Differential geometry of projective or centroaffine surfaces

> Atsushi Fuiioka

Contents

Introduction

Projective surfaces

Projective minimal

Isothermall asymptotic

Centroaffine

Centroaffine minimal

Differential geometry of projective or centroaffine surfaces

Atsushi Fujioka

Faculty of Engineering Science Kansai University

March 2, 2013
Hokkaido University
Workshop on Geometry of Statistical Manifolds
and Related Topics

Contents

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffin surfaces

Centroaffin

- Introduction
- 2 Projective surfaces
- 3 Projective minimal surfaces
- 4 Isothermally asymptotic surfaces
- Centroaffine surfaces
- 6 Centroaffine minimal surfaces

Overview

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal \mathbf{P}^n : the *n*-dimensional real projective space Projective differential geometry: differential geometry of submanifolds in \mathbf{P}^n

Many classes of surfaces in projective differential geometry related to integrable systems:

- Projective minimal surfaces
- o Isothermally asymptotic surfaces

:

Centroaffine minimal surfaces: A class of surfaces in centroaffine differential geometry
(1994 C. P. Wang)
Integrable systems
(2000 W. K. Schief)
Can be considered as projective
surfaces

References

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

- E. V. Ferapontov, Integrable systems in projective differential geometry, Kyushu J. Math., 54 (2000), 183–215
- C. Rogers and W. K. Schief, Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory. Cambridge Texts in Applied Mathematics, 2002
- T. Sasaki, Projective differential geometry and linear homogeneous differential equations, Rokko Lectures in Mathematics, 5, 1999
- T. Sasaki, Line congruence and transformation of projective surfaces, Kyushu J. Math., 60 (2006), 101–243

:

Projective surfaces and surfaces in the Euclidean space

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal

 $z: D \to \mathbf{P}^3$: a projective surface (x, y): local coordinates

$$z(x,y) = [z^{1}(x,y), z^{2}(x,y), z^{3}(x,y), z^{4}(x,y)]$$

z corresponds to a surface in \mathbb{R}^3 .

If $z^1 \neq 0$,

$$\hat{z} := \left(\frac{z^2}{z^1}, \frac{z^3}{z^1}, \frac{z^4}{z^1}\right).$$

Symmetric 2-form

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introductio

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal surfaces $z: D \to \mathbf{P}^3$: a projective surface (x, y): local coordinates

Assume z_{xy}, z_x, z_y, z are linearly independent on D.

$$\begin{cases} z_{xx} = lz_{xy} + az_x + bz_y + pz, \\ z_{yy} = mz_{xy} + cz_x + dz_y + qz \end{cases}$$
 (1)

Define a symmetric 2-form φ by

$$\varphi = Idx^2 + 2dxdy + mdy^2.$$

Proposition

 φ is conformal to the second fundamental form of \hat{z} .

Proof of Proposition

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Proof

Consider the case

$$z = [\lambda, \lambda f], \ \lambda : D \to \mathbf{R} \setminus \{0\}, \ f : D \to \mathbf{R}^3$$

From the first equation of (1)

$$(\lambda_{xx}, \lambda_{xx}f + 2\lambda_x f_x + \lambda f_{xx})$$

$$= I(\lambda_{xy}, \lambda_{xy}f + \lambda_x f_y + \lambda_y f_x + \lambda f_{xy}) + a(\lambda_x, \lambda_x f + \lambda f_x)$$

$$+ b(\lambda_y, \lambda_y f + \lambda f_y) + p(\lambda, \lambda f)$$

Hence

$$2\lambda_{x}f_{x} + \lambda f_{xx} = I(\lambda_{x}f_{y} + \lambda_{y}f_{x} + \lambda f_{xy}) + a\lambda f_{x} + b\lambda f_{y}$$

Proof of Proposition (continued)

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal surfaces

Proof (continued)

Since $\lambda \neq 0$

$$\det \begin{pmatrix} f_{xx} \\ f_{x} \\ f_{y} \end{pmatrix} = I \det \begin{pmatrix} f_{xy} \\ f_{x} \\ f_{y} \end{pmatrix}$$

Similar computation can be done from the second equation of (1).

