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1. Introduction

PD(nj R) : the set of positive definite
real symmetric matrices

related to branches in math.

e Riemannian symmetric space

e Symmetric cone (Jordan algebra)

e Symplectic geom. (Siegel-Poincare)

e Information, Hessian geom.

e affine, Kahler, ....C-H, B-T,...7?




1. Introduction

PD(nj R) . the set of positive definite
real symmetric matrices

related to branches in applications

e matrix (in)eq. (Lyapunov,Riccati,...)

e mathematical programming (SDP)

e Statistics, signal processing, time series
analysis (Gaussian, Covariance matrix)




Our interests

e stable matrices and |G [0,Amari Kybernetika93]

e standard IG [O,Suda,Amari LAA96]
dual conections and Jordan alg. [0,Uohashi Positivity04]
means on sym. cones [0 IEOT04]

e complexity analysis of IPM
[O ##51243898], [Kakihara,O,Tsuchiya JOTA?]

e deformed |G [0,Eguchi ISM_RMO5]
e update formula for Q-Newton [Kanamori,0 OMS13]



Information geometry on M

Dualistic geometric structure

X9V, Z)=9(VxY,Z)+g(Y,Vx Z)

X.,Y and Z : arbitrary vector fields on M

g :Riemannian metric

VvV , V* :a pair of dual affine connections
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A simple way to introduce a
dualistic structure (1)

e M : open domain in R"

¥ :strongly convex on M (i.e., positive
definite Hessian mtx.) Cf. Hessian geometry

e Riemannian metric

9%
Y5 — Ox*Ox
e Dual affine connections
3
L _ 0~
Hijk = 0, 17k T 92l aF



A simple way to introduce a °co

dualistic structure (2) .

e divergence

D(p, q)

= p(z(p)) —e(z(q)) — > s;(x(q)){xi(p) —2'(q)}
1=1

e projection p 5

o MLE, MaxEnt and so on
e Pythagorean relations

V-geodesic



2. Standard IG on PD(n,R)

e PD(n,R) :the set of positive definite
real symmetric matrices

e logarithmic characteristic func. on PD(n,R)
@(P)=—logdet P, P e PD(n;R)

- The standard case -



-log det P appears as -4

e Semidefinite Programming (SDP)
self-concordant barrier function

e Multivariate Analysis (Gaussian dist.)
log-likelihood function

(structured covariance matrix estimation)

e Symmetric cone: log characteristic function

¢ Information geometry on PD(n,R)
potential function
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Standard dualistic geometric structure
on PD(n,R) (1) [O,Suda,Amari LAA96]

e Sym(n; R) : the set of n by n real symmetric matrix

vec. sp. of dimension N(=n(n-+1)/2)

o F,;}i¥_, :arbitrary set of basis matrices
e (primal) affine coordinate system
Sym(n;R) > X = Zf\le ' E;
e |dentification
TpPD(n) 2 (8/02") p = E; € Sym(n)
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Standard dualistic geometric structure | ee:-

on PD(n,R) (2)

¢@(P) plays a role of potential function

g Riemannian metric (Fisher for Gaussian)
g(X,Y) =tr(P~1xP1y)
V., V* :dual affine connections
(V5,05) , =0, (V3.9;) , = —EiP~'E;— E;P~1E,

Jordan product (mutation)
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Properties =>» symmetric cones

e GGL(n,R) -invariant
e . : P— P~ 1:isometric involution
e dual affine coordinate system (Legendre tfm.)

N , , . :
P* =Pt ="y B (B, BY) = tr(B;E) =]
=1

e divergence
D(P,Q) = tr(PQ~ 1) —logdet(PQ~1) — n
e self-dual
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Invariance of the structure :

e Automorphism group, i.e., congruent
transformation: 7P = GPG", G € GL(n,R),

the differential: (r-). X = GxG7

Ex) Riemannian metric

gp(X',Y') = gp(X,Y)
P = ’7’(;;]3.j X' = TG*X and Y’ = TG*Y
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Connections represented by | ::
Jordan prod uct [Uohashi O Positivity04]

e Recall the dual affine connections:
(V5,05) , =0, (V3.9;) , = —EiP~'E;— E;P~1E,

Hence, (Va@j)l — —E'?;Ej — EjEZ = —2L; % E'j
e By the invariance, it follows that

(v;giaj)P = —2(79); " [((TQ)*EZ-) x ((TQ)*Ej)]

. p—1/2
e Rem. the Levi-Civita is Q=P /

, _ 1 1 ~1
(vaiaj)P:—E(EiP E;+ E;P71E)
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Doubly autoparallel submanifold

e Def. Submanifold Lpan C PD(n; R) is
doubly autoparallel when it is both \/ -

and \/*-autoparallel,
equivalently,

Lpa C PD(n; R) is both linearly and inverse-
linearly constrained.
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Linearly constrained =& \/ -autoparallel
Inverse-linearly = V™ -autoparallel

Both Linearly and Inverse-linearly Constrained

matrices Lpa in PD(n)

' Given Ey,--- Epm, FO, ... F™ ¢ Sym(n),
{E;}™, {F"}™ ;: linearly independent

m

P =y + S 2'E; > 0, 3z € R™
P e Lpa < =lm

1=1

P—l — FO + Z -yiFi >0, Ty € R™
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Set V = spa n{Ei};””’zl :

—— conditions for Doubly Autoparallelism ——

Let £ be linearly constrained in PD(n).

