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Overview

Differential

. : : L
georetry of P": the n-dimensional real projective space
el Projective differential geometry: differential geometry of
centroaffine

sufaces submanifolds in P”

o Many classes of surfaces in projective differential geometry
related to integrable systems:

o Projective minimal surfaces

o Isothermally asymptotic surfaces

Introduction

Centroaffine minimal surfaces: A class of surfaces in centro-
affine differential geometry
(1994 C. P. Wang)
Integrable systems
(2000 W. K. Schief)
Can be considered as projective
surfaces
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Projective surfaces and surfaces in the Euclidean
space

Differential
geometry of
projective or
centroaffine

surfaces

— z : D — P3: a projective surface
susni
Fujioka (x,y): local coordinates

z(x,y) = [2'(x.¥), 2(x,¥), 22 (x, ¥), 2 (x, y)]

Projective

surfaces z corresponds to a surface in R3.

If z1 £0,
2::(
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Symmetric 2-form

Differential

Tt  z: D — P3: a projective surface

projective or

LIS (x,y): local coordinates
surfaces . .
Assume z,y, z, Z,, Z are linearly independent on D.

Atsushi
Fujioka

Zyx = Iz + azc + bz, + pz,

2y, = Mzy, + Czx + dz, + qz

Projective
surfaces

Define a symmetric 2-form ¢ by

¢ = ldx? 4 2dxdy + mdy?.

Proposition

 is conformal to the second fundamental form of Z.
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Proof of Proposition

Differential

geometry of
projective or Proof
centroaffine
surfaces Consider the case

Atsushi
Fujioka

z=[\A], A\:D—R\ {0}, f: D—R3

From the first equation of (1)

Projective

surfaces ()‘XXa >\XXf —+ 2)\fo + >\fXX)
= I(Axy, Mg £ + Axfy + Ay fic + Afg) + a( A, Axf + L)
+b(Ay, Ay f + Afy,) + p(A, Af)

Hence

2)\fo + )\f;(x = /(/\xﬂ/ aF )\yfx -+ )\fxy) -+ a)\fx + b)\fy
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Proof of Proposition (continued)

Differential
geometry of

projective or Proof (Conti n Ued)

centroaffine

surfaces Since )\ # 0

Atsushi f f
Fujioka XX Xy

det fx = [det fx
fy fy
RO Similar computation can be done from the second equation of

surfaces (1) .
On the other hand, multiplying the second fundamental form of
2 by ||fc x f,||, we have

fXX ny fyy
det [ £ | dx®+2det| £ |dxdy+det| £ | dy>
fy fy fy




Differential
geometry of
projective or
centroaffine

surfaces

Atsushi
Fujioka

Projective
surfaces

Asymptotic line coordinates

z: D — P3: a projective surface
(x,y): local coordinates
Zxy, Zx, Zy, Z: linearly independent on D

Moreover, we assume z is indefinite, i.e., the symmetric 2-form
@ is indefinite.

By the above proposition, we can choose asymptotic line
coordinates as (x, y), so that

I =m=0.

Put
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A system of linear partial differential equations

Differential
geometry of

projective or P roposition

centroaffine

surfaces (DX = Ad)’ be = B(D, (2)
Atsushi
Fujioka Where
a a,+bc b,+bd+p bg+py
o 0 a b P
Projective =
surfaces A 1 0 0 0 ’
0o 1 0 0
d c+tac+q di+bc cp+agx
1 0 0 0
B = 0 c d q
0 0 1 0
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Integrability condition

Differential oo
geometry of Pr0p05|t|0n
projective or

b The integrability condition for the system of linear partial
differential equations (2) can be written by

Atsushi
Fujioka

L, = —2bcy — cby,

M, = —2cb, — bcy, (3)
L bM, + 2Mb,, + by, = cLx + 2Lcx + o,
where
a=0y, d=20,, (4)

1
L= O — 502 = by — by —2p,

1
M:9yy—§9)2,—c«9x—cx—2q.
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Proof of Proposition

Differential
geometry of
projective or P rOOf
centroaffine

surfaces The integrability condition is

Atsushi
Fujioka

A, — B, +[A B] = 0.

