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Introduction
Doubly autoparallel submanifolds 
Def. Statistical manifold:  

: arbitrary vector fields on 

: Riemannian metric

dually flat
torsion-free affine connections

α-connections



 Def. Let                          be a statistical manifold and M
be its submanifold. We call M a doubly autoparallel
submanifold in S when the followings hold:
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Important Properties
Proposition The following statements are equivalent:

 1) A submanifold M is doubly autoparallel (DA) 

 2) M is autoparallel w.r.t. the     -connections

for two different ’s. 

 3) M is autoparallel w.r.t. all the     -connections. 

 4) all the    -geodesics connecting two points on M lay in 
M (if it is simply connected).

 5) M is affinely constrained in both    - and      -affine 
coordinates if S is dually flat. 
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Furthermore, for a parametric statistical model S

 If M is DA in S, then α-projections (q-MaxEnt) from p
to M are unique for all α if they exist.
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(α)

α-projection =arg min (p, M)

M is simultaneously an 
exp. and mix. family



Related topics and applications 
Symmetric cones

 MLE for structured covariance matrices is tractable

(cast to convex program: inversely linear structure)     

[Anderson 70, Malley 94]

 Explicitly solvable Semi-Definite Programs [O 99]

 Structure of α-power means on symmetric cones [O 04]
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Related topics and applications 
Probability simplex

 Statistical models Markov-isomorphic to the

probability simplex  [Nagaoka 17]

 Characterization and classification of DA submfds in 
prob. simplex via Hadamard algebra [O&Ishi 18]

 Learning theory [Mutus&Ay 03]

Miscellaneous

 The self-similar (Barenblatt–Pattle) solution for the 
porous medium equation [O&Wada 10]

General statistical manifolds

 Purely geometric study [Satoh et al. 21] 8



Preliminaries                [Faraut&Korani 94]

 Symmetric cone in an Euclidian space E

 Homogeneous

acts transitively 

 self-dual w.r.t. an inner product of E

,

 Euclidean Jordan algebra

 Commutative



 Associative inner-product  

Prop. is a symmetric cone in V.
9



Ex. the set of real symmetric p. d. matrices PD(n,R)

,  

,   the unit: I , the inverse: 

 ,  



 Mutation: 

isomorphic to    ,    the unit element:

Ex.  
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Preliminaries (Dually flat structure on Ω)

 Logarithmic characteristic function on Ω

 positive definite Hessian on Ω

 ,         

 Ex.

 a coordinate system                             ,              : a basis of E

 a dual coordinate system

,                : a basis of E with
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D : the canonical flat affine connection on E

 : affine coordinate system, i.e.,

g : Riemannian metric on Ω

D’ : the dual affine connection on Ω

: dually flat structure on Ω
12



Pleriminaries and ex. on PD(n) 
Dually flat structure on Ω [Uohashi&O 04] 

- Potential: –log det x, 

Ex.             -log det X,  (                         )

- Riemanian metric:                                          , 

- α-connections:
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Characterization of DA submfds in Ω 

Let W be a linear subspace in Jordan algebra (V, * ) and

in Ω. 

Thm. [OIT] The following 1)-3) are equivalent: 

1) A Submanifold                                     is DA, where

2) For all x in M,

3) The subspace is a Jordan subalgebra. 

Rem. (a)  3) is able to be checked at the single point p

(b)                                             with  

The proof is based on 5) in the Proposition
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(c) Implication: Classification of DA submflds in

Ω reduces to that of Jordan subalgs of (V, * ).

(For V=Sym(n,R) →[Jacobson 87], [Malley 87])

 Ex. - Jordan subalgebras in Sym(n,R) 

1) fixed eigen vectors, 2) doubly symmetric, etc.

- Two bases                                 of Sym(n,R) 
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Application(1) Means on Positive Operators
                                                                        [Kubo & Ando 80]

 Def. (Axioms of means）

     is a mean on self-conjugate positive operators

 i)

 ii)

 iii)

where

 iv)
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α-geodesics on PD(n)
 α-geodesic P(s)        boundary conds. : P(0)=A, P(1)=B

α- : a power mean
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Means and α-geodesics on PD(n)  [O 04]

Thm. Points on α-geodesics for s in [0,1] and α in [-1,1] are 

2-param. family of means, i.e., 

In particular, for fixed s in [0, 1]

AGH ineq. (s=1/2)                                                                                   

Cor. A and B are in a DA submanifold M

⇒



App.(2)  MLE for structured covariance matrices

 Sample covariance S in PD(n,R)

 a zero-mean Gaussian p.d.f. with covariance mtx. Σ

 structured covariance mtx. (with linear constraints) 

 Ex.

