Doubly autoparallel structure and

curvature integrals

－An application to iteration－complexity analysis of convex optimization－
Atsumi Ohara University of Fukui
Collaborators：
H．Ishi（Osaka Metropolitan Univ．）， T．Tsuchiya（GRIPS），
K．Uohashi（Tohoku Gakuin Univ．）
統計多様体の幾何学とその周辺（14）
November 2－4， 2022 ＠北大

Outline

- Introduction: Doubly autoparallel submanifolds
- Preliminaries
- Dually flat structure on a symmetric cones
- Characterization of DA submfd in sym. cones
- Several applications
- Conic linear program on convex cones Ω
- Central trajectory
- Geometric predictor-corrector method in Ω^{*}
- Curvature integral and iteration-complexity
- Application to primal-dual path following methods
- Concluding remark

Introduction

Doubly autoparallel submanifolds

Def. Statistical manifold: $\left(\mathcal{S}, g, \nabla, \nabla^{*}\right)$
$X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right)$
X, Y and Z : arbitrary vector fields on \mathcal{S}

* g : Riemannian metric
$\star\left(\nabla, \nabla^{*}\right)$: torsion-free affine connections

$$
R^{\nabla}=0, R^{\nabla^{*}}=0 \Rightarrow \text { dually flat }
$$

$\star \nabla^{(\alpha)}=\frac{1+\alpha}{2} \nabla+\frac{1-\alpha}{2} \nabla^{*}: \alpha$-connections

- Def. Let $\left(S, g, \nabla, \nabla^{*}\right)$ be a statistical manifold and M be its submanifold. We call M a doubly autoparallel submanifold in S when the followings hold:
- $\forall X, Y \in \mathcal{X}(M), \nabla_{X} Y \in \mathcal{X}(M)$

$$
\text { i.e. } H_{M}(X, Y)=0
$$

- $\forall X, Y \in \mathcal{X}(M), \nabla_{X}^{*} Y \in \mathcal{X}(M)$

$$
\text { i.e. } H_{M}^{*}(X, Y)=0
$$

Important Properties

Proposition The following statements are equivalent:

- 1) A submanifold M is doubly autoparallel (DA)
- 2) M is autoparallel w.r.t. the α-connections

$$
\nabla^{(\alpha)}=\left\{(1+\alpha) \nabla+(1-\alpha) \nabla^{*}\right\} / 2
$$

for two different α 's.

- 3) M is autoparallel w.r.t. all the α-connections.
- 4) all the α-geodesics connecting two points on M lay in M (if it is simply connected).
- 5) M is affinely constrained in both ∇ - and ∇^{*}-affine coordinates if S is dually flat.

Furthermore, for a parametric statistical model S

- If M is DA in S, then α-projections (q-MaxEnt) from p to M are unique for all α if they exist.

Related topics and applications

Symmetric cones

- MLE for structured covariance matrices is tractable (cast to convex program: inversely linear structure) [Anderson 70, Malley 94]
- Explicitly solvable Semi-Definite Programs [O 99]
- Structure of α-power means on symmetric cones [O o4]

Related topics and applications Probability simplex

- Statistical models Markov-isomorphic to the probability simplex [Nagaoka 17]
- Characterization and classification of DA submfds in prob. simplex via Hadamard algebra [O\&Ishi 18]
- Learning theory [Mutus\&Ay 03]

Miscellaneous

- The self-similar (Barenblatt-Pattle) solution for the porous medium equation [O\&Wada 10]
General statistical manifolds
- Purely geometric study [Satoh et al. 21]

Preliminaries

[Faraut\&Korani 94]

- Symmetric cone Ω in an Euclidian space E
- Homogeneous

$$
G(\Omega)=\{\tau \in G L(E) \mid \tau(\Omega)=\Omega\} \text { acts transitively }
$$

- self-dual w.r.t. an inner product of E

$$
\Omega=\Omega^{*}, \quad \Omega^{*}=\{y \in E \mid(x \mid y)>0, \forall x \in \bar{\Omega} \backslash\{0\}\}
$$

- Euclidean Jordan algebra $(V, *)$
- Commutative
- $x^{2} *(x * y)=x *\left(x^{2} * y\right), \quad$ where $x^{2}=x * x$
- Associative inner-product $(x * y \mid z)=(y \mid x * z)$

Prop. $\Omega=\operatorname{int}\left\{x^{2} \mid x \in V\right\}$ is a symmetric cone in V.