On the other hand, multiplying the second fundamental form of \hat{z} by $||f_x \times f_y||$, we have

$$\det \begin{pmatrix} f_{xx} \\ f_{x} \\ f_{y} \end{pmatrix} dx^{2} + 2 \det \begin{pmatrix} f_{xy} \\ f_{x} \\ f_{y} \end{pmatrix} dxdy + \det \begin{pmatrix} f_{yy} \\ f_{x} \\ f_{y} \end{pmatrix} dy^{2}.$$

Asymptotic line coordinates

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal $z: D \to \mathbf{P}^3$: a projective surface

(x, y): local coordinates

 z_{xy}, z_x, z_y, z : linearly independent on D

Moreover, we assume z is indefinite, i.e., the symmetric 2-form φ is indefinite.

By the above proposition, we can choose asymptotic line coordinates as (x, y), so that

$$I = m = 0$$
.

Put

$$\Phi = \left(egin{array}{c} z_{xy} \ z_{x} \ z_{y} \ z \end{array}
ight).$$

A system of linear partial differential equations

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

ontents

Introduction

Projective surfaces

Projective

Isothermally asymptotic

Centroaffine surfaces

Centroaffine minimal

Proposition

$$\Phi_{x} = A\Phi, \ \Phi_{y} = B\Phi, \tag{2}$$

where

$$A = \left(\begin{array}{cccc} a & a_y + bc & b_y + bd + p & bq + p_y \\ 0 & a & b & p \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right),$$

$$B = \left(egin{array}{cccc} d & c_x + ac + q & d_x + bc & cp + q_x \ 1 & 0 & 0 & 0 \ 0 & c & d & q \ 0 & 0 & 1 & 0 \end{array}
ight).$$

Integrability condition

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Proposition

The integrability condition for the system of linear partial differential equations (2) can be written by

$$\begin{cases}
L_{y} = -2bc_{x} - cb_{x}, \\
M_{x} = -2cb_{y} - bc_{y}, \\
bM_{y} + 2Mb_{y} + b_{yyy} = cL_{x} + 2Lc_{x} + c_{xxx},
\end{cases} (3)$$

where

$$a = \theta_{x}, \ d = \theta_{y},$$
 (4)

$$\begin{cases} L = \theta_{xx} - \frac{1}{2}\theta_x^2 - b\theta_y - b_y - 2p, \\ M = \theta_{yy} - \frac{1}{2}\theta_y^2 - c\theta_x - c_x - 2q. \end{cases}$$

Proof of Proposition

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Proof

The integrability condition is

$$A_y - B_x + [A, B] = O.$$

From the second, third and fourth rows, we have identities. From the (1,1)-entry,

$$a_y = d_x$$
.

Hence $\exists \theta$ satisfying (4).

From the (1,2)-entry, we have the second equation of (3).

From the (1,3)-entry, we have the first equation of (3).

From the (1,4)-entry and the first and second equations of (3), we have the third equation of (3).

Canonical system

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

 $z: D \to \mathbf{P}^3$: an indefinite projective surface (x, y): asymptotic line coordinates

$$\begin{cases} z_{xx} = \theta_x z_x + b z_y + p z, \\ z_{yy} = c z_x + \theta_y z_y + q z \end{cases}$$

 $\lambda: D \to \mathbf{R} \setminus \{0\}$

If we put $z = \lambda w$,

$$z_x = \lambda_x w + \lambda w_x, \ z_{xx} = \lambda_{xx} w + 2\lambda_x w_x + \lambda w_{xx}.$$

Putting $\lambda = e^{\frac{\theta}{2}}$, we may assume

$$\begin{cases} z_{xx} = bz_y + pz, \\ z_{yy} = cz_x + qz. \end{cases}$$
 (5)

(canonical system)

Coordinate transformation

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces For the canonical system (5), consider coordinate transformation:

$$u = f(x), v = g(y).$$

$$\lambda: D \to \mathbf{R} \setminus \{0\}$$

If we put $z = \lambda w$.

