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Introduction
Doubly autoparallel submanifolds 
Def. Statistical manifold:  

: arbitrary vector fields on 

: Riemannian metric

dually flat
torsion-free affine connections

α-connections



 Def. Let                          be a statistical manifold and M
be its submanifold. We call M a doubly autoparallel
submanifold in S when the followings hold:




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Important Properties
Proposition The following statements are equivalent:

 1) A submanifold M is doubly autoparallel (DA) 

 2) M is autoparallel w.r.t. the     -connections

for two different ’s. 

 3) M is autoparallel w.r.t. all the     -connections. 

 4) all the    -geodesics connecting two points on M lay in 
M (if it is simply connected).

 5) M is affinely constrained in both    - and      -affine 
coordinates if S is dually flat. 
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Furthermore, for a parametric statistical model S

 If M is DA in S, then α-projections (q-MaxEnt) from p
to M are unique for all α if they exist.
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(α)

α-projection =arg min (p, M)

M is simultaneously an 
exp. and mix. family



Related topics and applications 
Symmetric cones

 MLE for structured covariance matrices is tractable

(cast to convex program: inversely linear structure)     

[Anderson 70, Malley 94]

 Explicitly solvable Semi-Definite Programs [O 99]

 Structure of α-power means on symmetric cones [O 04]
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Related topics and applications 
Probability simplex

 Statistical models Markov-isomorphic to the

probability simplex  [Nagaoka 17]

 Characterization and classification of DA submfds in 
prob. simplex via Hadamard algebra [O&Ishi 18]

 Learning theory [Mutus&Ay 03]

Miscellaneous

 The self-similar (Barenblatt–Pattle) solution for the 
porous medium equation [O&Wada 10]

General statistical manifolds

 Purely geometric study [Satoh et al. 21] 8



Preliminaries                [Faraut&Korani 94]

 Symmetric cone in an Euclidian space E

 Homogeneous

acts transitively 

 self-dual w.r.t. an inner product of E

,

 Euclidean Jordan algebra

 Commutative



 Associative inner-product  

Prop. is a symmetric cone in V.
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Ex. the set of real symmetric p. d. matrices PD(n,R)

,  

,   the unit: I , the inverse: 

 ,  



 Mutation: 

isomorphic to    ,    the unit element:

Ex.  
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Preliminaries (Dually flat structure on Ω)

 Logarithmic characteristic function on Ω

 positive definite Hessian on Ω

 ,         

 Ex.

 a coordinate system                             ,              : a basis of E

 a dual coordinate system

,                : a basis of E with
11



D : the canonical flat affine connection on E

 : affine coordinate system, i.e.,

g : Riemannian metric on Ω

D’ : the dual affine connection on Ω

: dually flat structure on Ω
12



Pleriminaries and ex. on PD(n) 
Dually flat structure on Ω [Uohashi&O 04] 

- Potential: –log det x, 

Ex.             -log det X,  (                         )

- Riemanian metric:                                          , 

- α-connections:
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Characterization of DA submfds in Ω 

Let W be a linear subspace in Jordan algebra (V, * ) and

in Ω. 

Thm. [OIT] The following 1)-3) are equivalent: 

1) A Submanifold                                     is DA, where

2) For all x in M,

3) The subspace is a Jordan subalgebra. 

Rem. (a)  3) is able to be checked at the single point p

(b)                                             with  

The proof is based on 5) in the Proposition
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(c) Implication: Classification of DA submflds in

Ω reduces to that of Jordan subalgs of (V, * ).

(For V=Sym(n,R) →[Jacobson 87], [Malley 87])

 Ex. - Jordan subalgebras in Sym(n,R) 

1) fixed eigen vectors, 2) doubly symmetric, etc.

- Two bases                                 of Sym(n,R) 

15



16

Application(1) Means on Positive Operators
                                                                        [Kubo & Ando 80]

 Def. (Axioms of means）

     is a mean on self-conjugate positive operators

 i)

 ii)

 iii)

where

 iv)
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α-geodesics on PD(n)
 α-geodesic P(s)        boundary conds. : P(0)=A, P(1)=B

α- : a power mean
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Means and α-geodesics on PD(n)  [O 04]

Thm. Points on α-geodesics for s in [0,1] and α in [-1,1] are 

2-param. family of means, i.e., 

In particular, for fixed s in [0, 1]

AGH ineq. (s=1/2)                                                                                   

Cor. A and B are in a DA submanifold M

⇒



App.(2)  MLE for structured covariance matrices

 Sample covariance S in PD(n,R)

 a zero-mean Gaussian p.d.f. with covariance mtx. Σ

 structured covariance mtx. (with linear constraints) 

 Ex.