From the second, third and fourth rows, we have identities.
Projectve From the (1, 1)-entry,

ay = dx.
Hence 70 satisfying (4).
From the (1,2)-entry, we have the second equation of (3).
From the (1, 3)-entry, we have the first equation of (3).
From the (1,4)-entry and the first and second equations of (3),
we have the third equation of (3).

<
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Canonical system

Differential z : D — P3: an indefinite projective surface

geometry of ) ) )
projective or (x, y): asymptotic line coordinates
centroaffine

surfaces

Atsushi Zx = Oxz« + bz, + pz,
Fujioka
: z,, = czc + 0,2, + qz
A:D— R\ {0}
Projective If we pUt zZ = )\W,

surfaces

Zy = MW+ AWy, Zyx = Ax W + 20 Wy + AWy

9
2

Putting A = e2, we may assume

Zw = bz, + pz,
Zyy = CZx + qZ.

(canonical system)
13/40



Coordinate transformation

Differential

geometry of For the canonical system (5), consider coordinate

projective or

centroaffine transformation:

surfaces

Atsushi u= f(X)7 V= g(y)

Fujioka )\ : D - R \ {0}
If we put z = Aw,

Projective Ze = MW H AW, Zioe = MW + 20wy -+ AWy (F1)? + Awy .

surfaces

If X\ =

(C € R\ {0}), we have another canonical system:

7

{Wuu = BWV + pw,

Wy, = Cw, + gw.
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Transformation rule

Differential
geometry of
projective or

troaffi oo
“rfaces Proposition

Atsushi
Fujioka

SIL AN S S R U S
Projective - (g/)27 q= (g/)2 q 2" f/ gy )

surfaces

where {f; x} and {g; y} are the Schwarzian derivatives of f
and g respectively:

{f. }-_1 £ /_1 £ 2_1f”’_3 £ 2
I To\F) Ta\F) T2 F a\F)
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Schwarzian derivative and linear ordinary
differential equation of second order

Differential

geometry of .y
projective or Pro posi tion
centroaffine

surfaces 71(x), z2(x): linearly independent R-valued solutions to

Atsushi
Fujioka

Zo +a(x)z=0 (6)

Projective
surfaces

f! - 22.
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Projective metric and Darboux cubic form

Differential . . .
s  The transformation rule for b, ¢ in the canonical system (5):
projective or
centroaffine

surfaces / !
- g f
sushi b = b c=c
o (F1)* (g')?
Hence
bcdudv = bcdxdy
Projective
i = bcdxdy is invariant for the projective surface z.
(projective metric)
Moreover

bdu® + cdv® = f'g'(bdx® + cdy?)

— The conformal class of bdx3 + cdy? is invariant for the
projective surface z.
(Darboux cubic form)
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The case that Darboux cubic form vanishes

Differential Consider the case b = ¢ = 0.

geometry of

SOl The integrability condition (3) becomes

centroaffine
surfaces

py =0, g« =0.

Atsushi
Fujioka . . .
u1(x), up(x): linearly independent R-valued solutions to

Zxx = p(X)Z

Projective vi(y), va(y): linearly independent R-valued solutions to

surfaces
Zyy = q(y)z
If we put
z = [u1va, iy va, Upvy, tova],

z is a projective surface with b = ¢ = 0, which is a quadratic:

(UlV]_)(U2V2) = (U]_V2)(U2V1).
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The case that projective metric vanishes

Differential Consider the case ¢ = 0.

geometry of

SOl The integrability condition (3) becomes

centroaffine
surfaces

At (=by, —2p), =0, (—29)x =0, bM, +2Mb, + by, = 0.