If we put
$$z = \lambda w$$
,

$$z_{\mathsf{x}} = \lambda_{\mathsf{x}} w + \lambda w_{\mathsf{u}} f', \ z_{\mathsf{x}\mathsf{x}} = \lambda_{\mathsf{x}\mathsf{x}} w + 2\lambda_{\mathsf{x}} w_{\mathsf{u}} f' + \lambda w_{\mathsf{u}\mathsf{u}} (f')^2 + \lambda w_{\mathsf{u}} f''.$$

If
$$\lambda = \frac{C}{\sqrt{f'g'}}$$
 ($C \in \mathbf{R} \setminus \{0\}$), we have another canonical system:

$$\begin{cases} w_{uu} = \bar{b}w_v + \bar{p}w, \\ w_{vv} = \bar{c}w_u + \bar{q}w. \end{cases}$$

Transformation rule

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal

Proposition

$$\bar{b} = b \frac{g'}{(f')^2}, \ \bar{p} = \frac{1}{(f')^2} \left(p - \frac{1}{2} b \frac{g''}{g'} + \{f; x\} \right),$$

$$\bar{c} = c \frac{f'}{(g')^2}, \ \bar{q} = \frac{1}{(g')^2} \left(q - \frac{1}{2} c \frac{f''}{f'} + \{g; y\} \right),$$

where $\{f; x\}$ and $\{g; y\}$ are the Schwarzian derivatives of f and g respectively:

$$\{f;x\} := \frac{1}{2} \left(\frac{f''}{f'}\right)' - \frac{1}{4} \left(\frac{f''}{f'}\right)^2 = \frac{1}{2} \frac{f'''}{f'} - \frac{3}{4} \left(\frac{f''}{f'}\right)^2.$$

Schwarzian derivative and linear ordinary differential equation of second order

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Proposition

 $z_1(x), z_2(x)$: linearly independent **R**-valued solutions to

$$z_{xx} + \alpha(x)z = 0 \tag{6}$$

$$f := \frac{z_1}{z_2}$$

$$\implies \alpha = \{f; x\}$$

Proof

Differentiating $fz_2 = z_1$ twice and using (6), we have

$$\frac{f''}{f'} = -\frac{2z_2'}{z_2}$$

Projective metric and Darboux cubic form

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffing surfaces

Centroaffine minimal surfaces The transformation rule for b, c in the canonical system (5):

$$\bar{b} = b \frac{g'}{(f')^2}, \ \bar{c} = c \frac{f'}{(g')^2}$$

Hence

$$\bar{b}\bar{c}dudv = bcdxdy$$

 \implies bcdxdy is invariant for the projective surface z. (projective metric)

Moreover

$$\bar{b}du^3 + \bar{c}dv^3 = f'g'(bdx^3 + cdy^3)$$

 \implies The conformal class of $bdx^3 + cdy^3$ is invariant for the projective surface z. (Darboux cubic form)

The case that Darboux cubic form vanishes

Differential geometry of projective or centroaffine surfaces

Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal surfaces Consider the case b = c = 0.

The integrability condition (3) becomes

$$p_y=0, \ q_x=0.$$

 $u_1(x), u_2(x)$: linearly independent **R**-valued solutions to

$$z_{xx} = p(x)z$$

 $v_1(y), v_2(y)$: linearly independent **R**-valued solutions to

$$z_{yy}=q(y)z$$

If we put

$$z = [u_1v_1, u_1v_2, u_2v_1, u_2v_2],$$

z is a projective surface with b = c = 0, which is a quadratic:

$$(u_1v_1)(u_2v_2)=(u_1v_2)(u_2v_1).$$

The case that projective metric vanishes

Differential geometry of projective or centroaffine surfaces

Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces Consider the case c = 0.

The integrability condition (3) becomes

$$(-b_y-2p)_y=0, \ (-2q)_x=0, \ bM_y+2Mb_y+b_{yyy}=0.$$

By the transformation rule,

$$\bar{q} = \frac{1}{(g')^2} (q(y) + \{g; y\}).$$

May assume q = 0, so that M = 0 and

$$z_{xx} = (\alpha(x)y^2 + \beta(x)y + \gamma(x))z_y + (-\alpha(x)y + \delta(x))z, \ z_{yy} = 0.$$

By a further computation, we have a ruled surface:

$$z = A(x) + yB(x).$$

Definition of projective minimal surfaces

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Projective minimal surfaces: Extremals for the integral of the projective metric

 $z: D \to \mathbf{P}^3$: an indefinite projective surface

(x, y): asymptotic line coordinates

D: bounded

 $\Phi(x, y, t)$: a 1-parameter family of indefinite projective surfaces s.t.

$$\Phi(x, y, 0) = z(x, y), \ \Phi|_{\partial D} = z|_{\partial D}$$

Note that (x, y) are asymptotic line coordinates at t = 0.

