Doubly autoparallel structure and curvature integrals - An application to iteration-complexity analysis of convex optimization -Atsumi Ohara University of Fukui

> Collaborators: H. Ishi (Osaka Metropolitan Univ.), T. Tsuchiya (GRIPS), K. Uohashi (Tohoku Gakuin Univ.)

> 統計多様体の幾何学とその周辺(14) November 2-4, 2022 @北大

Outline

- Introduction: Doubly autoparallel submanifolds
- Preliminaries
 - Dually flat structure on a symmetric cones
- Characterization of DA submfd in sym. cones
 - Several applications
- Conic linear program on convex cones Ω
 - Central trajectory
 - Geometric predictor-corrector method in Ω^*
- Curvature integral and iteration-complexity
- Application to primal-dual path following methods
- Concluding remark

Introduction

Doubly autoparallel submanifolds Def. Statistical manifold: (S, g, ∇, ∇^*)

- $Xg(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z)$ X, Y and Z : arbitrary vector fields on S
- ★ g : Riemannian metric
 ★ (∇, ∇*) : torsion-free affine connections
 $R^{\nabla} = 0, \ R^{\nabla^*} = 0 \implies$ dually flat

$$\bigstar \nabla^{(\alpha)} = \frac{1+\alpha}{2} \nabla + \frac{1-\alpha}{2} \nabla^* : \alpha \text{-connections}$$

- <u>Def.</u> Let(S, g, ∇, ∇*) be a statistical manifold and M be its submanifold. We call M a doubly autoparallel submanifold in S when the followings hold:
 - $\forall X, Y \in \mathcal{X}(M), \nabla_X Y \in \mathcal{X}(M)$ i.e. $H_M(X, Y) = 0$ • $\forall X, Y \in \mathcal{X}(M), \nabla_X^* Y \in \mathcal{X}(M)$ i.e. $H_M^*(X, Y) = 0$

Important Properties

<u>Proposition</u> The following statements are equivalent:

- 1) A submanifold *M* is doubly autoparallel (DA)
- 2) *M* is autoparallel w.r.t. the α -connections $\nabla^{(\alpha)} = \{(1 + \alpha)\nabla + (1 - \alpha)\nabla^*\}/2$ for two different α 's.
- 3) *M* is autoparallel w.r.t. all the α -connections.
- 4) all the α -geodesics connecting two points on M lay in M (if it is simply connected).
- 5) *M* is affinely constrained in both ∇- and ∇*-affine coordinates if *S* is dually flat.

Furthermore, for a parametric statistical model *S*

If *M* is DA in S, then α-projections (*q*-MaxEnt) from *p* to *M* are unique for all α if they exist.

Related topics and applications

Symmetric cones

- MLE for structured covariance matrices is tractable (cast to convex program: inversely linear structure)
 - [Anderson 70, Malley 94]
- Explicitly solvable Semi-Definite Programs [O 99]
- Structure of α-power means on symmetric cones [O 04]

Related topics and applications Probability simplex

- Statistical models Markov-isomorphic to the probability simplex [Nagaoka 17]
- Characterization and classification of DA submfds in prob. simplex via Hadamard algebra [O&Ishi 18]
- Learning theory [Mutus&Ay o3]

Miscellaneous

• The self-similar (*Barenblatt-Pattle*) solution for the porous medium equation [O&Wada 10]

General statistical manifolds

Purely geometric study [Satoh et al. 21]

Preliminaries

[Faraut&Korani 94]

- Symmetric cone Ω in an Euclidian space E
 - Homogeneous

 $G(\Omega) = \{ \tau \in GL(E) \mid \tau(\Omega) = \Omega \}$ acts transitively

• self-dual w.r.t. an inner product of *E*

 $\Omega = \Omega^*, \qquad \Omega^* = \{ y \in E \mid (x|y) > 0, \forall x \in \overline{\Omega} \setminus \{0\} \}$

- Euclidean Jordan algebra (V, *)
 - Commutative

•
$$x^2 * (x * y) = x * (x^2 * y)$$
, where $x^2 = x * x$

• Associative inner-product (x * y|z) = (y|x * z)

<u>Prop.</u> $\Omega = int\{x^2 \mid x \in V\}$ is a symmetric cone in *V*.