 Toeplitz matrices:

 zero-patterns :

 etc... 
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MLE for structured covariance matrices
 Negative logarithmic likelihood func (up to const.):

→ min

 Rem Note that  -log det is a convex function.

 If M is DA (inversely linear structure), then the  
minimization problem of           (MLE) s.t.

is a strictly convex program.

Unique solution, 

Numerically tractable (optimality eq. is linear)
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App.(3) Convex program
Affine-scaling method and IG
 General convex program:  Convex set                 ,

 Ψ: a good convex barrier func. for       , 

1) Ψ(x) → +∞ (x → bd     ),   2) h: p.d. Hessian,   3) + α

 Gradient flow for Riemannian mfd

 Legendre transform ⇒ linearized

21

x(t): affine-scaling trajectory
(numerically traced)



 Opt. sol.:                                (inverse Legendre trans.)

 Red underlined: needs the explicit form of Ψ*

( or solving the nonlinear eq.:                             )  

Idea

Ψ* is known for a good barrier Ψ ⇒ an explicit opt. sol.

 1) Ω: sym. cones ⇒ ψ(x) = -log det x, ψ*(s)=-log det s, 

Legendre transform:

 2)      realized by                                 is DA in Ω

⇒a) convexity of      ,  b) linearized traj. belongs to
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 Ex. SemiDefinite Program (SDP)

 If       is DA in PD(n) and             , 

 1. Set                                                 , then

 2. Solve                                meeting
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 3. Spectral decomposition

 4. For                                             , the opt. sol. Is

Rem. Independent of the objective function            and 

an initial value P0
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Interior point method (IP) 
for Conic linear program 

Conic linear program -Notation-

 Vector space E of dimension n

 The dual vector space E*

 : Paring

 : proper open convex cone in E

 : the dual cone of 

 : (Orthogonal) dual subspace of  
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Conic Linear Program
Given 

 Primal problem

(P)

 Dual problem

(D)
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Typical Examples
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 Linear program (LP):

 Semidefinite program (SDP):

E=E* : the set of real symmetric matrices

Ω = Ω* : the set of positive definite matrices

 Second order cone (Lorentz cone) program (SOCP) 

 Mixture of the aboves



θ-normal barrier on an open convex cone Ω
 Def. θ-normal barrier ψ on Ω (⇐+α)

 A (smooth) convex function ψ satisfying, at each x in Ω,

for                         and 

 ψ(x) → +∞ (x → bd Ω),

Rem. [Nesterov & Nemirovski 94] (1) Existence for all Ω (but not  
explicit forms),  (2) the Hessian is p.d.,  (3) self-concordance
(⇒the Newton method is efficient).

 Ex.
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Dually flat structure on Ω (revisited)

D : the canonical flat affine connection on E

 : affine coordinate system, i.e.,

g : Riemannian metric on Ω

D’ : the dual affine connection on Ω

: dually flat structure on Ω
29



Remark
 : dual coordinate system on E* , s.t. 

 Gradient map ι : Ω → Ω* defined by

induces dually flat structure on Ω* from

(1)   D* : the canonical flat affine connection on E*

30

D* -autoparallel in Ω* -autoparallel in Ω



Remark
(2) Riemannian metric                          on Ω* 

(3)

Hessian norm : We denote the length of X in                    by
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Curvature integral and 
iteration-complexity of IP
One of important computational performance indices 
for optimization algorithms is the iteration-complexity.

 Ω: sym. cone and                                 is DA

⇒ iteration-complexity=0 for (P)  

 General case? Iter.-comp. is characterized by 

 Curvature integrals along the central trajectory

 Similarly, for (D) curvature integrals along the dual c. t.
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Central trajectory
 Primal problem:                             

 : the unique minimizer of 

for each 

 : 

(Primal) central trajectory

33



Central trajectory
 Homotopy path to the opt. sol. of the primal problem, 

i.e., x(t) converges when t→∞.