Review of equiaffine differential geometry

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

 $f: D \to \mathbf{R}^3$: an affine surface with transversal vector field ξ (x_1, x_2) : local coordinates Gauss formula:

$$f_{x_i x_j} = \Gamma^1_{ij} f_{x_1} + \Gamma^2_{ij} f_{x_2} + h(\partial_{x_i}, \partial_{x_j}) \xi$$
 $(i, j = 1, 2)$

h: the affine metric

Two kinds of area elements:

$$\circ \; heta(\partial_{\mathsf{x}_1},\partial_{\mathsf{x}_2}) := \mathsf{det} \left(egin{array}{c} f_{\mathsf{x}_1} \ f_{\mathsf{x}_2} \ \xi \end{array}
ight)$$

$$| \circ \omega(X_1, X_2) := |\det(h(X_i, X_j))|^{\frac{1}{2}} \quad (\theta(X_1, X_2) = 1)$$

Blaschke surfaces

Differential geometry of projective or centroaffine surfaces

Atsushi Fujioka

ontents

Introduction

Introduction

Projective

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces Consider nondegenerate affine surfaces, i.e., the affine metric is nondegenerate, which is independent of choice of transversal vector field.

Proposition

 $f: D \to \mathbf{R}^3$: a nondegenerate affine surface

 ∇ : the induced connection

 \Longrightarrow Changing the transversal vector field, if necessary, we have

$$\nabla \theta = 0, \ \theta = \omega. \tag{7}$$

Blaschke normal: the transversal vector field satisfying (7)
Blaschke surfaces: affine surfaces with Blaschke normal as
transversal vector field

Blaschke metric: the affine metric of Blaschke surfaces

Fubini-Pick invariant

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces $f:D\to \mathbf{R}^3$: a Blaschke surface Define a cubic form C by

$$C(X,Y,Z) = X(h(Y,Z)) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$

for vector fields X, Y, Z on the surface f. (x_1, x_2) : local coordinates

$$h_{ij} := h(\partial_{x_i}, \partial_{x_j}), \ (h^{ij}) := (h_{ij})^{-1}$$
 $C_{iik} := C(\partial_{x_i}, \partial_{x_i}, \partial_{x_k})$

Fubini-Pick invariant:

$$\frac{1}{8} \|C\|_h^2 = \frac{1}{8} h^{ip} h^{jq} h^{kr} C_{ijk} C_{pqr}$$

Method of equiaffine differential geometry

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal surfaces $z: D \to \mathbf{P}^3$: an indefinite projective surface

(x, y): local coordinates

$$z = [1, f]$$

 \implies f becomes a Blaschke surface s.t.

$$\begin{cases} f_{xx} = af_x + bf_y + lf_{xy}, \\ f_{yy} = cf_x + df_y + mf_{xy}. \end{cases}$$

Proposition

If (x, y) are asymptotic line coordinates,

$$\frac{1}{8}\|C\|_h^2\theta=\pm bcdx\wedge dy.$$

In particular, $\|C\|_b^2 \theta$ is invariant for the projective surface z.

Blaschke normal and Blaschke metric

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

 $f: D \to \mathbf{R}^3$: an indefinite Blaschke surface, i.e., the Blaschke metric is indefinite, s.t.

$$\begin{cases} f_{xx} = \bar{a}f_x + \bar{b}f_y + \bar{I}f_{xy}, \\ f_{yy} = \bar{c}f_x + \bar{d}f_y + \bar{m}f_{xy} \end{cases}$$

 ξ : the Blaschke normal

$$\xi = \zeta f_{x} + \eta f_{y} + \lambda f_{xy}$$

If (x, y) are asymptotic line coordinates,

$$\zeta = \eta = 0, \ \lambda^2 = \pm \frac{1}{|f_x, f_y, f_{xy}|}.$$

h: the Blaschke metric

$$(h_{ij}) := \left(egin{array}{ccc} h(\partial_x,\partial_x) & h(\partial_x,\partial_y) \ h(\partial_y,\partial_x) & h(\partial_y,\partial_y) \end{array}
ight) = rac{1}{\lambda} \left(egin{array}{ccc} I & 1 \ 1 & ar{m} \end{array}
ight)$$