 Toeplitz matrices:

 zero-patterns :

 etc... 
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MLE for structured covariance matrices
 Negative logarithmic likelihood func (up to const.):

→ min

 Rem Note that  -log det is a convex function.

 If M is DA (inversely linear structure), then the  
minimization problem of           (MLE) s.t.

is a strictly convex program.

Unique solution, 

Numerically tractable (optimality eq. is linear)
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App.(3) Convex program
Affine-scaling method and IG
 General convex program:  Convex set                 ,

 Ψ: a good convex barrier func. for       , 

1) Ψ(x) → +∞ (x → bd     ),   2) h: p.d. Hessian,   3) + α

 Gradient flow for Riemannian mfd

 Legendre transform ⇒ linearized
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x(t): affine-scaling trajectory
(numerically traced)



 Opt. sol.:                                (inverse Legendre trans.)

 Red underlined: needs the explicit form of Ψ*

( or solving the nonlinear eq.:                             )  

Idea

Ψ* is known for a good barrier Ψ ⇒ an explicit opt. sol.

 1) Ω: sym. cones ⇒ ψ(x) = -log det x, ψ*(s)=-log det s, 

Legendre transform:

 2)      realized by                                 is DA in Ω

⇒a) convexity of      ,  b) linearized traj. belongs to
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 Ex. SemiDefinite Program (SDP)

 If       is DA in PD(n) and             , 

 1. Set                                                 , then

 2. Solve                                meeting
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 3. Spectral decomposition

 4. For                                             , the opt. sol. Is

Rem. Independent of the objective function            and 

an initial value P0
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Interior point method (IP) 
for Conic linear program 

Conic linear program -Notation-

 Vector space E of dimension n

 The dual vector space E*

 : Paring

 : proper open convex cone in E

 : the dual cone of 

 : (Orthogonal) dual subspace of  
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Conic Linear Program
Given 

 Primal problem

(P)

 Dual problem

(D)

26



Typical Examples

27

 Linear program (LP):

 Semidefinite program (SDP):

E=E* : the set of real symmetric matrices

Ω = Ω* : the set of positive definite matrices

 Second order cone (Lorentz cone) program (SOCP) 

 Mixture of the aboves



θ-normal barrier on an open convex cone Ω
 Def. θ-normal barrier ψ on Ω (⇐+α)

 A (smooth) convex function ψ satisfying, at each x in Ω,

for                         and 

 ψ(x) → +∞ (x → bd Ω),

Rem. [Nesterov & Nemirovski 94] (1) Existence for all Ω (but not  
explicit forms),  (2) the Hessian is p.d.,  (3) self-concordance
(⇒the Newton method is efficient).

 Ex.
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Dually flat structure on Ω (revisited)

D : the canonical flat affine connection on E

 : affine coordinate system, i.e.,

g : Riemannian metric on Ω

D’ : the dual affine connection on Ω

: dually flat structure on Ω
29



Remark
 : dual coordinate system on E* , s.t. 

 Gradient map ι : Ω → Ω* defined by

induces dually flat structure on Ω* from

(1)   D* : the canonical flat affine connection on E*

30

D* -autoparallel in Ω* -autoparallel in Ω



Remark
(2) Riemannian metric                          on Ω* 

(3)

Hessian norm : We denote the length of X in                    by
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Curvature integral and 
iteration-complexity of IP
One of important computational performance indices 
for optimization algorithms is the iteration-complexity.

 Ω: sym. cone and                                 is DA

⇒ iteration-complexity=0 for (P)  

 General case? Iter.-comp. is characterized by 

 Curvature integrals along the central trajectory

 Similarly, for (D) curvature integrals along the dual c. t.
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Central trajectory
 Primal problem:                             

 : the unique minimizer of 

for each 

 : 

(Primal) central trajectory
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Central trajectory
 Homotopy path to the opt. sol. of the primal problem, 

i.e., x(t) converges when t→∞.

 Numerically tracing         is the standard and efficient 
way to solve the primal problem. 