Fujioka
By the transformation rule,

a= (g1)2 (a(y) + gy}

Projective
surfaces

May assume g = 0, so that M =0 and

Zoo = (a(x)y? + B(x)y +7(x))z, + (—a(x)y +6(x))z, z,, =0.
By a further computation, we have a ruled surface:

z = A(x) + yB(x).
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Definition of projective minimal surfaces

Differential
geometry of
projective or
centroaffine

surfaces

Projective minimal surfaces: Extremals for the integral of the
?f.}fklf projective metric
z : D — P3: an indefinite projective surface
(x,y): asymptotic line coordinates
D: bounded

®(x,y,t): a 1-parameter family of indefinite projective surfaces

Projective s.t
minimal T

surfaces

¢(X7y70) = Z(X;Y)’ q>|8D = Z|8D

Note that (x, y) are asymptotic line coordinates at t = 0.
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Review of equiaffine differential geometry

Differential
geometry of

ekl f - D — R3: an affine surface with transversal vector field ¢

centroaffine

: .
surfaces (x1,x2): local coordinates

Atsushi

Falioks Gauss formula:

faxg = Tifa + T + h(0x. 0x)¢ (i,j =1,2)

h: the affine metric
Two kinds of area elements:

Projective

minimal f‘

surfaces X1
0 0(0x,,0x,) :=det | £,

NI

o w(Xl,Xz) = |det(h(X,-,Xj))| (9(X1,X2) = 1)
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Blaschke surfaces

Differential
geometry of . . . . ..
projectivelor Consider nondegenerate affine surfaces, i.e., the affine metric is

centroaffine

e nondegenerate, which is independent of choice of transversal

Atsushi vector f|e|d
Fujioka

Proposition

f : D — R3: a nondegenerate affine surface
V: the induced connection

— Changing the transversal vector field, if necessary, we have
Projective

minimal V9 = 0, 0=w. (7)

surfaces

Blaschke normal: the transversal vector field satisfying (7)

Blaschke surfaces: affine surfaces with Blaschke normal as
transversal vector field

Blaschke metric: the affine metric of Blaschke surfaces

22/40



Fubini-Pick invariant

Differential
geometry of f : D — R3: a Blaschke surface
projective or

centroaffine Define a cubic form C by

surfaces

Atsushi C(X, Y, Z) — X(h(Y’ Z)) — h(VX Y, Z) — h(Y, sz)

Fujioka

for vector fields X, Y, Z on the surface f.
(x1, x2): local coordinates

by = b 0). (%)= (hy) !

Projective
minimal

surfaces CUk = C(8x,-, 8)9-7 8Xk)

Fubini-Pick invariant:

1 1 i ke
gHCH% = gh”h’qhk Cij Cpar
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Method of equiaffine differential geometry

Differential z : D — P3: an indefinite projective surface

geometry of

EOl (X, y): local coordinates

centroaffine

surfaces zZ = [17 f]
Atsushi — f becomes a Blaschke surface s.t.

Fujioka
fxx = afx + bf:v + Ifxyv
fy = cfx + df, + mf,,.

Projective
minimal
surfaces

Proposition

If (x,y) are asymptotic line coordinates,

1
§|yC||%,9 = +bcdx A dy.

In particular, ||C||26 is invariant for the projective surface z.
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Blaschke normal and Blaschke metric

Differential f : D — R3: an indefinite Blaschke surface, i.e., the Blaschke

geometry of

projectivelor metric is indefinite, s.t.

centroaffine
surfaces _ - -
Atsushi fXX aﬁ( + ?fy + /&y,
Fujioka 6/}/ — E.f;( + dfy + r—n&y

&: the Blaschke normal
§ = Cho+nf, + Ay

Projective If (x,y) are asymptotic line coordinates,

minimal
surfaces 1

C=n=0 N=2t_——
£, fys By

h: the Blaschke metric

(W0 8x) h(0,0,)\ 1 (T
) = ( h(dy. ) h(dy. ) ) =3 ( |

")
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Area elements and cubic form

Differential
geometry of
projective or _
centroaffine / T

surfaces 9 —w = Zl: ]' /m dX A dy
Atsushi A

Fujioka i
C: the cubic form

0, w: the area elements

Clll = C(ax’amax)

1 AN - 1T \1
=(~) —2(a—~¢)~-2(b- =
Projective <)\> x <a )\C) )\ <b )\"7> A

minimal

surfaces

Gz = Gio1 = G = C(0x, 0k, 0y), ...

If (x,y) are asymptotic line coordinates,
G2 = Go1 = Gur = Gio = G = Gop1 = 0.