Ex. the set of real symmetric p. d. matrices $\operatorname{PD}(n, \mathbf{R})$

$$
\begin{aligned}
& V=\operatorname{Sym}(n ; \mathbf{R}), \quad X * Y=(X Y+Y X) / 2 \\
& \tau_{G}(X)=G X G^{T}, \quad G \in G L(n, \mathbf{R})
\end{aligned}
$$

$(X \mid Y)=\operatorname{tr}(X Y)$, the unit: I, the inverse: X^{-1}

- $L(x): V \rightarrow V, L(x) y=x * y$
- $P(x, y):=L(x) L(y)+L(y) L(x)-L(x * y)$
- Mutation: $\quad x \perp_{a} y:=P(x, y) a$
isomorphic to $*$, the unit element: a^{-1}
Ex. $\quad X \perp_{A} Y=(X A Y+Y A X) / 2$

Preliminaries (Dually flat structure on Ω)

- Logarithmic characteristic function on Ω

$$
\psi(x):=\log \int_{\Omega^{*}} e^{-\langle s, x\rangle} d s
$$

- positive definite Hessian on Ω
- $x^{-1}=-\operatorname{grad} \psi(x)$,

$$
(\operatorname{grad} f(x) \mid u)=D_{u} f(x)
$$

- Ex. $\psi(x)=-\sum_{i=1}^{n} \log x^{i}$ on $\mathbf{R}_{++}^{n}, \quad \psi(x)=-\log \operatorname{det} X$ on $\operatorname{PD}(n)$
- a coordinate system $\left(x^{i}\right) \quad x=\sum_{i=1}^{n} x^{i} e_{i},\left\{e_{i}\right\}_{i=1}^{n}:$ a basis of E
- a dual coordinate system $\left(s_{i}\right)^{i=1}$
$x^{-1}=\sum_{i=1}^{n} s_{i} e^{i}, \quad\left\{e^{i}\right\}_{i=1}^{n}:$ a basis of E with $\left(e^{i} \mid e_{j}\right)=-\delta_{j}^{i}$
- D : the canonical flat affine connection on E
- $\left\{x^{1}, \cdots, x^{n}\right\}$: affine coordinate system, i.e., $D_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=0$
- g : Riemannian metric on Ω

$$
g=D d \psi=\sum_{i, j} \frac{\partial^{2} \psi}{\partial x^{i} \partial x^{j}} d x^{i} d x^{j}
$$

- D^{\prime} : the dual affine connection on Ω

$$
X g(Y, Z)=g\left(D_{X} Y, Z\right)+g\left(Y, D_{X}^{\prime} Z\right)
$$

$\left(g, D, D^{\prime}\right)$: dually flat structure on Ω

Pleriminaries and ex. on $\operatorname{PD}(n)$

Dually flat structure on Ω [Uohashi\&O o4]

- Potential: $-\log \operatorname{det} x$,

Ex. $\quad-\log \operatorname{det} X,\left(X=\sum_{i=1}^{N} x^{i} E_{i}\right)$

- Riemanian metric: $g_{x}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=\left(P(x)^{-1} e_{i} \mid e_{j}\right), \quad P(x):=P(x, x)$

$$
g_{X}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=\operatorname{tr}\left(X^{-1} E_{i} X^{-1} E_{j}\right)
$$

- α-connections: $\left(\nabla_{\frac{\partial}{\partial x^{i}}}^{(\alpha)} \frac{\partial}{\partial x^{j}}\right)_{x}=(\alpha-1)\left(e_{i} \perp_{x^{-1}} e_{j}\right)$

$$
\left(\nabla_{\frac{\partial}{\partial x^{x}}}^{\nabla^{(\alpha)}} \frac{\partial}{\partial x^{j}}\right)_{X}=\frac{\alpha-1}{2}\left(E_{i} X^{-1} E_{j}+E_{j} X^{-1} E_{i}\right)
$$

Characterization of DA submfds in Ω

Let W be a linear subspace in Jordan algebra (V, *) and $p=q * q$ in Ω.
Thm. [OIT] The following 1)-3) are equivalent:

1) A Submanifold $M=(W+p) \cap \Omega$ is DA, where

$$
W+p=\{w+p \mid w \in W\}
$$

2) For all x in $M, u \perp_{x^{-1}} v \in W,(u, v \in W)$
3) The subspace $P(q)^{-1} W$ is a Jordan subalgebra.

Rem. (a) 3) is able to be checked at the single point p
(b) $M=\left\{\left(W^{\prime}+p^{-1}\right) \cap \Omega\right\}^{-1}$ with $W^{\prime}=P(p)^{-1} W$

The proof is based on 5) in the Proposition
(c) Implication: Classification of DA submflds in
Ω reduces to that of Jordan subalgs of (V, *). (For $V=\operatorname{Sym}(n, \mathbf{R}) \rightarrow[$ Jacobson 87], [Malley 87])

- Ex. - Jordan subalgebras in $\operatorname{Sym}(n, \mathbf{R})$

1) fixed eigen vectors, 2) doubly symmetric, etc.