Path-following method

Idea: consider the problem in Ω*

and relate the complexity with 

the curvature  
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(1)Representation of feasible region 
 A linear surj. operator                            s.t. Ker A =T

where                                 satisfying                               ,

 dim      =n-m,    dim       =m

 is D-autoparallel and is D*-autoparallel
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(2)Homogenization (conic hull)
 homogenization of      in Ω* 

 D*-autoparallel 

because       is. 

 dim                =m+1

36Homogenization



Lemma
The following relations hold in Ω*:

Remark

and        are orthogonal 

w.r.t.      at s(t) by definition.
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3. Geometric predictor-corrector 
algorithm   (tracing       in               )

Ideal case

 Predictor

From                     

to 

with the direction tangent

to 

 Corrector

From

to  
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Intuitive observation
 : the Euler-Schouten embedding 

curvature (second fundamental form) of           with 
respect to D*

 If                               is small at t, so is expected the 
iteration number !?

Actually, 
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Remark: practical case
 Cannot expect that the corrector returns

precisely on 

 Consider the point       

in the neighborhood of

in the sense 

of Riemannian metric
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Predictor
 The differential equation expressing           :

where         is the orthogonal projection w.r.t.

from                                              at s.

Note:        =0 ⇒ ODE for the A-S traj. (up to sign)

 Hence, the predictor is defined by 
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Corrector
 Reduces to the following convex optimization on 

 Newton direction N for this opt. problem:

 Newton decrement:  measure of approximation of s

 We define the corrector with a single Newton step by:
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Tubular neighborhood
 The  standard analysis technique in IP ensures the 

polynomiality of the complexity for this path-following 
strategy if all the generated points are near to           . 

 Introduce the tubular 

neighborhood          of            
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4. Curvature integral and asymptotic 
iteration-complexity (Main result)
 Assumption:           is not D*-autoparallel, i.e., 

(If it is ?)

 Theorem

For                       and                                , let

be the iteration number to find                               . Then,  
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Outline of the proof
 Evaluate the Newton dec. of the predictor

by                   (For each iteration) 
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Outline of the proof
 Intermediate two relations for sufficiently small 

(For each iteration)
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Outline of the proof
 Take summations of iterations
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Remark
 An asymptotic result for              (and hence,                )

 is DA ⇒            is DA (D*-autoparallel)  ⇒   Δt→∞  
⇒  explicit sol.

 The same argument holds for the dual problem. 

 The results are valid for general convex cones 
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Numerical experiment
 Curvature structure of CT for a certain LP
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Curved part is Straight and
Straight part is Curved?(1)

１

２



Proposition
It holds that

: a constant determined by 

 Remark

The above proposition gives the upper bound: 
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Further study for LP case
 Primal and Dual Linear Program:
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Application to 
Primal-dual path-following (PDPF) method
 current main-stream IP   (cheap in each iteration)

 The following quantity has been known to play an 
important and similar role in complexity analysis of 
PDPF method:

e: the unit element of Jordan product * 

Q(t): a certain projection matrix
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Proposition
It holds that

Remark :

- geometric implication of the quantity of

- inequalities   
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Concluding Remark
 Tractable characterization of DA submfds in 

symmetric cones Ω

 Application to conic linear programs

 Explicit sol. when the feasible region M is DA in Ω.

 M is DA ⇒ AS (CT) traj. is DA (D*-autoparallel)  ⇒   Δt→∞  
⇒  explicit sol.

 Extension: # of iterations and curvature integral of CT

 Asymptotic analysis ( β→ 0 )

 Complemented by numerical experiment for finite β 

 Geometric structure of CT has a influence on complexity 
of the IP algorithm
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 Relation among iteration-complexities of P. D. and PD 
algorithm.

 DA submanifolds in a certain submfd in Jordan algebras 
[OIT]

 Future work: Geometrical study for general stat. mfd.

 Various geometrical concepts for mutually dual 
connections and their characterizations (Furuhata et al.)

 Classifications

 Families of continuous probability densities  

 Applications (Ex. Study of ODE’s on manifolds?)
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Thank you for your attention
References:

[OIT] A. Ohara, H. Ishi and T. Tsuchiya, 

Doubly autoparallel structure and curvature integrals 

- An application to iteration-complexity analysis of convex 
optimization -,  Information Geometry, to appear. 
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