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1. Introduction :

e PD(n,R) :the set of Positive Definite
real symmetric matrices

e logarithmic characteristic func. on PD(n,R)
[Vinberg 63], [Faraut & Koranyi 94]

@(P)=—logdet P, P e PD(n;R)



@ (P) = -log det P appears in ooo

e Semidefinite Programming (SDP)
self-concordant barrier function

e Multivariate Analysis (Gaussian dist.)
log-likelihood function

(structured covariance matrix estimation)

e Symmetric cone: log characteristic function

¢ Information geometry on PD(n,R)
a potential function in standard case




Information geometry on M

Dualistic geometrical structure

X9V, Z)=9(VxY,Z)+g(Y,Vx Z)

X.,Y and Z : arbitrary vector fields on M

g :Riemannian metric

VvV , V* :a pair of dual affine connections

4



standard IG on PD(n,R) o

[O,Suda & Amari LAA9G]

@(P) plays a role of potential function

- ¢ : Riemannian metric is the Hesse matrix

of (P) (Fisher for Gaussian)
-V ,V*:related to the third derivatives of @(P)

- =

Nice properties: GL(fn,, R)-invariant (unique),

KL-divergence, Pythagorean theorem, etc |



Purpose of this presentation

e The other convex potentials
V-potential functions

oY) (P) =V (det P)

e Their different and/or common geometric
structures

e Structure of submanifolds
o Decomposition properties of divergences
o Application to non-Gaussian pdf's



Outline

e Review
Dualistic geometry induced by V-potentials

e Foliated structures
Submanifold of constant determinant
Decomposition of divergence

e Applications to multivariate elliptic pdf's

GL(n)-invariance of geometry of g-Gaussian
family induced by beta-divergence



2. Preliminaries and Notation o

® Sym(n; R) . the set of n by n real symmetric matrix

vec. sp. of dimension N(=n(n-+1)/2)

o {F,;}/Y . :arbitrary set of basis matrices
e (primal) affine coordinate system
Sym(n;R) > X = Zf\le ' E;
e |dentification
TpPD(n) 2 (8/02") p = E; € Sym(n)



V-potential function :

Def.
pV)(P)=V(detP)  V(s):R, >R

-The standard case:

V(s)=—-logs = @(P)=—logdet P



Def.

dv;— .
]}i(f{) p— 1% (I:(S) S:, 1 = 1= 23 SO mrhel'e IJU(S) o

Rem. The standard case V= -log:
VI(S):—I,Vk(S):O, k>2

o~
W )
S

Prop.1 (convexity conditions)

The Hessian matrix of the V-potential is positive
definite on PD(n,R) if and only if

For Vs > 0,

Din(s) <0, HB8Y)(s) < =, where 80V (s) = VQES;
n Z1E
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Assumption: the convexity conditions hold.

- Riemannian metric Is
g5 )(X,Y)

=—vi(det P) tr(P~' X P7'Y) + va(det P) tr(P~"X) tr(P~'Y)
Here,
X, Y in sym(n,R) ~ tangent vectors at P

Rem. The standard case V= -log:
g N(X,Y) = tr(PTIXPY)
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Prop. (affine connections)

Let V be the canonical flat connection on PD(n,R).
Then the V-potential defines the following dual
connection *v(") with respect to ¢! :

(*V?%) = _—E,P'E;, —E,P'E; — ®(E;,E;, P) — ®(E;,E;, P),
xt P
vo(s) tr(P~1X) - vo(s) tr(P~Y)

v1(s) v1(s)

O(X,Y,P)=

X,
oL (X,Y, P)

_ (vs(s)n(s) — 2v3(s)) tr(P~1X) tr(P~1Y) + ug(s)ul(s)tr(P_lXP_lY}P

v1(8)(vi(s) — na(s))
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(¢, V,*V) : Dually flat structure on PD(n,R)

induced by the V-potential

divergence function
DY(P,Q)=¢"(P) +¢"*(Q") — (Q", P)

- V(de’r P)— V(det Q) + (Q*,Q — P).