<u>Ex.</u> the set of real symmetric p. d. matrices $PD(n, \mathbf{R})$ $V = Sym(n; \mathbf{R}), \quad X * Y = (XY + YX)/2$ $\tau_G(X) = GXG^T, \quad G \in GL(n, \mathbf{R})$ $(X|Y) = tr(XY), \text{ the unit: } I, \text{ the inverse:} X^{-1}$

- $L(x): V \to V$, L(x)y = x * y
- P(x,y) := L(x)L(y) + L(y)L(x) L(x * y)
- Mutation: $x \perp_a y := P(x, y)a$ isomorphic to *, the unit element: a^{-1} <u>Ex.</u> $X \perp_A Y = (XAY + YAX)/2$

Preliminaries (Dually flat structure on Ω)

• Logarithmic characteristic function on Ω

$$\psi(x) := \log \int_{\Omega^*} e^{-\langle s, x \rangle} ds,$$

positive definite Hessian on Ω
x⁻¹ = -grad ψ(x), (grad f(x)|u) = D_uf(x)
Ex. ψ(x) = - ∑_{i=1}ⁿ log xⁱ on Rⁿ₊₊, ψ(x) = -log det X on PD(n)

a coordinate system (xⁱ) x = ∑_{i=1}ⁿ xⁱe_i, {e_i}ⁿ_{i=1} : a basis of E
a dual coordinate system (s_i) x⁻¹ = ∑_{i=1}ⁿ s_ieⁱ, {eⁱ}ⁿ_{i=1} : a basis of E with (eⁱ|e_j) = -δⁱ_j

D : the canonical flat affine connection on *E*{x¹, ..., xⁿ}: affine coordinate system, i.e., D_{∂/∂xⁱ}∂/∂x^j = 0 *g* : Riemannian metric on Ω

$$g = Dd\psi = \sum_{i,j} \frac{\partial^2 \psi}{\partial x^i \partial x^j} dx^i dx^j.$$

• D': the dual affine connection on Ω $Xg(Y,Z) = g(D_XY,Z) + g(Y,D'_XZ)$ (g,D,D'): dually flat structure on Ω

Pleriminaries and ex. on PD(n)

<u>Dually flat structure</u> on Ω [Uohashi&O o4]

- Potential: –log det *x*,
- Ex. -log det X, $(X = \sum_{i=1}^{N} x^{i} E_{i})$ - Riemanian metric: $g_{x} \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) = (P(x)^{-1} e_{i} | e_{j})$, P(x) := P(x, x) $g_{X} \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) = \operatorname{tr}(X^{-1} E_{i} X^{-1} E_{j})$

- α -connections: $\left(\nabla_{\frac{\partial}{\partial x^i}}^{(\alpha)}\frac{\partial}{\partial x^j}\right)_x = (\alpha - 1)(e_i \perp_{x^{-1}} e_j)$

$$\left(\nabla_{\frac{\partial}{\partial x^{i}}}^{(\alpha)}\frac{\partial}{\partial x^{j}}\right)_{X} = \frac{\alpha - 1}{2}(E_{i}X^{-1}E_{j} + E_{j}X^{-1}E_{i})$$

Characterization of DA submfds in Ω

- Let *W* be a linear subspace in Jordan algebra (*V*, *) and p = q * q in Ω .
- <u>Thm.</u> [OIT] The following 1)-3) are equivalent: 1) A Submanifold $M = (W + p) \cap \Omega$ is DA, where $W + p = \{w + p \mid w \in W\}$
- 2) For all x in M, $u \perp_{x^{-1}} v \in W$, $(u, v \in W)$
- 3) The subspace $P(q)^{-1}W$ is a Jordan subalgebra. <u>Rem.</u> (a) 3) is able to be checked at the single point p(b) $M = \{(W' + p^{-1}) \cap \Omega\}^{-1}$ with $W' = P(p)^{-1}W$
 - The proof is based on 5) in the Proposition

(c) Implication: <u>Classification</u> of DA submflds in Ω reduces to <u>that</u> of Jordan subalgs of (*V*, *). (For *V*=Sym(*n*,**R**) \rightarrow [Jacobson 87], [Malley 87])