In particular, the above proposition holds.
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Canonical system via equiaffine differential

geometry

Differential z : D — P3: an indefinite projective surface
geometry . . .
C el (X, y): asymptotic line coordinates

centroaffine

surfaces Canonical system:

Atsushi
Fujioka ZXX — bzy + pZ’
Zyy = CZx + qz

z = [efg, e % f]

— f is a Blaschke surface s.t.

Projective

minimal

surfaces fxx = QDXfX + bf_—ya
fy = ch + @y fy.

and
1 1 1 1

2 4 2

P=—5Pnt g0kt ooyb a=—Sop oo
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First variation formula

Differential D: bounded

geometry of

COl  O(x,y,t): a 1-parameter family of indefinite Blaschke surfaces
centroaffine
surfaces s.t.

Atsushi

Fujioka ®(x,y,t) = f + t(af + Bf, +vfy) +o(t) (t—0)
a,B,7:D =R, alspp = Bloap =v|op =0

Projective
minimal d 1 1
surfaces E /D §H CH%G = :FE /D {(bMy + 2Mby + byyy)
t=0
+(Clx + 2Lex + Goo )} Ydxdy,
where

L=—-b,—-2p, M= —c,—2q.
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Affine spheres

. . _® _® . .. . .
Differential z= [e 2.e" 2 f] : D — P3: an indefinite projective surface
geometry . .

projective or given by canonical system

centroaffine

surfaces &: the Blaschke normal of f

Sl (<, (eotbc bteb) [k
& Cx + PxC  Qxy + bc f,

A direct computation shows that

by, + ¢y b=cc+pxc=0

Projecti . . . . .. .
minimal implies the projective minimality:

surfaces

bM, + 2Mb,, + by, = cLy + 2Lcx + Coo = 0.

Proposition

Affine spheres are projective minimal, i.e., if f is an affine
sphere, z is projective minimal.
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Demoulin surfaces and Godeaux-Rozet surfaces

Differential

geometry of
projective or Assume b, C ;é 0.

centroaffine By the transformation rule, we can define projective invariant
S quadratic forms Pdx?, Qdy? by
Fujioka
1 lew 1¢2 1 1b 1b2
P .= b, — ==+ = = oV 4 AT A
Pl st Q7955757 T

Demoulin surfaces: P= Q@ =0
Projective Godeaux-Rozet surfaces: P=0o0or Q@ =0

minimal
surfaces

Proposition

{Affine spheres} C {Demoulin surfaces}
C {Godeaux-Rozet surfaces}
C {Projective minimal surfaces}
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Definition of isothermally asymptotic surfaces

Differential
geometry of

projective or z: D — P3: an indefinite projective surface

centroaffine

surfaces Assume b, C ;é 0.
Atsushi

Affele Isothermally asymptotic surfaces: (Iog 5) =0
xy
o Changing the coordinates, if necessary, the above condition is
equivalent to b = c.
o Affine spheres are isothermally asymptotic.
o The surface z defines 3 families of curves (3-web):
- asymptotic curves

Isothermally

- 1
aymptotic - zero curves of the Darboux cubic form (Darboux's curves)

surfaces

For isothermally asymptotic surfaces, the above 3-web is
hexagonal, i.e., locally diffeomorphic to 3 families of parallel
lines.
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Web curvature

Differential Consider a 3-web given by 1-forms wy, wo, ws.

geometry of

projective or Each curve is a zero curve of one of w;'s.

centroaffine

surfaces Normalization: w; +wy + w3 =0

2 — Fv: a 1-form s.t.
dwi = w1 A7y,
dwy = wy A, (web structure equations)
dws = w3 Ay

~: the Chern connection form
The web curvature K is defined by

Isothermally
asymptotic
surfaces

dy = Kwi A ws.

