Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Pseudo-parallel CR submanifolds of a complex space form

Mayuko Kon

Shinshu University

Dec. 2. 2011

イロト イポト イヨト イヨト

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Pseudo-parallel CR submanifolds of a complex space form

Mayuko Kon

Shinshu University

Dec. 2. 2011

イロト イポト イヨト イヨト

 $\begin{array}{c} \mbox{Definition and basic formulas}\\ \mbox{Pseudo-parallel CR submanifolds of a complex space form}\\ \mbox{For the case that } M \mbox{ is real hypersurface} \end{array}$

Table of Contents

2 Pseudo-parallel CR submanifolds of a complex space form

\bigcirc For the case that M is real hypersurface

イロト イヨト イヨト イヨト

- \overline{M} : *m*-dimensional Riemannian manifold,
- G: Riemannian metric of \overline{M} ,
- $\bar{\nabla}$: operator of covariant differentiation on \bar{M} .
- M: *n*-dimensional submanifold isometrically immersed in \overline{M} ,
- g: induced metric on M, (g(X,Y) := G(X,Y), X, Y : vector fields in M)
- $T_x(M), T_x(M)^{\perp}$: tangent space and the normal space of M at x.

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

 $X,Y\colon$ vector field on $M,\,V\colon$ normal vector field on M. Gauss formula

$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y).$$

 $(\nabla_X Y$: tangential component, B(X,Y): normal component) Then

- abla is the operator of covariant differentiation w.r.t. g,
- B(aX, bY) = abB(X, Y), a, b: functions,

$$-B(X,Y) = B(Y,X).$$

We call

 ∇ : induced connection,

B: second fundamental form.

Weingarten formula

$$\bar{\nabla}_X V = -A_V X + D_X V,$$

 $(-A_VX: \text{ tangential component}, D_XV: \text{ normal component})$

Mayuko Kon

Pseudo-parallel CR submanifolds of a complex space form

Then we can show that

-
$$A_{bV}(aX) = abA_VX,$$

-
$$D_{aX}(bV) = a(Xb)V + abD_XV$$
,

-
$$g(B(X,Y),V) = g(A_VX,Y)$$
,

- D is a metric connection in the normal bundle $T(M)^{\perp}$ of M in \overline{M} w.r.t. the induced metric on $T(M)^{\perp}$.

We call

A: associated second fundamental form to B

(or, second fundamental form)

D: normal connection.

イロト イヨト イヨト イヨト

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

$$\begin{aligned} (\nabla_X B)(Y,Z) &:= D_X B(Y,Z) - B(\nabla_X Y,Z) - B(Y,\nabla_X Z), \\ (\nabla_X A)_V Y &:= \nabla_X (A_V Y) - A_{D_X V} Y - A_V \nabla_X Y. \end{aligned}$$

Using the Gauss and Weingarten formulas,

$$\bar{R}(X,Y)Z = \bar{\nabla}_X \bar{\nabla}_Y Z - \bar{\nabla}_Y \bar{\nabla}_X Z - \bar{\nabla}_{[X,Y]} Z$$

= $R(X,Y)Z - A_{B(Y,Z)}X + A_{B(X,Z)}Y$
+ $(\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z).$

Equation of Gauss:

 $\begin{array}{lll} g(\bar{R}(X,Y)Z,W) &=& g(R(X,Y)Z,W) - g(B(X,W),B(Y,Z)) \\ && + g(B(Y,W),B(X,Z)). \end{array}$

Equation of Codazzi:

$$(\bar{R}(X,Y)Z)^{\perp} = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z).$$

 ${\boldsymbol \cdot}$ curvature tensor of the normal bundle of M

$$R^{\perp}(X,Y)V := D_X D_Y V - D_Y D_X V - D_{[X,Y]}V.$$

Using the Gauss and Weingarten formulas,

$$\bar{R}(X,Y)V = \bar{\nabla}_X \bar{\nabla}_Y V - \bar{\nabla}_Y \bar{\nabla}_X V - \bar{\nabla}_{[X,Y]} V$$

$$= R^{\perp}(X,Y)V - B(X,A_VY) + B(Y,A_VX)$$

$$-(\nabla_X A)_V Y + (\nabla_Y A)_V X,$$

from which we obtain Equation of Ricci:

$$g(\bar{R}(X,Y)V,U) = g(R^{\perp}(X,Y)V,U) + g([A_U,A_V]X,Y).$$

イロン イヨン イヨン イヨン

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

- \bar{M} : Kaehler manifold,
- J: complex structure of \bar{M} ,
- G: Kaehler metric of \overline{M} ,

$$\neg \forall X, Y, \ G(JX, JY) = G(X, Y)$$

- the fundamental 2-form $\Phi(X,Y):=G(X,JY)$ is closed.
- $\bar{\nabla}$: the operator of covariant differentiation in $\bar{M}.$

holomorphic sectional curvature

 $\overline{p: 2}$ -dimensional subspace spanned by orthonormal basis $\{X, Y\}$,

$$K(p) := G(\bar{R}(X, Y)Y, X).$$

If p is invariant by the complex structure J, then K(p) is called the holomorphic sectional curvature by p. Then,

$$K(p) = G(\bar{R}(X, JX)JX, X).$$

イロト イポト イヨト イヨト

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

If K(p) is constant for all planes p in $T_x(M)$ invariant by J and for all $x \in \overline{M}$, then \overline{M} is called a complex space form.

Proposition.

Let \bar{M} be a real 2n-dimensional Kaehlerian manifold. If \bar{M} is of constant curvature, then \bar{M} is flat provided n > 1.

Theorem.

A Kaehlerian manifold \bar{M} is of constant holomorphic sectional curvature c if and only if

$$\bar{R}(X,Y)Z = \frac{1}{4} \big(G(X,Z)Y - G(Y,Z)X + G(JX,Y)JY - G(JY,Z)JX + 2G(JX,Y)JZ \big).$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Theorem.

A simply connected complete Kaehlerian manifold \overline{M} of constant holomorpic sectional curvature c can be identified with the complex projective space $\mathbb{C}P^n$, the complex hyperbolic space $\mathbb{C}H^n$ or \mathbb{C}^n according as c > 0, c < 0 or c = 0.

・ロン ・回と ・ヨン ・ヨン

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

For
$$X \in TM$$
, $V \in TM^{\perp}$, we put

$$JX = PX + FX, \quad JV = tV + fV,$$

PX: tangential part of JX, FX: normal part of JX, tV: tangential part of JV, fV: normal part of JV.

from $J^2 = -I$, we have

$$P^2 = -I - tF, \ FP + fF = 0,$$

 $Pt + tf = 0, \ f^2 = -I - Ft.$

$$\begin{aligned} (\nabla_X P)Y &:= \nabla_X (PY) - P \nabla_X Y, \ (\nabla_X F)Y &:= D_X (FY) - F \nabla_X Y, \\ (\nabla_X t)V &:= \nabla_X (tV) - t D_X V, \quad (\nabla_X f)V &:= D_X (fV) - f D_X V. \end{aligned}$$

From the Gauss and Weingarten formulas, we have

$$tB(X,Y) = fB(X,Y) = (\nabla_X P)Y - A_{FY}X + B(X,PY) + (\nabla_X F)Y.$$

Comparing the tangential and normal parts, we have

$$(\nabla_X P)Y = A_{FY}X + tB(X,Y), \ (\nabla_X F)Y = -B(X,PY) + fB(X,Y).$$
 Similarly,

$$(\nabla_X t)V = -PA_V X + A_{fV} X, \ (\nabla_X f)V = -FA_V X - B(X, tV).$$

イロン スポン イヨン イヨン

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Equations of Gauss and Codazzi

When \bar{M} is a complex space form,

• equation of Gauss

$$\begin{split} R(X,Y)Z &= \bar{R}(X,Y)Z + A_{B(Y,Z)}X - A_{B(X,Z)}Y \\ &= c\{g(Y,Z)X - g(X,Z)Y + g(PY,Z)PX \\ &- g(PX,Z)PY - 2g(PX,Y)PZ\} \\ &+ A_{B(Y,Z)}X - A_{B(X,Z)}Y. \end{split}$$

equation of Codazzi

$$g((\nabla_X A)_V Y, Z) - g((\nabla_Y A)_V X, Z)$$

= $(\overline{R}(X, Y)Z)^{\perp}$
= $c\{g(Y, PZ)g(X, tV) - g(X, PZ)g(Y, tV)$
 $- 2g(X, PY)g(Z, tV)\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Normal curvature tensor