- Two bases $\left\{E_{i}\right\}_{i=1}^{m}$ and $\left\{F^{i}\right\}_{i=1}^{m}$ of $\operatorname{Sym}(n, \mathbf{R})$

$$
\begin{aligned}
& \mathcal{M}=\left\{P \mid P=E_{0}+\sum_{i=1}^{m} x^{i} E_{i}, \exists x=\left(x^{i}\right) \in \mathbf{R}^{m}\right\} \cap \operatorname{PD}(n) \\
& \mathcal{M}=\left\{P \mid P^{-1}=F^{0}+\sum_{i=1}^{m} s_{i} F^{i}, \exists s=\left(s_{i}\right) \in \mathbf{R}^{m}\right\} \cap \operatorname{PD}(n) .
\end{aligned}
$$

Application(1) Means on Positive Operators

- Def. (Axioms of means)
[Kubo \& Ando 80] σ is a mean on self-conjugate positive operators
- i) $A \leq C, B \leq D \Rightarrow A \sigma B \leq C \sigma D$
- ii) $C(A \sigma B) C=(C A C) \sigma(C B C)$
- iii) $A_{n} \downarrow A, B_{n} \downarrow B \Rightarrow A_{n} \sigma B_{n} \downarrow A \sigma B$ where $A_{n} \downarrow A \stackrel{\text { def }}{\Leftrightarrow}\left(A_{i} \geq A_{i+1}, \forall i\right) \&\left(A_{n} \rightarrow A\right)$
- iv) $I \sigma I=I$

α-geodesics on PD (n)

- α-geodesic $P(s) \quad$ boundary conds. : $P(0)=A, P(1)=B$

$$
\begin{array}{cl}
P^{(\alpha)}(s)=A^{1 / 2}\left\{\left[\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha}-I\right] s+I\right\}^{1 / \alpha} A^{1 / 2} \\
\alpha=1 & P(s)=A+s(B-A) \\
\alpha=0 & \hat{P}(s)=A^{1 / 2} \exp \left(s \log A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \\
\alpha=-1 & P^{*}(s)=\left\{A^{-1}+s\left(B^{-1}-A^{-1}\right)\right\}^{-1}
\end{array}
$$

$A \mathrm{a} B:=P(1 / 2)$
$A g B:=\hat{P}(1 / 2)$
$P^{(\alpha)}(1 / 2)$: a power mean
$A \mathrm{~h} B:=P^{*}(1 / 2)$

Means and α-geodesics on $\operatorname{PD}(n)$ [O 04]

Thm. Points on α-geodesics for s in $[0,1]$ and α in $[-1,1]$ are 2-param. family of means, i.e.,

$$
A \sigma_{s}^{(\alpha)} B=P^{(\alpha)}(s)
$$

In particular, for fixed s in $[0,1$]

$$
P^{(\alpha)}(s)>P^{(\beta)}(s),
$$

$$
1 \geq \alpha>\beta \geq-1 \quad \text { AGH ineq. }(s=1 / 2)
$$

Cor. A and B are in a DA submanifold M

$$
\Rightarrow A \sigma_{s}^{(\alpha)} B \in M, s \in[0,1], \alpha \in[-1,1]
$$

App.(2) MLE for structured covariance matrices

- Sample covariance S in $\operatorname{PD}(n, \mathbf{R})$
- a zero-mean Gaussian p.d.f. with covariance mtx. Σ

$$
p(x)=(2 \pi)^{-n / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left\{-\frac{1}{2} x^{T} \Sigma^{-1} x\right\}
$$

- structured covariance mtx. (with linear constraints)

$$
\Sigma \in \mathcal{M}=\left(E_{0}+\mathcal{W}\right) \cap \operatorname{PD}(n, \mathbf{R})
$$

- Ex.
- Toeplitz matrices: $\left\{T=\left(t_{i j}\right) \mid t_{i j}=t_{j i}=y_{|i-j|}\right\}$
- zero-patterns : $\left\{\Sigma=\left(\sigma_{i j}\right) \mid \sigma_{i j}=\sigma_{j i}=0,(i, j) \in \mathcal{E}\right\}$
- etc...

MLE for structured covariance matrices

- Negative logarithmic likelihood func (up to const.): $\ell(\Sigma):=-\log \operatorname{det} \Sigma^{-1}+\operatorname{tr}\left(\Sigma^{-1} S\right) \rightarrow \min$
- Rem Note that $-\log$ det is a convex function.
- If \mathcal{M} is DA (inversely linear structure), then the minimization problem of $\ell(\Sigma)$ (MLE) s.t. $\Sigma \in \mathcal{M}$ is a strictly convex program.

Unique solution,
Numerically tractable (optimality eq. is linear)

App.(3) Convex program
 Affine-scaling method and IG

- General convex program: Convex set $\mathcal{M} \subset \mathbf{R}^{n}, c \in \mathbf{R}^{n}$ minimize $c^{T} x, \quad$ s.t. $x \in \overline{\mathcal{M}}$
- Ψ : a good convex barrier func. for \mathcal{M},

1) $\Psi(x) \rightarrow+\infty(x \rightarrow \operatorname{bd} \mathcal{M})$, 2) h : p.d. Hessian, 3$)+\alpha$