• Ex. - Jordan subalgebras in Sym(*n*, **R**)
1) fixed eigen vectors, 2) doubly symmetric, etc.
- Two bases
$$\{E_i\}_{i=1}^m$$
 and $\{F^i\}_{i=1}^m$ of Sym(*n*, **R**)
 $\mathcal{M} = \{P \mid P = E_0 + \sum_{i=1}^m x^i E_i, \exists x = (x^i) \in \mathbf{R}^m\} \cap PD(n)$
 $\mathcal{M} = \{P \mid P^{-1} = F^0 + \sum_{i=1}^m s_i F^i, \exists s = (s_i) \in \mathbf{R}^m\} \cap PD(n)$

Application(1) Means on Positive Operators

- <u>Def.</u> (Axioms of means) [Kubo & Ando 80] σ is a mean on self-conjugate positive operators
 - i) $A \leq C, \ B \leq D \Rightarrow A\sigma B \leq C\sigma D$
 - ii) $C(A\sigma B)C = (CAC)\sigma(CBC)$
 - iii) $A_n \downarrow A, \ B_n \downarrow B \Rightarrow A_n \sigma B_n \downarrow A \sigma B$
 - where $A_n \downarrow A \stackrel{\text{def}}{\Leftrightarrow} (A_i \ge A_{i+1}, \forall i) \& (A_n \to A)$
 - iv) $I\sigma I = I$

α -geodesics on PD(*n*)

• α -geodesic P(s) boundary conds. : P(0)=A, P(1)=B $P^{(\alpha)}(s) = A^{1/2} \left\{ [(A^{-1/2}BA^{-1/2})^{\alpha} - I]s + I \right\}^{1/\alpha} A^{1/2}$

$$\alpha = 1 \qquad P(s) = A + s(B - A)$$

$$\alpha = 0 \qquad \widehat{P}(s) = A^{1/2} \exp(s \log A^{-1/2} B A^{-1/2}) A^{1/2}$$

$$\alpha = -1 \qquad P^*(s) = \{A^{-1} + s(B^{-1} - A^{-1})\}^{-1}$$

AaB := P(1/2) $AgB := \hat{P}(1/2)$ $AhB := P^*(1/2)$

 $P^{(\alpha)}(1/2)$: a power mean

Means and α -geodesics on PD(n) [O 04] <u>Thm.</u> Points on α -geodesics for s in [0,1] and α in [-1,1] are 2-param. family of means, i.e.,

$$A\sigma_s^{(\alpha)}B = P^{(\alpha)}(s)$$

In particular, for fixed *s* in [0, 1] $P^{(\alpha)}(s) > P^{(\beta)}(s),$ $1 \ge \alpha > \beta \ge -1$ AGH ineq. (*s*=1/2)

<u>Cor.</u> A and B are in a DA submanifold M $\Rightarrow A\sigma_s^{(\alpha)} B \in M, s \in [0, 1], \alpha \in [-1, 1]$

App.(2) MLE for structured covariance matrices

- Sample covariance *S* in PD(*n*, **R**)
- a zero-mean Gaussian p.d.f. with covariance mtx. Σ

$$p(x) = (2\pi)^{-n/2} (\det \Sigma)^{-1/2} \exp\{-\frac{1}{2}x^T \Sigma^{-1}x\}$$

- structured covariance mtx. (with linear constraints) $\Sigma \in \mathcal{M} = (E_0 + \mathcal{W}) \cap \mathsf{PD}(n, \mathbf{R})$ • Ex.
 - Toeplitz matrices: $\{T = (t_{ij}) | t_{ij} = t_{ji} = y_{|i-j|} \}$
 - zero-patterns: { $\Sigma = (\sigma_{ij}) | \sigma_{ij} = \sigma_{ji} = 0, (i, j) \in \mathcal{E}$ }

• etc...

