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Introduction

Information geometry is a branch of differential
geometry with Riemannian metric and a pair of affine
connections.

[t originates from the study of geometric structure for
the family of probability densities in 80’s, and is now
developing in many ways.

Widely related to information science, mathematics
and statistical physics.
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Information geometry on M
Def. Statistical manifold: (M, g, V, V*)

Xg(Y,Z2)=9g(VxY,Z)+ g(Y, Vi Z)
X,Y and Z :arbitrary vector fields on M

* (@ : Rilemannian metric

* (V,V*) : torsion-free affine connections
RY =0, RV =0 = dually flat

1 1 _ .
* Vi) = JQFQV | ZQV*ZO(-CODDECUODS
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Definition

Def. Let (.S, g, V, V™) be a statitical manifold and M
be its submanifold. We call M a doubly autoparallel
submanifold in S when the followings hold:

« VX, Y e X(M), VyY € X(M)
« VX,Y € X(M), VY € X(M)



DA on symmetric cones ()

Thm. [UOo4] The a-connection is represented by the
mutation of Jordan algebra:

, 0
(v ﬂ _,) — oL
max.i . i :

Thm. [OI] Submanifolds M = (W + p)N{)ina
symmetric cone () iff the subspace W is a Jordan
subalgebra.



Related facts or applications

MLE for structured covariance matrices is tractable

(cast to convex program: inversely linear structure)
|Andersonyo, Malleyg4]

Explicitly solvable SDP problems [Og9]

Structure of a-power means on symmetric cones [Oo4]

The self-similar (Barenblatt-Pattle) solution for the
porous medium equation [OW10]
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Important Properties

Proposition The following statements are equivalent:

A submanifold M is doubly autoparallel (DA)

M is autoparallel w.r.t. the «v -connections
Vi) = (1 +a)V+ (1 -a)V*}/2

for two different o'’s.

M is autoparallel w.r.t. all the & -connections.

all the c-geodesics connecting two points on M lay in M
(if it is simply connected).

M is affinely constrained in both V- and V*-affine
coordinates.
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Furthermore,

If M is DA, then « -projections (g-MaxEnt) from p to
M are unique for all «vif they exist.

\)

a) :
-geodesic

p(x)

Po(x)* Ly
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The purpose of this talk

Study of DA submanifolds in the space of probability
distributions

Probability simplex = the space of distributions on
finite samples

— Linear algebraic approach
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Outline

Preliminaries & examples
Characterization of DA on the probability simplex
Classification of DA

Concluding remarks
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Preliminaries

Positive orthant

Ri—:l . {p c Rn—l—l‘pi >0,i=1,--- ,’I’H-l},

Probability simplex
( n—+1 )
S"i=<peRI) pi=1;
\ 1—=1 y

The set of finite events () ={1,2, ..., n+1}

i
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Discrete probability distributions:
pX=i)=p;, >0, 1=1,--- . n+1

e Ex: fullmodel Pn: p;i =&, i=1,---,n

— ZELC)}( (1 — Zgl) n+1
1=1

12



|G on the simplex (full model)

e,

* Riemannian metric §. 0, —
Ipi

(=Fisher information matrix)

gi;(p) = > p(X)(9;log p(X))(0;logp(X)) i, j=1,---.n

XeQ
* mutually dual affine connections v(9 and v

e V(¢ : exponential connection (o=1)

Do) =I5 p) =Y p(X)(9:0;10gp(X)) (O log p(X)) ij. k=1,

o V(™). mixture connection (o=-1)

r e =10 m) = Y p(X)(0:0;p(X) (O logp(X)) i jk=1,-
Xe)
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affine coordinates

V(") _affine coordinates: (777,)

= Z p(X)0;(X) = p;

Xe
Each?i is affine w.r.t. £ & the model is V(") _autoparallel

v(e)-affine coordinates: (6?)

7 = log (1 - £ p)
i=1Di

_eXp{ZQO Al } P(0) ;= log (1 + Zn: exp@i)

=1

Each ' is affine w.r.t. £ & the model is v(*) -autoparallel




Example 1 (1)

S : the probability simlex in R* 1
(S™, g, v{e) wvim)y  g:the Fisher metric.

W: a subspace spanned by

e d (<n) vertices v'*) = (6F) € R"*! in §™, and

e non-vertex point v in g7 linearly independent of
(k) d
{L(>}E:1

W = tjpan{'v 1 1)7 . 3'?,?((0}
M = W N S" is doubly autoparallel.