- Gradient flow for Riemannian $\operatorname{mfd}(\mathcal{M}, h)$

$$
\begin{aligned}
& \dot{x}=\frac{d x}{d t}=-h(x)^{-1} c, \quad x(0) \in \mathcal{M} \\
& x(t): \text { affine-scaling trajectory } \\
& \text { (numerically traced) }
\end{aligned}
$$

- Legendre transform \Rightarrow linearized

$$
\dot{s}=-c, \quad s_{i}=\frac{\partial \Psi}{\partial x^{i}}, i=1, \ldots, n, \quad \widehat{s}:=-\lim _{t \rightarrow+\infty} c t+s(0)_{: 1}
$$

- Opt. sol.: $\widehat{x}=\operatorname{grad} \Psi^{*}(\widehat{s}) \quad$ (inverse Legendre trans.)
- Red underlined: needs the explicit form of Ψ^{*}
(or solving the nonlinear eq.: $\hat{s}=\operatorname{grad} \Psi(\hat{x})$)

Idea

Ψ^{*} is known for a good barrier $\Psi \Rightarrow$ an explicit opt. sol. \widehat{x}

- 1) Ω : sym. cones $\Rightarrow \psi(x)=-\log \operatorname{det} x, \psi^{*}(s)=-\log \operatorname{det} s$,

Legendre transform: $x \mapsto s=x^{-1}$

- 2) \mathcal{M} realized by $\mathcal{M}=(a+W) \cap \Omega$ is DA in Ω
\Rightarrow a) convexity of $\mathcal{M}, b)$ linearized traj. belongs to \mathcal{M}
- Ex. SemiDefinite Program (SDP)
$\underset{P}{\operatorname{minimize}}(C \mid P)$, s.t. $P=E_{0}+\sum_{i=1}^{m} x^{i} E_{i} \in \overline{\mathcal{M}}=\overline{\left(E_{0}+\mathcal{W}\right) \cap \operatorname{PD}(n)}$
- If \mathcal{M} is DA in $\mathrm{PD}(\mathrm{n})$ and $P \in \mathcal{M}$
- 1. Set $F^{0}=P^{-1}, F^{i}=-P^{-1} E_{i} F^{-1}$, then

$$
\mathcal{M}=\left\{P \mid P^{-1}=F^{0}+\sum_{i=1}^{m} s_{i} F^{i}, \exists s=\left(s_{i}\right) \in \mathbf{R}^{m}\right\} \cap \operatorname{PD}(n)
$$

- 2. Solve $\widetilde{C} \in \operatorname{span}\left\{F^{i}\right\}_{i=1}^{m}$ meeting

$$
\forall P \in \mathcal{M}, \quad(C \mid P)=(\widetilde{C} \mid P)+\text { const. }
$$

- 3. Spectral decomposition

$$
\widetilde{C}=\left(\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & O \\
O & O
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}}=V_{1} \Sigma_{1} V_{1}^{T}
$$

- 4. For $\forall P_{0} \in \mathcal{M}$ with $S_{0}=P_{0}^{-1}$, the opt. sol. Is

$$
\widehat{P}=\lim _{t \rightarrow \infty} S(t)^{-1}=\lim _{t \rightarrow \infty}\left(-\widetilde{C} t+S_{0}\right)^{-1}=P_{0}-P_{0} V_{1}\left(V_{1}^{T} P_{0} V_{1}\right)^{-1} V_{1}^{T} P_{0}
$$

Rem. Independent of the objective function $(C \mid P)$ and an initial value P_{0}

Interior point method (IP)

for Conic linear program

Conic linear program-Notation-

- Vector space E of dimension n

$$
E \ni x
$$

- The dual vector space E^{*}
$E^{*} \ni s$
- $\langle s, x\rangle$: Paring
- Ω : proper open convex cone in E
- Ω^{*} : the dual cone of Ω

$$
\Omega^{*}:=\left\{s \in E^{*} \mid\langle s, x\rangle>0, \forall x \in \bar{\Omega} \backslash\{0\}\right\}
$$

- T^{*} : (Orthogonal) dual subspace of $T \subset E$

$$
T^{*}=\left\{s \in E^{*} \mid\langle s, x\rangle=0, \forall x \in T\right\}
$$

Conic Linear Program

Given

$$
c \in E^{*}, f \in E \text { and } T \subset E
$$

- Primal problem
(P) minimize $\langle c, x\rangle$, s.t. $x \in \overline{\mathcal{P}}$,

$$
\text { where } \mathcal{P}:=(f+T) \cap \Omega
$$

- Dual problem
(D)
maximize $\langle s, f\rangle$, s.t. $s \in \overline{\mathcal{D}}$, where $\mathcal{D}:=\left(c+T^{*}\right) \cap \Omega^{*}$.