T he followings are equivalent:

1) £ is V*-autoparallel (hence, D.A.),

i) V*-imbedding curvature H™* vanishes on L
i) EiP—lEj + EjP—lEz- cV, Vi j, VPeCLl

v

ii) and iii) are difficult to check for all

PeLl
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Doubly autoparallelism (special case)

e Jordan product for Sym(n)

X*xY =(XY +YX)/2

p Cf. Malley 94 -
Let both £y and [ are in V =span{E;}!" .

T he followings are equivalent:
1) £ is D. A.
1) V is Jordan subalgebra of Sym(n)

E;+E; €V, Vi,j (easy to check)

s vy

Rem. £ =PD(n)NV is a subcone in PD(n) ”




Doubly autoparallelism - Examples — (1)

1) Doubly symmetric matrices:
symmetric w.r.t. both main and anti-main

diagonal entries

2) Matrices with the prescribed eigenvectors

— EX. circulant matrices etc.

T hese examples are Jordan subalgebras.
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Doubly autoparallelism - Examples - (2)

4) Let 7S be any Jordan subalgebra in Sym(n)
As = {A-BXB'|X € JS, detA%0, B'A™1B e 75},

Then L, := A> N PD(n) is doubly autoparallel.

A1 and A, are generally affine subspace,

hence, not Jordan subalgebras
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Applications of DA

e Nearness, matrix approximation,
GL(n)-invariance, convex optimization
e Semidefinite Programming

If a feasible region is DA, an explicit formula for
the optimal solution exists.

e Maximum likelihood estimation of structured
covariance matrix

GGM, Factor analysis, signal processing (AR
model)
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MLE of str. cov. matrix (1) :

e 1 samples of random variable z

z;~N(O,P), PeSCPD(n)

S: linearly constrained in many cases (S = (),
—— signal processing, factor analysis etc.
e Mmain term of logarithmic likeltihood function

1 T
h(P) = —logdet P —tr(P~1S), S= =3 2,21
=1

ML estimation of P & maxh(P), s.t. Pe L
< minD(S,P), s.t. Pe L,



MLE of str. cov. matrix (2)

h(P) - max s.t. Pe L

(i
Q) = —logdet@ + tr(QS) - min, s.t. Q l=Per

e If Lis also inverse-linearly constrained,

i.e.,L is DA, then MLE is a
problem wim a solution formula:

P = EO + Z xiE?:a
=1
r = A_lb, az- — tr(EjFi), —— tI’(EO — S)Fj



MLE of str. cov. matrix (3)

Furthermore,

e Imbedding method with the EM algorithm

[Rubin & Szatrovski 82], [Malley 94]

p X p Toeplitz mtxs. — g x g circulant mtxs. dg > p

EX. p=3, ¢g=4

Yo Y1
I'=1 w1 wo

Y2 Y1

[ Yo
Y1
Yo

y1 )
Y2
Y1

\ Y1

Y0 )
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MLE of str. cov. matrix (4) :

1": covariance of imcomplete data

(': covariance of complete data

-

— S: sample covariance for 1" (not Toeplitz)

;. estimate for C (circulant)

A Q}

— S: expected value of C' (not circulant)

Initialize C.
E-step: Compute S from S and C

M-step: Compute new C from S
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MLE of str. cov. matrix (5)

e E-step: Explicit formula for simple imbedding
(e.g., upper-left corner etc)

e M-step: reduces to solving a linear equation if
the structure of Cis DA.

27



3. Extension via the other §::

potentials (Bregman divergence) | :

[O,Eguchi ISM_RMO05]
e The other convex potentials
V-potential functions

o) (P) = V(det P)

e Study their different and common geometric

natures
e Application to multivariate statistics?
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Contents o5

e V-potential function

e Dualistic geometry on PD(n,R)

e Foliated Structure

e Decomposition of divergence

e Application to statistics
geometry of a family of multivariate
elliptic distributions

29



Def. V-potential function :

pV)(P)=V(detP)  V(s):R, >R
-The standard case:

V(s)=—-logs = @(P)=—logdet P

Characteristic function on PD(n,R)

(strongly convex)

30



Def.

dv;— .
]}i(f{) p— 1% (I:(S) S:, 1 = 1= 23 SO mrhel'e IJU(S) o

Rem. The standard case:
VI(S):—I,Vk(S):O, k22

o~
W )
S

Prop. (Strong convexity condition)

The Hessian matrix of the V-potential is positive
definite on PD(n,R) if and only if

For Vs > 0,

Di(s) <0, i)AV)(s) < =, where p(V)(s) = ”2ES§
n v1(s

31




Prop.

