out with probability p at each trial. Let X be the number of HEADs before k TAILs appear.
(1) Find the probability $P(X=n)$ for each $n=0,1,2, \cdots$.
(2) This is called the Pascal distribution or a negative binomial distribution. Why is it referred to as "negative binomial"?

Problem3. Do something about the gamma function:

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, \quad x>0
$$

(especially on asymptotic behavior as $x \rightarrow \infty$).
Problem 4. (1) Check properties of the rate function

$$
f(x)=(p+x) \log \left(1+\frac{x}{p}\right)+(1-p-x) \log \left(1-\frac{x}{1-p}\right), \quad-p \leq x \leq 1-p
$$

to draw a figure of the graph of $y=f(x)$.
(2) For positive sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$, show that

$$
\lim _{n \rightarrow \infty} \frac{\log a_{n}}{n}=a \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\log b_{n}}{n}=b \quad \text { imply } \quad \lim _{n \rightarrow \infty} \frac{\log \left(a_{n}+b_{n}\right)}{n}=\max (a, b) .
$$