Typical Examples

- Linear program (LP):

$$
E=E^{*}=\mathbf{R}^{n}, \Omega=\Omega^{*}=\mathbf{R}_{++}^{n}
$$

- Semidefinite program (SDP):
$E=E^{*}:$ the set of real symmetric matrices
$\Omega=\Omega^{*}:$ the set of positive definite matrices
- Second order cone (Lorentz cone) program (SOCP)
- Mixture of the aboves
ϑ-normal barrier on an open convex cone Ω
- Def. θ-normal barrier ψ on $\Omega \quad(\Leftarrow+\alpha)$
- A (smooth) convex function ψ satisfying, at each x in Ω,

$$
\begin{gathered}
\psi(t x)=\psi(x)-\vartheta \log t, \\
\left|\left(D^{2} d \psi\right)_{x}(X, X, X)\right| \leq 2\left((D d \psi)_{x}(X, X)\right)^{3 / 2} \\
\text { for } \vartheta \geq 1, \forall t>0 \text { and } \forall X \in T_{x} \Omega \cong E
\end{gathered}
$$

- $\psi(x) \rightarrow+\infty(x \rightarrow \operatorname{bd} \Omega)$,

Rem. [Nesterov \& Nemirovski 94] (1) Existence for all Ω (but not explicit forms), (2) the Hessian is p.d., (3) self-concordance (\Rightarrow the Newton method is efficient).

- Ex. $\psi(x)=-\sum_{i=1}^{n} \log x^{i}(\mathrm{LP}), \quad \psi(x)=-\log \operatorname{det} X$ (SDP)

Dually flat structure on Ω (revisited)

- D : the canonical flat affine connection on E
- $\left\{x^{1}, \cdots, x^{n}\right\}$: affine coordinate system, i.e.,
- g : Riemannian metric on Ω $D_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=0$

$$
g=D d \psi=\sum_{i, j} \frac{\partial^{2} \psi}{\partial x^{i} \partial x^{j}} d x^{i} d x^{j}
$$

- D^{\prime} : the dual affine connection on Ω

$$
X g(Y, Z)=g\left(D_{X} Y, Z\right)+g\left(Y, D_{X}^{\prime} Z\right)
$$

$\left(g, D, D^{\prime}\right)$: dually flat structure on Ω

Remark

- $\left\{s_{1}, \cdots, s_{n}\right\}$: dual coordinate system on E^{*}, s.t.

$$
\langle s, x\rangle=\sum_{i} s_{i}(s) x^{i}(x)
$$

- Gradient map $\iota: \Omega \rightarrow \underset{\partial \psi}{\Omega^{*}}$ defined by

$$
s_{i} \circ \iota=-\frac{\partial \psi}{\partial x^{i}}
$$

induces dually flat structure on Ω^{*} from $\left(g, D, D^{\prime}\right)$
(1) D^{*} : the canonical flat affine connection on E^{*}

$$
D_{\iota_{*}(X)^{\iota}}^{\iota_{*}}(Y)=\iota_{*}\left(D_{X}^{\prime} Y\right) \quad\left(\iota^{*} D^{*}=D^{\prime}\right)
$$

D^{*}-autoparallel in $\Omega^{*} \Longleftrightarrow D^{\prime}$-autoparallel in Ω

Remark

(2) Riemannian metric $g^{*}:=D^{*} d \psi^{*}$ on Ω^{*}

$$
g=\iota^{*} g^{*}
$$

(3) $\left\langle\iota_{*}(X), Y\right\rangle=-g_{x}(X, Y)$

Hessian norm : We denote the length of X in $T_{x} \Omega \cong E$ by

$$
\|X\|_{x}:=\|Z\|_{s}:=\sqrt{g_{x}(X, X)}=\sqrt{g_{s}^{*}(Z, Z)},
$$

where $s=\iota(x)$ and $Z=\iota_{*}(X)$.

Curvature integral and

iteration-complexity of IP

One of important computational performance indices for optimization algorithms is the iteration-complexity.

- Ω : sym. cone and $\mathcal{P}:=(f+T) \cap \Omega$ is DA
\Rightarrow iteration-complexity=o for (P)
- General case? Iter.-comp. is characterized by

- Curvature integrals along the central trajectory $\gamma_{\mathcal{P}}$

$$
\int_{t_{1}}^{t_{2}}\left\|H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t)\right)\right\|_{\gamma_{\mathcal{P}}(t)}^{1 / 2} d t
$$

- Similarly, for (D) curvature integrals along the dual c. t. $\gamma_{\mathcal{D}}$

$$
\int_{t_{1}}^{t_{2}}\left\|H_{\mathcal{D}}\left(\dot{\gamma}_{\mathcal{D}}(t), \dot{\gamma}_{\mathcal{D}}(t)\right)\right\|_{\gamma_{\mathcal{D}}(t)}^{1 / 2} d t
$$

Central trajectory $\gamma_{\mathcal{P}}$

- Primal problem: minimize $\langle c, x\rangle$, s.t. $x \in \overline{\mathcal{P}}$,

$$
\text { where } \mathcal{P}:=(f+T) \cap \Omega \text {, }
$$

- $x(t):=\gamma_{\mathcal{P}}(t)$: the unique minimizer of minimize
each $t>0$
- $\gamma_{\mathcal{P}}:=\left\{\gamma_{\mathcal{P}}(t) \mid t>0\right\}:$
(Primal) central trajectory