MLE for structured covariance matrices

- Negative logarithmic likelihood func (up to const.):
 - $\ell(\Sigma) := -\log \det \Sigma^{-1} + \operatorname{tr}(\Sigma^{-1}S) \to \min$
 - <u>Rem</u> Note that <u>-log det</u> is a convex function.
- If *M* is DA (inversely linear structure), then the minimization problem of ℓ(Σ) (MLE) s.t. Σ ∈ *M* is a strictly convex program.
 - Unique solution,
 - Numerically tractable (optimality eq. is linear)

App.(3) Convex program Affine-scaling method and IG

- General convex program: Convex set $\mathcal{M} \subset \mathbf{R}^n$, $c \in \mathbf{R}^n$
 - minimize $c^T x$, s.t. $x \in \overline{\mathcal{M}}$
- Ψ : a *good* convex barrier func. for $\mathcal{M}_{\mathcal{A}}$
 - 1) $\Psi(x) \rightarrow +\infty$ ($x \rightarrow bd \mathcal{M}$), 2) h: p.d. Hessian, 3) + α

• Gradient flow for Riemannian mfd (\mathcal{M},h)

 $\dot{x} = \frac{dx}{dt} = -h(x)^{-1}c, \quad x(0) \in \mathcal{M}$

x(*t*): affine-scaling trajectory (numerically traced)

M

• Legendre transform \Rightarrow linearized

$$\dot{s} = -c, \quad s_i = \frac{\partial \Psi}{\partial x^i}, \ i = 1, \dots, n, \quad \hat{s} := -\lim_{t \to +\infty} ct + s(0)_{n}$$

- Opt. sol.: $\hat{x} = \operatorname{grad} \Psi^*(\hat{s})$ (inverse Legendre trans.)
- Red underlined: needs the explicit form of Ψ^* (or solving the nonlinear eq.: $\hat{s} = \operatorname{grad} \Psi(\hat{x})$)

Idea

 Ψ^* is known for a good barrier $\Psi \Rightarrow$ an explicit opt. sol. \widehat{x} • 1) Ω : sym. cones $\Rightarrow \psi(x) = -\log \det x, \psi^*(s) = -\log \det s,$ Legendre transform: $x \mapsto s = x^{-1}$ • 2) \mathcal{M} realized by $\mathcal{M} = (a+W) \cap \Omega$ is DA in Ω \Rightarrow a) convexity of \mathcal{M} , b) linearized traj. belongs to \mathcal{M}

- Ex. SemiDefinite Program (SDP) minimize (C|P), s.t. $P = E_0 + \sum_{i=1}^m x^i E_i \in \overline{\mathcal{M}} = \overline{(E_0 + \mathcal{W}) \cap PD(n)}$
- If \mathcal{M} is DA in PD(n) and $P \in \mathcal{M}$ • 1. Set $F^0 = P^{-1}, F^i = -P^{-1}E_iF^{-1}$, then $\mathcal{M} = \{P \mid P^{-1} = F^0 + \sum_{i=1}^m s_iF^i, \exists s = (s_i) \in \mathbf{R}^m\} \cap PD(n)$
 - 2. Solve $\widetilde{C} \in \operatorname{span}\{F^i\}_{i=1}^m$ meeting

 $\forall P \in \mathcal{M}, \quad (C|P) = (\widetilde{C}|P) + \text{const.}$

• 3. Spectral decomposition

$$\widetilde{C} = \left(V_1 \ V_2\right) \left(\begin{array}{c} \Sigma_1 \ O\\ O \ O\end{array}\right) \left(\begin{array}{c} V_1^T\\ V_2^T\end{array}\right) = V_1 \Sigma_1 V_1^T$$
• 4. For $\forall P_0 \in \mathcal{M}$ with $S_0 = P_0^{-1}$, the opt. sol. Is

$$\widehat{P} = \lim_{t \to \infty} S(t)^{-1} = \lim_{t \to \infty} (-\widetilde{C}t + S_0)^{-1} = P_0 - P_0 V_1 (V_1^T P_0 V_1)^{-1} V_1^T P_0$$

<u>Rem.</u> Independent of the objective function (C|P) and an initial value P_0

Interior point method (IP) for Conic linear program

Conic linear program - Notation-

- Vector space *E* of dimension *n*
- The dual vector space *E**
- $\langle s, x \rangle$: Paring
- Ω : proper open convex cone in E
- Ω^* : the dual cone of Ω

 $\Omega^* := \{ s \in E^* | \langle s, x \rangle > 0, \forall x \in \overline{\Omega} \backslash \{0\} \}$

• T^* : (Orthogonal) dual subspace of $T \subset E$ $T^* = \{s \in E^* | \langle s, x \rangle = 0, \ \forall x \in T\}$

 $E \ni x$

 $E^* \ni s$

Conic Linear Program

Given

$$c \in E^*, f \in E \text{ and } T \subset E$$

Primal problem

(P) minimize $\langle c, x \rangle$, s.t. $x \in \overline{\mathcal{P}}$, where $\mathcal{P} := (f + T) \cap \Omega$,

Dual problem

(D) maximize $\langle s, f \rangle$, s.t. $s \in \overline{\mathcal{D}}$, where $\mathcal{D} := (c + T^*) \cap \Omega^*$.