Area elements and cubic form

Differential geometry of projective or centroaffine surfaces

Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

surfaces

Centroaffine minimal surfaces θ, ω : the area elements

$$\theta = \omega = \pm \frac{\sqrt{1 - \bar{l}\bar{m}}}{\lambda} dx \wedge dy$$

C: the cubic form

$$C_{111} := C(\partial_x, \partial_x, \partial_x)$$

$$= \left(\frac{\overline{l}}{\lambda}\right)_x - 2\left(\overline{a} - \frac{\overline{l}}{\lambda}\zeta\right)\frac{\overline{l}}{\lambda} - 2\left(\overline{b} - \frac{\overline{l}}{\lambda}\eta\right)\frac{1}{\lambda}$$

$$C_{112} = C_{121} = C_{211} := C(\partial_x, \partial_x, \partial_y), \ldots$$

If (x, y) are asymptotic line coordinates,

$$C_{112} = C_{121} = C_{211} = C_{122} = C_{212} = C_{221} = 0.$$

In particular, the above proposition holds.

Canonical system via equiaffine differential geometry

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Conten

Introduction

Projective

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal surfaces

 $z: D \to \mathbf{P}^3$: an indefinite projective surface (x, y): asymptotic line coordinates Canonical system:

$$\begin{cases} z_{xx} = bz_y + pz, \\ z_{yy} = cz_x + qz \end{cases}$$

$$z = \left[e^{-\frac{\varphi}{2}}, e^{-\frac{\varphi}{2}} f \right]$$

 \implies f is a Blaschke surface s.t.

$$\begin{cases} f_{xx} = \varphi_x f_x + b f_y, \\ f_{yy} = c f_x + \varphi_y f_y. \end{cases}$$

and

$$p = -\frac{1}{2}\varphi_{xx} + \frac{1}{4}\varphi_x^2 + \frac{1}{2}\varphi_y b, \ q = -\frac{1}{2}\varphi_{yy} + \cdots.$$

First variation formula

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffin surfaces

Centroaffine minimal surfaces *D*: bounded

 $\Phi(x, y, t)$: a 1-parameter family of indefinite Blaschke surfaces s.t.

$$\Phi(x, y, t) = f + t(\alpha f_x + \beta f_y + \gamma f_{xy}) + o(t) \quad (t \to 0)$$

$$\alpha, \beta, \gamma : D \to \mathbf{R}, \ \alpha|_{\partial D} = \beta|_{\partial D} = \gamma|_{\partial D} = 0$$

Proposition

$$\frac{d}{dt}\bigg|_{t=0} \int_{D} \frac{1}{8} \|C\|_{h}^{2} \theta = \mp \frac{1}{2} \int_{D} \left\{ (bM_{y} + 2Mb_{y} + b_{yyy}) + (cL_{x} + 2Lc_{x} + c_{xxx}) \right\} \gamma dx dy,$$

where

$$L = -b_v - 2p, M = -c_x - 2q.$$

Affine spheres

Differential geometry of projective or centroaffine surfaces

Atsushi Fujioka

Contents

Introduction

Projective

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffir surfaces

Centroaffine minimal surfaces $z=\left[e^{-\frac{arphi}{2}},e^{-\frac{arphi}{2}}f
ight]:D o {f P}^3$: an indefinite projective surface given by canonical system

 ξ : the Blaschke normal of f

$$\implies \left(\begin{array}{c} \xi_x \\ \xi_y \end{array}\right) = \lambda \left(\begin{array}{cc} \varphi_{xy} + bc & b_y + \varphi_y b \\ c_x + \varphi_x c & \varphi_{xy} + bc \end{array}\right) \left(\begin{array}{c} f_x \\ f_y \end{array}\right)$$

A direct computation shows that

$$b_y + \varphi_y b = c_x + \varphi_x c = 0$$

implies the projective minimality:

$$bM_y + 2Mb_y + b_{yyy} = cL_x + 2Lc_x + c_{xxx} = 0.$$

Proposition

Affine spheres are projective minimal, i.e., if f is an affine sphere, z is projective minimal.

Demoulin surfaces and Godeaux-Rozet surfaces

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffing surfaces

Centroaffine minimal surfaces Assume $b, c \neq 0$.

By the transformation rule, we can define projective invariant quadratic forms Pdx^2 , Qdy^2 by

$$P := p + \frac{1}{2}b_y - \frac{1}{2}\frac{c_{xx}}{c} + \frac{1}{4}\frac{c_x^2}{c^2}, \ \ Q := q + \frac{1}{2}c_x - \frac{1}{2}\frac{b_{yy}}{b} + \frac{1}{4}\frac{b_y^2}{b^2}.$$

Demoulin surfaces: P = Q = 0

Godeaux-Rozet surfaces: P = 0 or Q = 0

Proposition

 $\{Affine \ spheres\} \subset \{Demoulin \ surfaces\}$

 \subset {Godeaux-Rozet surfaces}

Definition of isothermally asymptotic surfaces

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces $z: D \rightarrow \mathbf{P}^3$: an indefinite projective surface Assume $b, c \neq 0$.