P* = gradeV)(P) = vy (det P) P
eV)*(P*) = nuy (det P) — V) (P).

- a variant of relative entropy,
- Pythagorean type decomposition
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3. Group Invariance of 3

the structure (v, v,*v")) onPD(n,R):
|

e Linear transformation on PD(n,R)
congruent transformation: 7P =GPG',G e GL(n,R),
the differential: (z;)-X = GXG'
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3. Group Invariance of
the structure (. v.*v")) onPD(n,R.
|

S—

e Linear transformation on PD(n,R)
congruent transformation: 7P =GPG',G e GL(n,R),
the differential: (z;)-X = GXG'

e |nvariance
e metric: (X Y) — QP(X Y)

o connectlons (’TG') (VXY)P — (V Y)’“‘
and the same for*v (V)

where

P=1oP, X = (1)« X,Y = (70)+Y
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Prop.

The largest group that preserves the dualistic
structure (¢, V,*V)) invariant is

T with G e SL(n,R)
except in the standard case.
Rem. the standard case: 7 with G € GL(n,R)

Rem. The power potential of the form:

V(s) = ¢ + cp8”

has a special property.
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2. Foliated structures 5

The following foliated structure features the
dualistic geometry (¢("), V,*V")) induced
from every V-potential.

" PD(n,R) = |J L, Le={P|P>0,detP = s}. leaf

5>0

PD(n,R)= |J Rp. Rp ={Q|Q@ =AP,0<X€R} ray

PeLls
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Prop.
Each leaf L and ray R p are orthogonal
to each other with respect to ¢V .

Prop.
Every R p is simultaneously a V7 - and*V(")-
geodesic for an arbitrary V-potential.
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Submanifolds of const det :

Induced geometry on £, from (¢'"), V,*V{"))

Prop. For any V, the followings hold:

i)Riemannian metric: ") = —v(s)gl =18
i\Divergence: DY)(P,Q) = —v1(s)D71°8) (P, Q)
iii\Dual connection: *¥ (V) = {(—109)
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Submanifolds of const det
Prop.

Each leaf (£s,3")) is a Riemannian symmetric
space

L.~ SL(n,R)/SO(n)

Ls : Ls — L Involutive isometry of (Ls, g(\/))

s\ V) 2 51 . (=m(s)"
L P = — (E) gradpV)(P) = s» P71, §* = ; .
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Submanifolds of const det

e Level surface of both (") and ¢V* => ADG
e Normal vector field N

N =-— E.
dp'V) (E)

gVI(X,E)=dpV)(X), VX e X(PD(n,R))

e Centro-affine immersion

VxY =VxY +h(X,Y)N,
VN = —A(X) —I—T(X)N.
h=g"), 7=0"



Submanifolds of const det

Lemma [UOF 00]
e The submfd (L. V., 3")) is 1-conformally flat.
e Assume
P,Q e Ls,RE Ry, R=AQ, A > 0.
Then
DY)(P,R) = uD'")(P,Q) + D'")(Q.R),
where
R* = uQ*, i.e., p = X" tri(det R) /vi(det Q) > 0.
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Submanifolds of const det :

+ lllustration: decomposition of divergence (1)

If P,Q € Lsand R € Rowith R = \Q, A > 0,

then DY)(P,R) = uDY)(P,Q)+ DY)(Q, R)
where 1= A"y (det R) /v (det Q) > 0"



Submanifolds of const det -
Prop.

Each leaf £; is a homogeneous space of
constant negative curvature k. = 1/(v1(s)n).

R(X,Y)Z = k{g(Y,Z)X — (X, Z)Y}.