Typical Examples

• Linear program (LP):

$$E = E^* = \mathbf{R}^n, \ \Omega = \Omega^* = \mathbf{R}^n_{++}$$

• Semidefinite program (SDP): $E = E^*$: the set of real symmetric matrices $\Omega = \Omega^*$: the set of positive definite matrices

- Second order cone (Lorentz cone) program (SOCP)
- Mixture of the aboves

ϑ -normal barrier on an open convex cone Ω

- <u>Def.</u> θ -normal barrier ψ on Ω (\Leftarrow + α)
 - A (smooth) convex function ψ satisfying, at each x in Ω ,

$$\psi(tx) = \psi(x) - \vartheta \log t,$$

 $|(D^2 d\psi)_x(X, X, X)| \le 2((D d\psi)_x(X, X))^{3/2}$

for $\vartheta \ge 1$, $\forall t > 0$ and $\forall X \in T_x \Omega \cong E$

• $\psi(x) \to +\infty \ (x \to \mathrm{bd} \ \Omega)$,

<u>Rem.</u> [Nesterov & Nemirovski 94] (1) Existence for all Ω (but not explicit forms), (2) the Hessian is p.d., (3) self-concordance (\Rightarrow the Newton method is efficient).

• Ex.
$$\psi(x) = -\sum_{i=1}^{n} \log x^i$$
 (LP), $\psi(x) = -\log \det X$ (SDP)

Dually flat structure on Ω (revisited)

- D : the canonical flat affine connection on E
- $\{x^1, \cdots, x^n\}$: affine coordinate system, i.e.,
- g : Riemannian metric on Ω

$$g = Dd\psi = \sum_{i,j} \frac{\partial^2 \psi}{\partial x^i \partial x^j} dx^i dx^j.$$

• D': the dual affine connection on Ω $Xg(Y,Z) = g(D_XY,Z) + g(Y,D'_XZ)$

(g, D, D'): dually flat structure on Ω

 $D_{\frac{\partial}{\partial r^{j}}} \frac{\check{}}{\partial r^{j}}$

Remark

{s₁,...,s_n}: dual coordinate system on E*, s.t. ⟨s,x⟩ = ∑_i s_i(s)xⁱ(x)
Gradient map ι: Ω → Ω* defined by s_i ∘ ι = - ∂ψ/∂xⁱ induces dually flat structure on Ω* from(g, D, D')
(1) D*: the canonical flat affine connection on E*

$$D^*_{\iota_*(X)}\iota_*(Y) = \iota_*(D'_X Y) \qquad (\iota^* D^* = D')$$

 D^* -autoparallel in Ω^* \longrightarrow D' -autoparallel in Ω

Remark

(2) Riemannian metric $g^* \coloneqq D^* d\psi^*$ on Ω^* $g = \iota^* g^*$ (3) $\langle \iota_*(X), Y \rangle = -g_x(X, Y)$

Hessian norm : We denote the length of X in $T_x \Omega \cong E$ by $\|X\|_x := \|Z\|_s := \sqrt{g_x(X, X)} = \sqrt{g_s^*(Z, Z)},$ where $s = \iota(x)$ and $Z = \iota_*(X)$.

Curvature integral and iteration-complexity of IP

One of important computational performance indices for optimization algorithms is the iteration-complexity.