Central trajectory

- Homotopy path to the opt. sol. of the primal problem, i.e., $x(t)$ converges when $t \rightarrow \infty$.
- Numerically tracing $\gamma_{\mathcal{P}}$ is the standard and efficient way to solve the primal problem. Path-following method

Idea: consider the problem in Ω^{*} and relate the complexity with the curvature

(1)Representation of feasible region

- A linear surj. operator $A: E \rightarrow \mathbf{R}^{m}$ s.t. Ker $A=T$

$$
\begin{aligned}
& \mathcal{P}=\{x \in \Omega \mid A x=b\} \\
& \mathcal{D}=\left\{s \in \Omega^{*} \mid s=c-A^{*} y, y \in \mathbf{R}^{m}\right\}
\end{aligned}
$$

where $A^{*}: \mathbf{R}^{m} \rightarrow E^{*}$ satisfying $y^{T}(A x)=\left\langle A^{*} y, x\right\rangle$,

$$
b:=A f \in \mathbf{R}^{m}
$$

- $\operatorname{dim} \mathcal{P}=n-m, \quad \operatorname{dim} \mathcal{D}=m$
- \mathcal{P} is D-autoparallel and \mathcal{D} is D^{*}-autoparallel

(2)Homogenization (conic hull)

- homogenization of \mathcal{D} in Ω^{*}

$$
\operatorname{Hom}(\mathcal{D}):=\bigcup_{t>0} t \mathcal{D}, t \mathcal{D}:=\left\{s \in \Omega^{*} \mid s=t \tilde{s}, \tilde{s} \in \mathcal{D}\right\}
$$

- D^{*}-autoparallel because \mathcal{D} is.
- $\operatorname{dim} \operatorname{Hom}(\mathcal{D})=m+1$

Homogenization

Lemma

The following relations hold in Ω^{*} :

$$
\begin{aligned}
& \iota\left(\gamma_{\mathcal{P}}\right)=\iota(\mathcal{P}) \cap \operatorname{Hom}(\mathcal{D}) \\
& s(t):=\iota(x(t))=\iota(\mathcal{P}) \cap t \mathcal{D}
\end{aligned}
$$

$$
\partial L / \partial x=0 \rightarrow s \in t \mathcal{D}
$$

Remark
$\iota(\mathcal{P})$ and $t \mathcal{D}$ are orthogonal
w.r.t. g^{*} at $s(t)$ by definition.

3. Geometric predictor-corrector

 algorithm (tracing γ_{p} in $\operatorname{Hom}(\mathcal{D})$)
Ideal case

- Predictor

From $s(t) \in \iota\left(\gamma_{\mathcal{P}}\right)$

$$
\text { to } s_{L}(t+\Delta t) \in(t+\Delta t) \mathcal{D}
$$ with the direction tangent to $\iota\left(\gamma_{\mathcal{P}}\right)$

- Corrector

From $s_{L}(t+\Delta t) \in(t+\Delta t) \mathcal{D}$ to $s(t+\Delta t) \in \iota\left(\gamma_{\mathcal{P}}\right)$
Ω^{*} $\operatorname{Hom}(\mathcal{D})$

Intuitive observation

- $H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t)\right)$: the Euler-Schouten embedding curvature (second fundamental form) of $\iota\left(\gamma_{\mathcal{P}}\right)$ with respect to D^{*}
- If $H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t)\right)$ is small at t, so is expected the iteration number !?

Actually,

$$
\ddot{s}=D_{\dot{s}}^{*} \dot{s}=\iota_{*}\left(H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}, \dot{\gamma}_{\mathcal{P}}\right)\right)
$$

Remark: practical case

- Cannot expect that the corrector returns precisely on $\iota\left(\gamma_{\mathcal{P}}\right)$
- Consider the point \bar{s} in the neighborhood of $s(t) \in \iota\left(\gamma_{\mathcal{P}}\right)$ in the sense of Riemannian metric

$$
\mathcal{N}_{t}(\beta):=\{s \in t \mathcal{D} \mid \delta(s) \leq \beta\}
$$

Ω^{*}

Predictor

- The differential equation expressing $\iota\left(\gamma_{\mathcal{P}}\right)$:

$$
\dot{s}=\left(\mathrm{id}-\underline{\Pi_{s}^{\perp}}\right) c=\frac{1}{t}\left(\mathrm{id}-\Pi_{s}^{\perp}\right) s
$$

where Π_{s}^{\perp} is the orthogonal projection w.r.t. g^{*} from E^{*} to $T^{*}=$ Range A^{*} at s.
Note: $\Pi_{s}^{\perp}=\mathbf{o} \Rightarrow$ ODE for the A-S traj. (up to sign)

- Hence, the predictor is defined by

$$
\bar{s}_{L}(t+\Delta t):=\bar{s}+\Delta t\left(I-\Pi_{\bar{s}}^{\perp}\right) c \in(t+\Delta t) \mathcal{D}
$$