Isothermally asymptotic surfaces: $\left(\log \frac{b}{c}\right)_{xy} = 0$

- \circ Changing the coordinates, if necessary, the above condition is equivalent to b=c.
- o Affine spheres are isothermally asymptotic.
- The surface z defines 3 families of curves (3-web):
 - · asymptotic curves
 - zero curves of the Darboux cubic form (Darboux's curves)

For isothermally asymptotic surfaces, the above 3-web is hexagonal, i.e., locally diffeomorphic to 3 families of parallel lines.

Web curvature

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces Consider a 3-web given by 1-forms $\omega_1, \omega_2, \omega_3$.

Each curve is a zero curve of one of ω_i 's.

Normalization: $\omega_1 + \omega_2 + \omega_3 = 0$

 $\Longrightarrow \exists \gamma$: a 1-form s.t.

$$\begin{cases} d\omega_1 = \omega_1 \wedge \gamma, \\ d\omega_2 = \omega_2 \wedge \gamma, \\ d\omega_3 = \omega_3 \wedge \gamma \end{cases}$$
 (web structure equations)

 γ : the Chern connection form The web curvature K is defined by

$$d\gamma = K\omega_1 \wedge \omega_2.$$

Proposition

Hexagonality $\iff K = 0$

Proof of Proposition and the case of the 3-web for projective surfaces

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Proof

$$K = 0 \Longrightarrow \gamma = d \log f \quad (\exists f : \text{locally})$$

$$\Longrightarrow d(f\omega_i) = 0 \quad (i = 1, 2, 3)$$

$$\Longrightarrow f\omega_i = du_i \quad (\exists u_i : \text{locally})$$

$$\Longrightarrow u_1 + u_2 + u_3 : \text{constant} \quad (\text{hexagonality})$$

The above 3-web for the projective surface is given by

$$\omega_1 = -b^{\frac{1}{3}} dx, \ \omega_2 = -c^{\frac{1}{3}} dy, \ \omega_3 = b^{\frac{1}{3}} dx + c^{\frac{1}{3}} dy$$

$$\Longrightarrow \gamma = -\frac{1}{3} \left(\frac{c_x}{c} dx + \frac{b_y}{b} dy \right)$$

$$\Longrightarrow K = -\frac{1}{3} (bc)^{-\frac{1}{3}} \left(\log \frac{b}{c} \right)_{yy}$$

Definition of centroaffine surfaces

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Centroaffine surfaces: affine surfaces with position vector as transversal vector field

Gauss formula:

$$f_{x_ix_j} = \tilde{\Gamma}^1_{ij}f_{x_1} + \tilde{\Gamma}^2_{ij}f_{x_2} - \tilde{h}(\partial_{x_i}, \partial_{x_j})f \quad (i, j = 1, 2)$$

 \tilde{h} : the centroaffine metric

Consider indefinite case.

(x, y): asymptotic line coordinates

$$\psi := \tilde{h}(\partial_x, \partial_y)$$

K: the Euclidean Gaussian curvature of f

d: the signed distance from the origin to the tangent plane (the Euclidean support function)

$$\rho := -\frac{1}{4} \log \left(-\frac{K}{d^4} \right)$$

Gauss formula in asymptotic line coordinates

Differential geometry of projective or centroaffine surfaces

> Atsushi Fuijoka

Centroaffine surfaces

Gauss formula

$$\begin{cases}
f_{xx} = \left(\frac{\psi_x}{\psi} + \rho_x\right) f_x + \frac{\alpha}{\psi} f_y, \\
f_{xy} = -\psi f + \rho_y f_x + \rho_x f_y, \\
f_{yy} = \left(\frac{\psi_y}{\psi} + \rho_y\right) f_y + \frac{\beta}{\psi} f_x,
\end{cases} \tag{8}$$

where

$$\begin{split} \alpha &= \psi \det \left(\begin{array}{c} f \\ f_{\text{X}} \\ f_{\text{XX}} \end{array} \right) \middle/ \det \left(\begin{array}{c} f \\ f_{\text{X}} \\ f_{\text{Y}} \end{array} \right) \,, \\ \beta &= \psi \det \left(\begin{array}{c} f \\ f_{\text{Y}} \\ f_{\text{YY}} \end{array} \right) \middle/ \det \left(\begin{array}{c} f \\ f_{\text{Y}} \\ f_{\text{X}} \end{array} \right) \,. \end{split}$$