• Ω : sym. cone and $\mathcal{P} := (f + T) \cap \Omega$ is DA \Rightarrow iteration-complexity=o for (P)

- General case? Iter.-comp. is characterized by
 - Curvature integrals along the central trajectory $\gamma_{\mathcal{P}}$ $\int_{t}^{\iota_2} \|H^*_{\mathcal{P}}(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t))\|^{1/2}_{\gamma_{\mathcal{P}}(t)} dt$
 - Similarly, for (D) curvature integrals along the dual c. t. $\gamma_{\mathcal{D}}$ $\int_{t_1}^{t_2} \|H_{\mathcal{D}}(\dot{\gamma}_{\mathcal{D}}(t), \dot{\gamma}_{\mathcal{D}}(t))\|_{\gamma_{\mathcal{D}}(t)}^{1/2} dt$ 32

Central trajectory $\gamma_{\mathcal{P}}$

• Primal problem: minimize $\langle c, x \rangle$, s.t. $x \in \overline{\mathcal{P}}$, where $\mathcal{P} := (f + T) \cap \Omega$,

• $x(t) := \gamma_{\mathcal{P}}(t)$: the unique minimizer of minimize $\underline{t}\langle c, x \rangle + \psi(x), \text{ s.t. } x \in \overline{\mathcal{P}}.$

for each t > 0• $\gamma_{\mathcal{P}} := \{\gamma_{\mathcal{P}}(t) | t > 0\}$: (Primal) central trajectory

Central trajectory

- Homotopy path to the opt. sol. of the primal problem, i.e., x(t) converges when $t \rightarrow \infty$.
- Numerically tracing *\gampa_P* is the standard and efficient way to solve the primal problem.

Path-following method

Idea: consider the problem in Ω* and relate the complexity with the curvature

(1)Representation of feasible region

• A linear surj. operator $A : E \to \mathbf{R}^m$ s.t. Ker A = T

$$\mathcal{P} = \{x \in \Omega | Ax = b\},\$$
$$\mathcal{D} = \{s \in \Omega^* | s = c - A^*y, \ y \in \mathbf{R}^m\}\$$
where $A^* : \mathbf{R}^m \to E^*$ satisfying $y^T(Ax) = \langle A^*y, x \rangle,\$ $b := Af \in \mathbf{R}^m$

• dim $\mathcal{P} = n - m$, dim $\mathcal{D} = m$

• \mathcal{P} is *D*-autoparallel and \mathcal{D} is *D**-autoparallel

(2)Homogenization (conic hull)

• homogenization of $\mathcal D$ in Ω^*

 $\operatorname{Hom}(\mathcal{D}) := \bigcup_{t>0} t\mathcal{D}, \ t\mathcal{D} := \{s \in \Omega^* | s = t\tilde{s}, \ \tilde{s} \in \mathcal{D}\}$

- D^* -autoparallel because \mathcal{D} is.
- dim Hom $(\mathcal{D})=m+1$

Lemma

The following relations hold in Ω^* :

$$\iota(\gamma_{\mathcal{P}}) = \iota(\mathcal{P}) \cap \operatorname{Hom}(\mathcal{D})$$

$$s(t) := \iota(x(t)) = \iota(\mathcal{P}) \cap t\mathcal{D}$$

$$L(x,y) := t \langle c, x
angle + \psi(x) + y^T (b - Ax)$$

 $\partial L / \partial x = 0 \rightarrow s \in t \mathcal{D}$

Remark

 $\iota(\mathcal{P})$ and $t\mathcal{D}$ are orthogonal w.r.t. g^* at s(t) by definition.

Intuitive observation

- $H^*_{\mathcal{P}}(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t))$: the Euler-Schouten embedding curvature (second fundamental form) of $\iota(\gamma_{\mathcal{P}})$ with respect to D^*
- If $H_{\mathcal{P}}^*(\dot{\gamma}_{\mathcal{P}}(t),\dot{\gamma}_{\mathcal{P}}(t))$ is small at t, so is expected the iteration number !? $\iota(\gamma_{\mathcal{P}})$ Actually, $\ddot{s} = D_{\dot{s}}^*\dot{s} = \iota_*(H_{\mathcal{P}}^*(\dot{\gamma}_{\mathcal{P}},\dot{\gamma}_{\mathcal{P}}))$