Corrector

- Reduces to the following convex optimization on $t \overline{\mathcal{D}}$:

$$
\operatorname{minimize} F(s):=\langle s, f\rangle+\psi^{*}(s) \text {, s.t. } s \in t \overline{\mathcal{D}}
$$

- Newton direction N for this opt. problem:

$$
D^{*} d F(X, N)=-d F(X), \forall X \in \mathcal{X}(t \mathcal{D})
$$

- Newton decrement: measure of approximation of s

$$
\delta(s):=\|N\|_{s}
$$

- We define the corrector with a single Newton step by:

$$
\bar{s}_{L}^{+}(t+\Delta t):=\bar{s}_{L}(t+\Delta t)+N_{\bar{s}_{L}(t+\Delta t)}
$$

Tubular neighborhood

- The standard analysis technique in IP ensures the polynomiality of the complexity for this path-following strategy if all the generated points are near to $\iota\left(\gamma_{\mathcal{P}}\right)$.
- Introduce the tubular neighborhood $\mathcal{N}(\beta)$ of $\iota\left(\gamma_{\mathcal{P}}\right)$

$$
\mathcal{N}(\beta):=\bigcup_{t \in(0, \infty)} \mathcal{N}_{t}(\beta),
$$

where $\mathcal{N}_{t}(\beta):=\{s \in t \mathcal{D} \mid \delta(s) \leq \beta\}$.

4. Curvature integral and asymptotic iteration-complexity (Main result)

- Assumption: $\iota\left(\gamma_{\mathcal{P}}\right)$ is not D^{*}-autoparallel, i.e., $\beta \rightarrow 0$ implies that $\Delta t \rightarrow 0 \quad$ (If it is ?)
Theorem
For $0<t_{1}<t_{2}$ and $s_{1} \in \mathcal{N}(\beta) \cap t_{1} \mathcal{D}$, let $\sharp\left(s_{1}, t_{2}, \beta\right)$
be the iteration number to find $s_{2} \in \mathcal{N}(\beta) \cap t_{2} \mathcal{D}$. Then,

$$
\lim _{\beta \rightarrow 0} \frac{\sqrt{\beta} \times \sharp\left(s_{1}, t_{2}, \beta\right)}{I_{\mathcal{P}}\left(t_{1}, t_{2}\right)}=1,
$$

where

$$
I_{\mathcal{P}}\left(t_{1}, t_{2}\right):=\frac{1}{\sqrt{2}} \int_{t_{1}}^{t_{2}}\left\|H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t)\right)\right\|_{\gamma_{\mathcal{P}}(t)}^{1 / 2} d t .
$$

Outline of the proof

- Evaluate the Newton dec. of the predictor $\bar{s}_{L}(t+\Delta t)$ by $\|\ddot{s}(t)\|_{s(t)} \quad$ (For each iteration)

$$
\begin{aligned}
& \delta\left(\bar{s}_{L}(t+\Delta t)\right) \\
& =\left\|s(t+\Delta t)-\bar{s}_{L}(t+\Delta t)\right\|_{\bar{s}_{L}(t+\Delta t)}+r_{4} \\
& =\frac{(\Delta t)^{2}}{2}\|\ddot{s}(t)\|_{s(t)}+\delta(\bar{s})+r_{1}+r_{2}+r_{3},
\end{aligned}
$$

Outline of the proof

- Intermediate two relations for sufficiently small Δt and β.
(For each iteration)

$$
\begin{array}{r}
\sqrt{(1-\eta) \beta}(1-O(\sqrt{\beta})) \leq \sqrt{w}-\sqrt{M_{3}} \delta(\bar{s}) \\
\leq \frac{\Delta t}{\sqrt{2}}\|\ddot{s}(t)\|_{s(t)}^{1 / 2}+\sqrt{\left|r_{1}\right|}+\sqrt{M_{3}}(\Delta t)^{2} \\
\quad \frac{\Delta t}{\sqrt{2}}\|\ddot{s}(t)\|_{s(t)}^{1 / 2}-\sqrt{\left|r_{1}\right|}-\sqrt{M_{3}}(\Delta t)^{2} \\
\leq \sqrt{w}+\sqrt{M_{3}} \delta(\bar{s}) \leq \sqrt{\beta}(1+O(\sqrt{\beta}))
\end{array}
$$

Outline of the proof

- Take summations of iterations

$$
\begin{aligned}
& \sqrt{(1-\eta) \beta} \sum_{k=1}^{\sharp\left(s_{1}, t_{2}, \beta\right)}(1-O(\sqrt{\beta})) \\
& \quad \leq \frac{1}{\sqrt{2}} \int_{t_{1}}^{t_{2}}\|\ddot{s}(t)\|_{s(t)}^{1 / 2} d t+M^{\prime} \sqrt{\Delta t_{\max }}, \\
& \frac{1}{\sqrt{2}} \int_{t_{1}}^{t_{2}}\|\ddot{s}(t)\|_{s(t)}^{1 / 2} d t-M^{\prime} \sqrt{\Delta t_{\max }} \\
& \quad \leq \sqrt{\beta}{ }^{\sharp\left(s, s_{1}, t_{2}, \beta\right)}(1+O(\sqrt{\beta})) \\
& \ddot{s}=D_{\dot{s}}^{*} \dot{s}=\iota_{*}\left(H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}, \dot{\gamma}_{\mathcal{P}}\right)\right)
\end{aligned}
$$