Integrability condition

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective

Projective minimal

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

Proposition

The integrability condition for the Gauss formula (8) can be written by

$$\begin{cases} (\log |\psi|)_{xy} = -\psi - \frac{\alpha\beta}{\psi^2} + \rho_x \rho_y, \\ \alpha_y + \rho_x \psi_x = \rho_{xx} \psi, \\ \beta_x + \rho_y \psi_y = \rho_{yy} \psi. \end{cases}$$

If ρ is constant and $\alpha, \beta \neq 0$, changing the coordinates, if necessary, we obtain Tzitzéica equation:

$$(\log \psi)_{\mathsf{x}\mathsf{y}} = -\psi - \frac{1}{\psi^2}.$$

Definition of centroaffine minimal surfaces

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective surfaces

Projective minimal surfaces

Isothermall asymptotic surfaces

Centroaffir surfaces

Centroaffine minimal surfaces Centroaffine minimal surfaces: Extremals for the area integral of the centroaffine metric

 $f: D \to \mathbf{R}^3$: an indefinite centroaffine surface

(x, y): asymptotic line coordinates

 $\tilde{\nabla}$: the induced connection

 $abla^{ ilde{h}}$: the Levi-Civita connection for the centroaffine metric $ilde{h}$

 $ilde{\mathcal{C}}:= ilde{
abla}abla^{ ilde{h}}$: the difference tensor

 $T := \frac{1}{2} \operatorname{tr}_{\tilde{h}} \tilde{C}$: the Tchebychev vector field

 $abla^{\tilde{h}} T$: the Tchebychev operator

Proposition

f: centroaffine minimal $\Longleftrightarrow
ho_{xy} = 0$

$$\Longleftrightarrow \operatorname{tr} \nabla^{\tilde{h}} T = 0$$

Fundamental examples

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Contents

Introduction

Projective surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffii surfaces

Centroaffine minimal surfaces

Proper affine spheres: Blaschke surfaces whose affine shape operator is a non-zero scalar operator

The center: The point where the Blaschke normals of proper affine spheres meet

Proposition

f: a proper affine sphere centered at the origin $\iff \rho$: constant

$$\iff T = 0$$

- \circ Ellipsoids, hyperboloids centered at the origin \Longrightarrow ${\cal T}=0$
- o Elliptic paraboloids removing the vertex which is the origin, hyperbolic paraboloids removing the saddle point which is the origin $\Longrightarrow T \neq 0$, $\nabla^{\tilde{h}}T = 0$
- o In 1995, H. L. Liu and C. P. Wang classified centroaffine minimal surfaces with $\nabla^{\tilde{h}}T=0$.

Examples with non-vanishing Tchebychev operator

Differential geometry of projective or centroaffine surfaces

> Atsushi Fujioka

Content

Introduction

Projective

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffine surfaces

Centroaffine minimal surfaces

$$\circ f = \left(\frac{e^u}{u}\cos v, \frac{e^u}{u}\sin v, 1 + \frac{1}{u}\right) \quad (2006 \text{ F})$$

- · The centroaffine curvature is 1.
- $\cdot \alpha = \beta$, ρ : linear w.r.t. u, v
- \cdot T: an eigenvector of $\nabla^{\tilde{h}}T$ (cf. 2004 L. Vrancken)
- · Projective minimal and isothermally asymptotic

$$\circ f = A'(u) + vA(u)$$
 (2009 F)

$$A$$
: an \mathbf{R}^3 -valued function s.t. $\det \left(egin{array}{c} A \\ A'' \\ A'' \end{array}
ight)
eq 0$

- · The centroaffine curvature is 1.
- · The Pick invariant vanishes.
- $\cdot \nabla^{\tilde{h}} T$ is not diagonalizable.
- · Projective minimal

Differential geometry of projective or centroaffine surfaces

> Atsush Fujioka

Contents

Introduction

Projective

surfaces

Projective minimal surfaces

Isothermally asymptotic surfaces

Centroaffin

Centroaffine minimal surfaces

Thank you for your attention.