Remark: practical case

 Cannot expect that the corrector returns Ω^* precisely on $\iota(\gamma_{\mathcal{P}})$ Hom(2 (t) Δt $\iota(\gamma_{\mathcal{P}}$ • Consider the point \bar{s} $L(t + \Delta t)$ in the neighborhood of $(t + \Delta t)$ $s(t) \in \iota(\gamma_{\mathcal{P}})$ in the sense $s(t + \Delta t)$ of Riemannian metric $\mathcal{N}_t(\beta) := \{ s \in t\mathcal{D} | \delta(s) \le \beta \}$

Predictor

• The differential equation expressing $\iota(\gamma_{\mathcal{P}})$:

$$\dot{s} = (\operatorname{id} - \Pi_s^{\perp})c = \frac{1}{t}(\operatorname{id} - \Pi_s^{\perp})s$$

where Π_s^{\perp} is the orthogonal projection w.r.t. g^* from E^* to $T^* = \text{Range}A^*$ at *s*.

- Note: $\Pi_s^{\perp} = \mathbf{o} \Rightarrow \text{ODE for the A-S traj. (up to sign)}$
- Hence, the predictor is defined by $\bar{s}_L(t + \Delta t) := \bar{s} + \Delta t (I - \Pi_{\bar{s}}^{\perp}) c \in (t + \Delta t) \mathcal{D}$

Corrector

- Reduces to the following convex optimization on tD
 minimize F(s) := ⟨s, f⟩ + ψ^{*}(s), s.t. s ∈ tD
- Newton direction *N* for this opt. problem:

 $D^*dF(X,N) = -dF(X), \ \forall X \in \mathcal{X}(t\mathcal{D})$

• Newton decrement: measure of approximation of *s*

 $\delta(s) := \|N\|_s$

• We define the corrector with a single **Newton step** by:

$$\bar{s}_L^+(t+\Delta t) := \bar{s}_L(t+\Delta t) + N_{\bar{s}_L(t+\Delta t)}$$

Tubular neighborhood

- The standard analysis technique in IP ensures the polynomiality of the complexity for this path-following strategy if all the generated points are near to $\iota(\gamma_P)$.
- Introduce the tubular neighborhood $\mathcal{N}(\beta)$ of $\iota(\gamma_{\mathcal{P}})$

$$\mathcal{N}(\beta) := \bigcup_{t \in (0,\infty)} \mathcal{N}_t(\beta),$$

where $\mathcal{N}_t(\beta) := \{ s \in t\mathcal{D} | \delta(s) \le \beta \}.$

4. Curvature integral and asymptotic iteration-complexity (Main result)

• Assumption: $\iota(\gamma_{\mathcal{P}})$ is not *D**-autoparallel, i.e., $\beta \to 0$ implies that $\Delta t \to 0$ (If it is ?)

Theorem

For $0 < t_1 < t_2$ and $s_1 \in \mathcal{N}(\beta) \cap t_1\mathcal{D}$, let $\sharp(s_1, t_2, \beta)$ be the iteration number to find $s_2 \in \mathcal{N}(\beta) \cap t_2\mathcal{D}$. Then,

$$\lim_{\beta \to 0} \frac{\sqrt{\beta} \times \sharp(s_1, t_2, \beta)}{I_{\mathcal{P}}(t_1, t_2)} = 1,$$

where

$$I_{\mathcal{P}}(t_1, t_2) := \frac{1}{\sqrt{2}} \int_{t_1}^{t_2} \|H_{\mathcal{P}}^*(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t))\|_{\gamma_{\mathcal{P}}(t)}^{1/2} dt.$$

Outline of the proof

• Evaluate the Newton dec. of the predictor $\bar{s}_L(t + \Delta t)$ by $\|\ddot{s}(t)\|_{s(t)}$ (For each iteration)

Outline of the proof

• Intermediate two relations for sufficiently small Δt and β . (For each iteration)

•
$$\sqrt{(1-\eta)\beta}(1-O(\sqrt{\beta})) \leq \sqrt{w} - \sqrt{M_3}\delta(\bar{s})$$
$$\leq \frac{\Delta t}{\sqrt{2}} \|\ddot{s}(t)\|_{s(t)}^{1/2} + \sqrt{|r_1|} + \sqrt{M_3}(\Delta t)^2,$$
$$\frac{\Delta t}{\sqrt{2}} \|\ddot{s}(t)\|_{s(t)}^{1/2} - \sqrt{|r_1|} - \sqrt{M_3}(\Delta t)^2$$
$$\leq \sqrt{w} + \sqrt{M_3}\delta(\bar{s}) \leq \sqrt{\beta}(1+O(\sqrt{\beta}))$$