Shown by Gausseq.and A = k. [

Lemma (modified Pythagorean)[Kurose94]
P?Q')REL:S %PQJ—:?QRatQi
DM (P,R) = DY) (P,Q)+ DV)(Q,R) - k, DY) (P,Q)D")(Q, R).

Decomposition of divergences (2) 2



Submanifolds of const det .

+ Combining the two decomposition results

Prog.
If V-geodesic ¥ and*V-geodesic Y™ are orthogonal at R,

then
DY)(pP,S)=DY)(P,R) +kDY)(R,S) py

k=M1-kDY)(Q,R)}>0
Qe LiNRp
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3. Application to T
multivariate statistics

e Non Gaussian distribution

(generalized exponential family)

Robust statistics
beta-divergence,
Machine learning, and so on

Nonextensive statistical physics
Power distribution,
generalized (Tsallis) entropy, and so on
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U-model and U-divergence | :

e U-model
Def.

Given a convex function U on R and set
u=0", U-model is a family of elliptic pdf's
specified by P:
Mo ={f(@.P)=u(~52"Pz —es(det P)) : P« PD(n,R)}

ci7(det P) :normalizing const.
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Rem. When U=exp, the U-model is the
family of Gaussian distributions.

U-divergence:

Natural closeness measure on the U-model

Du(f.g) = / U(E(g)) — UE(S) — {E(g) — £()} fdx |
| fig € My

where £ 1s the mverse function of .

Rem. When U=exp, the U-divergence is the
Kullback-Leibler divergence (relative entrop;zlg).



Example: beta-model and beta-| s:::

divergence (1) e
e Beta-model M
o For 3#0and 8 # —1

1 | |
U(S’) _ < /6 _|__1 (]_ —|_ ,68)(34-1)/6? S € I; — {S e R’]_ _|_ ﬁS > 0}

\ 0, otherwise
( dU ! _ .
) _ 1+ 8)° selzg={seR[1+8s>0
u(s) =< ds L
\ 0, otherwise
A
E(t) = 5 t >0
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e g-exponential and g-logarithmic functions



Example: beta-model and beta-| :::

divergence (2) e

e Beta-divergence

r)Ptl — f(x)PH X r)? — f(x)”
Da(fg) = [ LR S fote) - o)),
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|G induced from divergences |:

e Divergence induces stat mfd structure.
Q(D)(Xa Y) — _D(X‘Y)v

g (VY. Z) = —D(XY|2).
gD (vPy, 2) = —D(Z|XY),

where
D(Xl T Xn‘yl T th)(p) — (Xl)p T (Xn)p(yl)q T (Ym)qD(pa Q)‘pzq
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Relation between the U- and V- | s

geometries
Prop.

IG on My induced from Dy, coincides with

(9", V,*V)) derived from the following V-
potential function:

Vis) = 5% /U (%x% _ CU(S)) dz+cu(s), s> 0.
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Group invariance for the
power potentials V (s) = ¢; + ¢s”

Prop.
V' is of the power form <=
1) Orthogonality is GL(n)-invariant.

2) The dual affine connections derived from the
power potentials are GL(n)-invariant.

sz

P
H ence | \V-geodesic
_ * (V) - l 1 o
e Both V-and*v")-projections NN

are GL(H) -invariant. \ i | 33
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Thm [O & Eguchi 13]
|G on M induced from D g coincides with
(¢V),V,*VV)) on PD(n, R) induced from

. + st/ g s (0

Vis)=9 { )

S g1/ (2ngs)

I5; o on+2

Implication: statistical inference on M ; using Dﬁ
is GL(n)-invariant.

< B <0
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Conclusions o

e Derived dualistic geometry is invariant under the
SL(n,R)-group actions.
For power funcion, dual connections and orthogonality are
GL(n,R)-invariant.
e Each leaf is a homogeneous manifold with a negative
constant curvature.
e Decomposition of the divergence function

e Correspondence between the U- and V-geometries
Statistical inference on Beta-model using dual projections are
GL(n,R)-invariant.
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