Remark

- An asymptotic result for $\beta \rightarrow 0$ (and hence, $\Delta t \rightarrow 0$)
- \mathcal{P} is DA $\Rightarrow \iota\left(\gamma_{\mathcal{P}}\right)$ is DA (D^{*}-autoparallel) $\Rightarrow \Delta t \rightarrow \infty$ \Rightarrow explicit sol.
- The same argument holds for the dual problem.
- The results are valid for general convex cones

Numerical experiment

- Curvature structure of CT for a certain LP

Figure 7: Exaple Figure

Proposition

It holds that $\left\|H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}, \dot{\gamma}_{\mathcal{P}}\right)\right\|_{\gamma_{\mathcal{P}}(t)}^{1 / 2} \leq \frac{\sqrt{2 \vartheta}}{t}$
ϑ : a constant determined by $\psi(x)$

- Remark

The above proposition gives the upper bound:

$$
I_{\mathcal{P}}\left(t_{1}, t_{2}\right) \leq \sqrt{\vartheta} \log \left(t_{2} / t_{1}\right)
$$

Further study for LP case

- Primal and Dual Linear Program:
$\min c^{T} x$
s.t. $\quad A x=b, \quad x \geq 0, A \in R^{m \times n}, b \in R^{n}$ $\max b^{T} y$
s.t. $\quad s=c-A^{T} y, \quad s \geq 0$,

Application to

Primal-dual path-following (PDPF) method

- current main-stream IP (cheap in each iteration)
- The following quantity has been known to play an important and similar role in complexity analysis of PDPF method:

$$
I_{P D}\left(t_{1}, t_{2}\right)=\int_{t_{1}}^{t_{2}} h_{P D}(t)^{1 / 2} d t
$$

where $h_{P D}(t)$ is given by

$$
h_{P D}(t):=\frac{1}{t^{2}}\left(\left(I_{n}-Q(t)\right) e\right) \underline{*}(Q(t) e) .
$$

e : the unit element of Jordan product * $Q(t)$: a certain projection matrix

Proposition

It holds that

$$
\begin{aligned}
h_{P D}(t)^{2}= & \left(\frac{1}{2}\left\|H_{\mathcal{P}}^{*}\left(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t)\right)\right\|_{\gamma_{\mathcal{P}}(t)}\right)^{2} \\
& +\left(\frac{1}{2}\left\|H_{\mathcal{D}}\left(\dot{\gamma}_{\mathcal{D}}(t), \dot{\gamma}_{\mathcal{D}}(t)\right)\right\|_{\gamma_{\mathcal{D}}(t)}\right)^{2}
\end{aligned}
$$

Remark :

- geometric implication of the quantity of $I_{P D}\left(t_{1}, t_{2}\right)$
- inequalities

$$
\begin{aligned}
& \max \left\{I_{\mathcal{P}}\left(t_{1}, t_{2}\right), I_{\mathcal{D}}\left(t_{1}, t_{2}\right)\right\} \leq I_{P D}\left(t_{1}, t_{2}\right) \\
& \leq I_{\mathcal{P}}\left(t_{1}, t_{2}\right)+I_{\mathcal{D}}\left(t_{1}, t_{2}\right) .
\end{aligned}
$$

Concluding Remark

- Tractable characterization of DA submfds in symmetric cones Ω
- Application to conic linear programs
- Explicit sol. when the feasible region M is DA in Ω.
- M is $\mathrm{DA} \Rightarrow \mathrm{AS}(\mathrm{CT})$ traj. is DA (D^{*}-autoparallel) $\Rightarrow \Delta t \rightarrow \infty$ \Rightarrow explicit sol.
- Extension: \# of iterations and curvature integral of CT
- Asymptotic analysis $(\beta \rightarrow 0)$
- Complemented by numerical experiment for finite β
- Geometric structure of CT has a influence on complexity of the IP algorithm
- Relation among iteration-complexities of P. D. and PD algorithm.
- DA submanifolds in a certain submfd in Jordan algebras [OIT]
- Future work: Geometrical study for general stat. mfd.
- Various geometrical concepts for mutually dual connections and their characterizations (Furuhata et al.)
- Classifications
- Families of continuous probability densities
- Applications (Ex. Study of ODE's on manifolds?)

Thank you for your attention

References:
[OIT] A. Ohara, H. Ishi and T. Tsuchiya,
Doubly autoparallel structure and curvature integrals

- An application to iteration-complexity analysis of convex optimization -, Information Geometry, to appear.