Outline of the proof

Take summations of iterations

47

Remark

- An asymptotic result for β → 0 (and hence, Δt → 0)
 P is DA ⇒ ι(γ_P) is DA (D*-autoparallel) ⇒ Δt→∞ ⇒ explicit sol.
- The same argument holds for the dual problem.
- The results are valid for general convex cones

Numerical experiment

Curvature structure of CT for a certain LP

Figure 7: Exaple Figure

Proposition It holds that $\|H_{\mathcal{P}}^{*}(\dot{\gamma}_{\mathcal{P}},\dot{\gamma}_{\mathcal{P}})\|_{\gamma_{\mathcal{P}}(t)}^{1/2} \leq \frac{\sqrt{2\vartheta}}{t}$

 ϑ : a constant determined by $\psi(x)$

• Remark The above proposition gives the upper bound: $I_{\mathcal{P}}(t_1, t_2) \leq \sqrt{\vartheta} \log(t_2/t_1)$

Further study for LP case

• Primal and Dual Linear Program:

 $\min c^T x$ s.t. Ax = b, $x \ge 0$, A

s.t. Ax = b, $x \ge 0$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$ max $b^T y$

s.t.
$$s = c - A^T y$$
, $s \ge 0$,

Application to

Primal-dual path-following (PDPF) method

- current main-stream IP (cheap in each iteration)
- The following quantity has been known to play an important and similar role in complexity analysis of PDPF method:

$$I_{PD}(t_1, t_2) = \int_{t_1}^{t_2} h_{PD}(t)^{1/2} dt$$

where $h_{PD}(t)$ is given by

$$h_{PD}(t) := \frac{1}{t^2} ((I_n - Q(t))e) * (Q(t)e).$$

e: the unit element of Jordan product * Q(t): a certain projection matrix

Proposition

It holds that

$$h_{PD}(t)^{2} = \left(\frac{1}{2} \|H_{\mathcal{P}}^{*}(\dot{\gamma}_{\mathcal{P}}(t), \dot{\gamma}_{\mathcal{P}}(t))\|_{\gamma_{\mathcal{D}}(t)}\right)^{2} + \left(\frac{1}{2} \|H_{\mathcal{D}}(\dot{\gamma}_{\mathcal{D}}(t), \dot{\gamma}_{\mathcal{D}}(t))\|_{\gamma_{\mathcal{D}}(t)}\right)^{2}$$

Remark :

- geometric implication of the quantity of $I_{PD}(t_1, t_2)$
- inequalities

 $\max\{I_{\mathcal{P}}(t_1, t_2), I_{\mathcal{D}}(t_1, t_2)\} \le I_{PD}(t_1, t_2)$ $\le I_{\mathcal{P}}(t_1, t_2) + I_{\mathcal{D}}(t_1, t_2).$

Concluding Remark

- Tractable characterization of DA submfds in symmetric cones Ω
- Application to conic linear programs
 - Explicit sol. when the feasible region M is DA in Ω .
 - *M* is DA \Rightarrow AS (CT) traj. is DA (*D**-autoparallel) $\Rightarrow \Delta t \rightarrow \infty$ \Rightarrow explicit sol.

• Extension: # of iterations and curvature integral of CT

- Asymptotic analysis $(\beta \rightarrow 0)$
 - Complemented by numerical experiment for finite β
- Geometric structure of CT has a influence on complexity of the IP algorithm

- Relation among iteration-complexities of P. D. and PD algorithm.
- DA submanifolds in a certain submfd in Jordan algebras [OIT]
- Future work: Geometrical study for general stat. mfd.
 - Various geometrical concepts for mutually dual connections and their characterizations (Furuhata *et al*.)
 - Classifications
 - Families of continuous probability densities
 - Applications (Ex. Study of ODE's on manifolds?)

Thank you for your attention

References:

[OIT] A. Ohara, H. Ishi and T. Tsuchiya,

Doubly autoparallel structure and curvature integrals

- An application to iteration-complexity analysis of convex optimization -, Information Geometry, to appear.