AR
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Example 1 (2)

Proof for d=2 (Similar arguments hold for arbitrary d.)
The m-affine coordinates 7 = (n;)of v\, i =0,1,2:

v = (10 --- 0)7T, v@ =010 ---0)T,

p(0)=(00p3 - ppt1), > pi=1, pi>0
1=23

The m-affine coordinates of p in M:
P = fl-v(l) + 52-13(2) + (1 — & — fg)v(m cM=Wns"
m ==&, =8, ni=0-&—&)pi, i=3,-.n+1,
(1 >0, & >0, & +8& <1).

affine in &, i=1,2 16



Example 1 (3)

* The e-affine coordinates of p in M:

0" = log (1 — gﬁ p-)
=1 171

0! :Clﬁ 92:C2? 9?’:1ng@—|—(’ =3, . n+1,
(C’i — 10%{&)/(1 _ gl — 52)} 1 =1,2, c=— 10gpn+1)-

affine in G, i=1,2




|G on the positive orthant R}’

9,
op;

Riemannian metric ¢ 9, =

, ;i
i (p Z p(X)(0; logp(X))(0;logp(X)) = _J
XeQ Pi

@(m) m-connection (o=-1)

~

I ) =" p(X)(9:0;p(X))(0) log p(X)) = 0
Xe

. , (pi):v(m) -affine coordinates
V(¢ : e-connection (o=1)

6k
Pz

(log p;) :V(¢)-affine coordinates

18
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Denormalization

Def. denormalization of a submanifold M in S™

M= {rpeRtpe M, >0}

~

Lem [Amari & Nagaoka 2000]
The following statements are equivalent:
A submanifold )/ isV(*1)_autoparallel in S",

A denormalization M is V(+1) -autoparallel in R:ﬁil.

> =
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observations

W: a subspace in R" 11
M=wns®” ©M=WnR""is V(m-autoparallel
& M is V(™) -autoparallel
log M =b+W’, | Wis another subspace of the same dim.

b is a constant vector in Rt 1.
& M is v(e) -autoparallel
& Mis V© -autoparallel
where logW = {logp|lp € W}. logp = (logp;) & R+

20
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ain results

e Thm Assume a € M = W N R:ﬁl( = W_,). >

ElVij 10g(0§ -+ VV)++ — loga + VV,

& DWW =atoW, 2Vu,veW, uoatowé& VV/

-

e Here, (R""!, 0) is defined by Hadamard product ©, i.e.,

roy = (') o (y)) = («y?), e=1, = ()

i

+1J Oa_l).

Rem 2) implies W should be a subalgebra in (R"

where o, _, := oq~'o isa mutation of © by a.
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Vlain results

naracterization of DA

[C_or A y(m)-autoparallel submanifold M/ = W NS” is
DA iff the subspace W is a subalgebra of (R" ", 0,-1)
Qvith the identity element ¢ € M.

~
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Main results
Classification for W

KF hm (Classification for W)

W is a subalgebra in (R" ™', 0, 1) with a € M
ift W is of the form:

W =R?x Ra; x -+ x Ra,

l.e.,

W={z="tiaf - tal)' |yeR, a;eRY_, t; eRi=1,--

,Whereq—FZm:nJrl, q=0, r>0, 2<ng < ---

=1
Kup to permutations of elements.
Rem dim W = g+r.




Example (continued)
Fora € M = W nR"1 , we set

T

a=012p3 - por)', ao=02)", ar = (p3 - pns1)’.

n+1
( Z-p?;: 1.pi>0,¢=3,--- ,n—!—l)
=3

q=2,1=1, n1y =n—1

V=a'loW={"t1")" cR"™|VzeR* t1 cR"' VtcR}

W={w = (&1 a2 tps -+ tan)T}

Every elements in M/ = W NS™ is represented by
w= (& & tps - tpag1)’, =18 — &,




/ e
Conclusions

Characterization of DA submanifolds for the space of
discrete probability distributions
Its classification
e Algebraic structure is closely related.
Applications (future work)
e Statistical modeling

» Stochastic reasoning (Belief Propagation [Ikeda et al 04])?
« Explicitly solvable LP problems

Relation with Markov embeddings [Nagaoka 2017]
Ref. A. Ohara and H. Ishi, arXiv:1711.11456v1 (2017)
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