Proposition

Hexagonality <= K =0

32/40



Differential
geometry of
projective or
centroaffine

surfaces

Atsushi
Fujioka

Isothermally
asymptotic
surfaces

Proof of Proposition and the case of the 3-web for
projective surfaces

K=0= ~=dlogf (°f:locally)
— d(fw)=0 (i=1,23)

= fw; = du; (au,- - locally)

= u; + up + u3: constant (hexagonality)

The above 3-web for the projective surface is given by

w1 = —b%dx, wy = —C%dy, w3 = b3 dx + C%dy
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Definition of centroaffine surfaces

Differential Centroaffine surfaces: affine surfaces with position vector as

geometry of

projective or transversal vector field
centroaffine
surfaces Gauss formula:
Atsushi
Fujioka rl 2 h Wi
faxg = it + Tifo — B0y, 0x)f  (i,j =1,2)

h: the centroaffine metric

Consider indefinite case.

(x, y): asymptotic line coordinates

Y := h(0x, 0y)

K: the Euclidean Gaussian curvature of f

d: the signed distance from the origin to the tangent plane
Centroaffine (the Euclidean support function)

surfaces
1 | K
= ——10 —
Pemg 8 T
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Gauss formula in asymptotic line coordinates

Gauss formula

Differential
geometry of

projective or
centroaffine 1/] Ie%
surfaces f;(X = ([ 2 + px) f;( + —f ,
?tiuskhi ( w w Y
ujioka
ﬁ(y = _wf‘l'pyﬂ('i'prya (8)
f;/y: (ﬁﬁ‘/oy) f:v‘l'éfxa
Y Y
where
f f
a = det fx / det | £ ,
fx fy
Centroaffine f f
surfaces ,8 _ w det f';, /det f;,
fry e
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Integrability condition

Differential
geometry of PrOpOSItlon
projective or
centroaffine

curfaces The integrability condition for the Gauss formula (8) can be

Atsushi Written by
Fujioka

(og ) =~ - 5

Qay + pPxPx = P,
Bx + pythy = pyy.

+pxpy7

If p is constant and «, 3 # 0, changing the coordinates, if
necessary, we obtain Tzitzéica equation:

Centroaffine 1

surfaces (log 7/1)Xy = _1/} - E
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Definition of centroaffine minimal surfaces

Differential Centroaffine minimal surfaces: Extremals for the area integral of

geometry of

projective or the centroaffine metric

centroaffine

surfaces f : D — R3: an indefinite centroaffine surface

Atsushi - H 1 H
S (x,y): asymptotic line coordinates

V: the induced connection

V5 the Levi-Civita connection for the centroaffine metric h

C:=V-— VE: the difference tensor

1 .
T := 5”50 the Tchebychev vector field

VAT the Tchebychev operator

Proposition

f: centroaffine minimal <= p,, =0

Centroaffine

minimal — trth = 0

surfaces
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Fundamental examples

Differential

geometry of Proper affine spheres: Blaschke surfaces whose affine shape
projective or .
centroaffine operator is a non-zero scalar operator
f: .
Seee The center: The point where the Blaschke normals of proper
Atsushi

Fujioka affine spheres meet

Proposition

f: a proper affine sphere centered at the origin <= p: constant

<— T=0

o Ellipsoids, hyperboloids centered at the origin =—= T =0
o Elliptic paraboloids removing the vertex which is the origin,
hyperbolic paraboloids removing the saddle point which is

the origin = T #0, VT =0
o In 1995, H. L. Liu and C. P. Wang classified centroaffine

Centroaffine

minimal minimal surfaces with VT = 0.

surfaces
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Examples with non-vanishing Tchebychev operator

Differential
geometry of
projective or
centroaffine

surfaces

Atsushi
Fujioka

Centroaffine
minimal
surfaces

u u 1
of = (e cosv, - sinv,1+ ) (2006 F)

u u u
- The centroaffine curvature is 1.
- =f, p: linear w.r.t. u,v
- T: an eigenvector of VT (cf. 2004 L. Vrancken)
- Projective minimal and isothermally asymptotic
of=A(u)+ vA(u) (2009 F)
A
A: an R3-valued function s.t. det [ A" | #0
A//
- The centroaffine curvature is 1.
- The Pick invariant vanishes.
- VT is not diagonalizable.
- Projective minimal
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Differential

geometry of

projective or

centroaffine
surfaces

Atsushi
Fujioka

Thank you for your attention.

Centroaffine
minimal
surfaces
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