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1. Introduction

 : the set of positive definite               
real symmetric matrices

related to branches in math.
 Riemannian symmetric space
 Symmetric cone (Jordan algebra)
 Symplectic geom. (Siegel-Poincare)
 Information, Hessian geom.
 affine, Kahler, …,C-H, B-T,…?
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1. Introduction

 : the set of positive definite               
real symmetric matrices

related to branches in applications
 matrix (in)eq. (Lyapunov,Riccati,…)
 mathematical programming (SDP)
 Statistics, signal processing, time series 

analysis (Gaussian, Covariance matrix)
 …
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Our interests 
 stable matrices and IG [O,Amari Kybernetika93]

 standard IG [O,Suda,Amari LAA96]

 dual conections and Jordan alg. [O,Uohashi Positivity04]

 means on sym. cones [O IEOT04]

 complexity analysis of IPM 
[O 統計数理98], [Kakihara,O,Tsuchiya JOTA?]

 deformed IG [O,Eguchi ISM_RM05]

 update formula for Q-Newton [Kanamori,O OMS13]
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Information geometry on

Dualistic geometric structure

: arbitrary vector fields on 

:Riemannian metric

,       :a pair of dual affine connections
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A simple way to introduce a 
dualistic structure (1)

 : open domain in
:strongly convex on       (i.e., positive 

definite Hessian mtx.) Cf. Hessian geometry
 Riemannian metric

 Dual affine connections
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A simple way to introduce a 
dualistic structure (2)

 divergence

 projection
 MLE, MaxEnt and so on

 Pythagorean relations
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2. Standard IG on

 : the set of positive definite 
real symmetric matrices

● logarithmic characteristic func. on

- The standard case -

R);(,detlog)( nPDPPP Î-=j
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-log det P appears as

 Semidefinite Programming (SDP)
self-concordant barrier function

 Multivariate Analysis (Gaussian dist.)
log-likelihood function

(structured covariance matrix estimation)
 Symmetric cone: log characteristic function
 Information geometry on

potential function
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Standard dualistic geometric structure 
on                     (1) [O,Suda,Amari LAA96]

 the set of n by n real symmetric matrix

 :arbitrary set of basis matrices
 (primal) affine coordinate system

 Identification    



Standard dualistic geometric structure 

on                   (2)

: Riemannian metric (Fisher for Gaussian)

,      :dual affine connections

Jordan product (mutation)

plays a role of potential function)(Pj
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Properties            symmetric cones

 -invariant 
 : isometric involution
 dual affine coordinate system (Legendre tfm.)

 divergence

 self-dual
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Invariance of the structure

 Automorphism group, i.e., congruent 
transformation:
the differential:

Ex) Riemannian metric

T
G

T
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t

t R
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Connections represented by 
Jordan product [Uohashi O Positivity04]

 Recall the dual affine connections:

Hence,
 By the invariance, it follows that  

 Rem. the Levi-Civita is
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Doubly autoparallel submanifold

 Def. Submanifold                               is 
doubly autoparallel when it is both      -
and          -autoparallel,

equivalently,

is both linearly and inverse-
linearly constrained.
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Linearly constrained  -autoparallel
Inverse-linearly           -autoparallel
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Set                                .
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Doubly autoparallelism (special case)

 Jordan product for Sym(n)
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Doubly autoparallelism   - Examples – (1)
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Doubly autoparallelism   - Examples - (2)
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Applications of DA 
 Nearness, matrix approximation, 
 GL(n)-invariance, convex optimization

 Semidefinite Programming
 If a feasible region is DA, an explicit formula for 

the optimal solution exists.
 Maximum likelihood estimation of structured 

covariance matrix
 GGM, Factor analysis, signal processing (AR 

model)
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MLE of str. cov. matrix (1)

 n samples of random variable z
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MLE of str. cov. matrix (2)

 If    is also inverse-linearly constrained, 
i.e.,    is DA, then MLE is a convex 
optimization problem with a solution formula: 
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MLE of str. cov. matrix (3)
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MLE of str. cov. matrix (4)
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MLE of str. cov. matrix (5)

 E-step: Explicit formula for simple imbedding 
(e.g., upper-left corner etc)

 M-step: reduces to solving a linear equation if  
the structure of C is DA.
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3. Extension via the other 
potentials (Bregman divergence)

[O,Eguchi ISM_RM05]

 The other convex potentials
V-potential functions

 Study their different and common geometric 
natures

 Application to multivariate statistics?
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Contents

 Ｖ-potential function
 Dualistic geometry on 
 Foliated Structure 
 Decomposition of divergence 
 Application to statistics

geometry of a family of multivariate
elliptic distributions
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Def.   V-potential function

-The standard case:

PPssV detlog)(log)( -=Þ-= j

, RR ®+:)(sV

Characteristic function on

(strongly convex)
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Def.

Rem.    The standard case: 
2,0)(,1)(1 ³=-= kss knn

Prop. (Strong convexity condition)

The Hessian matrix of the V-potential is positive 
definite on                      if and only if
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Prop.
When two conditions in Prop.1 hold, 
Riemannian metric derived from the V-
potential is

=
Here,
X,Y : vector field ~ symmetric matrix-valued func.

Rem.  The standard case:
=
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Prop. (affine connections)

Let     be the canonical flat connection on                 . 
Then the V-potential defines the following dual
connection           with respect to        : 

Ñ
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Rem. the standard case:

“mutation” of the Jordan product of Ei and Ej
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divergence function

Divergence function derived from  

- a variant of relative entropy,
- Pythagorean type decomposition
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Prop.

The largest group that preserves the dualistic 
structure                          invariant is

except in the standard case.

),( RnSLGG Ît

),( RnGLGG ÎtRem.  the standard case:

Rem.  The power potential of the form:

has a special property.
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Special properties for the 
power potentials

 Orthogonality is GL(n)-invariant.
 The dual affine connections derived from the 

power potentials are GL(n)-invariant.
Hence,
 Both     - and         -projection are GL(n) -

invariant. 
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Foliated Structures

The following foliated structure features the
dualistic geometry                          derived by 
the V-potential.
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Prop.
Each leaf      and       are orthogonal each 
other with respect to        .

Prop.
Every       is simultaneously a      - and          -
geodesic for an arbitrary V-potential.
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aProp.
Each leaf      is a homogeneous space with the 
constant negative curvature
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Application to 
multivariate statistics

 Non Gaussian distribution
(generalized exponential family)
 Robust statistics
 beta-divergence,
 Machine learning, and so on

 Nonextensive statistical physics
 Power distribution, 
 generalized (Tsallis) entropy, and so on
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Application to 
multivariate statistics

 Geometry of U-model
Def. 
Given a convex function U and set u=U’,
U-model is a family of elliptic (probability)
distributions specified by P:

:normalizing const.
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Rem. When U=exp, the U-model is the 
family of Gaussian distributions. 

U-divergence: 

Natural closeness measure on the U-model

Rem. When U=exp, the U-divergence is the 
Kullback-Leibler divergence (relative entropy). 
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Prop.

Geometry of the U-model equipped with the  

U-divergence coincides with            

derived from the following V-potential function:
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Conclusions

Sec. 2
 DA submanifold: needs a tractable characterization or 

the classification 
Sec. 3
 Derived dualistic geometry is invariant under the             

-group actions
 Each leaf is a homogeneous manifold with a negative 

constant curvature
 Decomposition of the divergence function (skipped)
 Relation with the U-model with the U-divergence
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