 Numerically tracing         is the standard and efficient 
way to solve the primal problem. 

Path-following method

Idea: consider the problem in Ω*

and relate the complexity with 

the curvature  
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(1)Representation of feasible region 
 A linear surj. operator                            s.t. Ker A =T

where                                 satisfying                               ,

 dim      =n-m,    dim       =m

 is D-autoparallel and is D*-autoparallel
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(2)Homogenization (conic hull)
 homogenization of      in Ω* 

 D*-autoparallel 

because       is. 

 dim                =m+1

36Homogenization



Lemma
The following relations hold in Ω*:

Remark

and        are orthogonal 

w.r.t.      at s(t) by definition.
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3. Geometric predictor-corrector 
algorithm   (tracing       in               )

Ideal case

 Predictor

From                     

to 

with the direction tangent

to 

 Corrector

From

to  
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Intuitive observation
 : the Euler-Schouten embedding 

curvature (second fundamental form) of           with 
respect to D*

 If                               is small at t, so is expected the 
iteration number !?

Actually, 
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Remark: practical case
 Cannot expect that the corrector returns

precisely on 

 Consider the point       

in the neighborhood of

in the sense 

of Riemannian metric
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Predictor
 The differential equation expressing           :

where         is the orthogonal projection w.r.t.

from                                              at s.

Note:        =0 ⇒ ODE for the A-S traj. (up to sign)

 Hence, the predictor is defined by 
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Corrector
 Reduces to the following convex optimization on 

 Newton direction N for this opt. problem:

 Newton decrement:  measure of approximation of s

 We define the corrector with a single Newton step by:
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Tubular neighborhood
 The  standard analysis technique in IP ensures the 

polynomiality of the complexity for this path-following 
strategy if all the generated points are near to           . 

 Introduce the tubular 

neighborhood          of            
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4. Curvature integral and asymptotic 
iteration-complexity (Main result)
 Assumption:           is not D*-autoparallel, i.e., 

(If it is ?)

 Theorem

For                       and                                , let

be the iteration number to find                               . Then,  
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Outline of the proof
 Evaluate the Newton dec. of the predictor

by                   (For each iteration) 
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Outline of the proof
 Intermediate two relations for sufficiently small 

(For each iteration)




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Outline of the proof
 Take summations of iterations




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Remark
 An asymptotic result for              (and hence,                )

 is DA ⇒            is DA (D*-autoparallel)  ⇒   Δt→∞  
⇒  explicit sol.

 The same argument holds for the dual problem. 

 The results are valid for general convex cones 
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Numerical experiment
 Curvature structure of CT for a certain LP
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Curved part is Straight and
Straight part is Curved?(1)

１

２



Proposition
It holds that

: a constant determined by 

 Remark

The above proposition gives the upper bound: 
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Further study for LP case
 Primal and Dual Linear Program:
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Application to 
Primal-dual path-following (PDPF) method
 current main-stream IP   (cheap in each iteration)

 The following quantity has been known to play an 
important and similar role in complexity analysis of 
PDPF method:

e: the unit element of Jordan product * 

Q(t): a certain projection matrix
53



Proposition
It holds that

Remark :

- geometric implication of the quantity of

- inequalities   
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Concluding Remark
 Tractable characterization of DA submfds in 

symmetric cones Ω

 Application to conic linear programs

 Explicit sol. when the feasible region M is DA in Ω.

 M is DA ⇒ AS (CT) traj. is DA (D*-autoparallel)  ⇒   Δt→∞  
⇒  explicit sol.

 Extension: # of iterations and curvature integral of CT

 Asymptotic analysis ( β→ 0 )

 Complemented by numerical experiment for finite β 

 Geometric structure of CT has a influence on complexity 
of the IP algorithm
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 Relation among iteration-complexities of P. D. and PD 
algorithm.

 DA submanifolds in a certain submfd in Jordan algebras 
[OIT]

 Future work: Geometrical study for general stat. mfd.

 Various geometrical concepts for mutually dual 
connections and their characterizations (Furuhata et al.)

 Classifications

 Families of continuous probability densities  

 Applications (Ex. Study of ODE’s on manifolds?)
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Thank you for your attention
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