When two conditions in Prop.1 hold,
Riemannian metric derived from the V-
potential is

gp ) (X,Y)
= —uvi(det P)tr(P7'XPY) + vo(det P) tr(P~'X) tr(P~'Y)

Here,
X,Y : vector field ~ symmetric matrix-valued func.

Rem. The standard case:
g N(X,Y) = tr(PTIXPY)
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Prop. (affine connections)

Let V be the canonical flat connection on PD(n,R).
Then the V-potential defines the following dual
connection *v(") with respect to ¢! :

(*v':‘i}%) — —EiP_IEj — Ejp_lEf — ':I)(Et',_, Ej, P) — ‘I)J_(Et'j Ej, P)-J
xt P
vo(s) tr(P~1X) - vo(s) tr(P~Y)

v1(s) v1(s)

O(X,Y,P)=

X,
oL (X,Y, P)

_ (vs(s)n(s) — 2v3(s)) tr(P~1X) tr(P~1Y) + ug(s)ul(s)tr(P_lXP_lY}P

v1(8)(vi(s) — na(s))
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Rem. the standard case: °

(*v(‘g %) — —EP'E,— E,P'E,
Oxt P

“mutation” of the Jordan product of Ei Lj
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divergence function

Divergence function derived from (¢, V,*V")

DW(P,Q) =M (P) + ¢'"(Q") — (Q", P)
= V(de’r P) — V(det Q) + (Q*,Q — P).
P* = gradeV)(P) = vy (det P) P
- a variant of relative entropy,
- Pythagorean type decomposition
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Prop.

The largest group that preserves the dualistic
structure (¢, V,*V)) invariant is

T with G e SL(n,R)

except in the standard case.

Rem. the standard case: 7 with G € GL(n,R)

Rem. The power potential of the form:

V(s)=(1-s")/8

has a special property.
36



Special properties for the
power potentials

e Orthogonality is GL(n)-invariant.

e [he dual affine connections derived from the
power potentials are GL(n)-invariant.

Hence,

e Both V- and *V"’ -projection are GL(n) -
iInvariant.
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Foliated Structures

The following foliated structure features the
dualistic geometry (¢, V,*V)) derived by
the V-potential.

D(n,R)=|J Ls, Li={P|P>0,det P = s}.

5>0

PD(n,R)= |J Rp. Rp ={Q|Q =AP,0 <X € R}

PeLls
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Prop.
Each leaf L, and Rpr are orthogonal each
other with respect to ") .

Prop.
EveryR p is simultaneously a v - and*V(")-
geodesic for an arbitrary V-potential.
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Prop.

Each leaf L, 1S a homogeneous space with the

constant negative curvature k, = 1/(v1(s)n).

R(X,Y)Z = k{g(Y,2)X — g(X, Z)Y}.
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Application to ol
multivariate statistics

e Non Gaussian distribution

(generalized exponential family)

Robust statistics
beta-divergence,
Machine learning, and so on

Nonextensive statistical physics
Power distribution,
generalized (Tsallis) entropy, and so on
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Application to
multivariate statistics

e Geometry of U-model
Def.

Given a convex function U and set u=0",
U-model is a family of elliptic (probability)

distributions specified by P

My = {f(i??P) —u (—%ITPm — cy(det P)) = PD(TZ,, R) }

cyy(det P) :normalizing const.
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Rem. When U=exp, the U-model is the
family of Gaussian distributions.

U-divergence:

Natural closeness measure on the U-model

Dy(f,9) Z/{U(E(Q(E)))—U(E(f(m))) — f(2)[€(g9(z)) — &(f(2))]} dz

where £ 1s the mverse function of .

Rem. When U=exp, the U-divergence is the
Kullback-Leibler divergence (relative entrop¥3).



Prop.

Geometry of the U-model equipped with the
U-divergence coincides with (¢, V,*V("))

derived from the following V-potential function:

1
VT(S) — {],9;_;(5) — S_% f(f (—§:ET$ — C{r_;(,s)) dr + CU(S), s> 0
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Conclusions .

Sec. 2

DA submanifold: needs a tractable characterization or
the classification

Sec. 3

Derived dualistic geometry is invariant under the SL(n,R)
-group actions

Each leaf is a homogeneous manifold with a negative
constant curvature

Decomposition of the divergence function (skipped)
Relation with the U-model with the U-divergence
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