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$R^{\perp}(X,Y)V = D_X D_Y V - D_Y D_X V - D_{[X,Y]}V.$$

Then we have the equation of Ricci

$$G(R^{\perp}(X, Y)V, U) + g([A_U, A_V]X, Y) = c\{g(Y, tV)g(X, tU) - g(X, tV)g(Y, tU) - 2g(X, PY)g(V, fU)\}.$$

The normal connection is flat $\stackrel{def}{\iff} R^{\perp} = 0$, semi-flat $\stackrel{def}{\iff} R^{\perp}(X,Y)V = 2cg(X,PY)fV$

イロト イポト イヨト イヨト

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Definition of a CR submanifold in a Kaehler manifold

Definition

 $M: CR \text{ submanifold if there exists differentiable distribution} H: x \longrightarrow H_x \subset T_x(M) \text{ on } M \text{ s.t.}$ (i) $\forall x \in M, JH_x = H_x,$ (ii) $\forall x \in M, JH_x = T_x(M)$

(ii)
$$\forall x \in M, \ JH_x^{\perp} \subset T_x(M)^{\perp}$$

We call H_x a holomorphic tangent space.

At each point $x \in M$,

$$T_x(M) = H_x + H_x^{\perp},$$

$$T_x(M)^{\perp} = JH_x^{\perp} + N_x$$

・ロト ・回ト ・ヨト ・ヨト

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

$$T_x(M) = H_x + H_x^{\perp},$$

$$T_x(M)^{\perp} = JH_x^{\perp} + N_x$$

We put dim $H_x := h$, dim $H_x^{\perp} = q$, codimM = p.

- If p = 1, then M is a real hypersurface, (If $\overline{M} = M^m(c)$, $H_x^{\perp} = \{\xi\}$)
- If q = 0 (JT_x(M) ⊂ T_x(M)), M is called invariant submanifold,
- If h = 0 (JT_x(M) ⊂ T_x(M)[⊥]), M is called anti-invariant (totally real) submanifold,
- If p = q, M is called a generic submanifold,
- If p > 0, q > 0, M is called non-trivial (proper).

 $\begin{array}{c} \textbf{Definition and basic formulas} \\ \textbf{Pseudo-parallel CR submanifolds of a complex space form} \\ \textbf{For the case that } M \text{ is real hypersurface} \end{array}$

the name of CR submanifold

M': differentiable manifold, $T(M')^C$: complexified tangent bundle.

A CR structure on M' is a complex subbundle D of $T(M')^C$ s.t. $D_x \cap \overline{D_x} = \{0\}$ and D is involutive. On a CR manifold, there exists a (real) distribution H and a field of endomorphism $p: H \longrightarrow H$ s.t. $p^2 = -I_H$.

$$H = Re(D \oplus \overline{D}), \ D_x = \{X - \sqrt{-1}pX : X \in H_x\}.$$

Theorem (B. Y. Chen 1973)

M: CR submanifold of a Hermitian manifold $\bar{M}.$ If M is non-trivial, then M is a CR manifold.

イロト イポト イヨト イヨト

э

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

f-structures

- M: CR submanifold \Leftrightarrow FP = 0(equivalently, fF = 0, tf = 0, Pt = 0).
- M: CR submanifold of a Kaehlerian manifold M
 , then P is an f-structure in M (i.e. P³ + P = 0) and f is an f-structure (i.e. f³ + f = 0) in the normal bundle of M.

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Relation to the submanifolds in a sphere

The method of the standard fibration to push known theorems on the sphere down to $\mathbb{C}P^m$ by considering the commutative diagram (H. B. Lawson Jr., M. Okumura, K.Yano, M. Kon);

$$\begin{array}{cccc} N & \stackrel{i'}{\longrightarrow} & S^{2m+1} \\ \pi \downarrow & & \downarrow \bar{\pi} \\ M & \stackrel{i}{\longrightarrow} & \mathbb{C}P^m. \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

 $S^{2m+1}=\{z\in \mathbb{C}^{m+1}: |z|=1\}: \ (2m+1)\text{-dimensional unit sphere,}$ We put

 $\pi': T_z(\mathbb{C}^{m+1}) \longrightarrow T_z(S^{2m+1})$: the orthogonal projection.

- \bullet contact metric structure (ϕ,ξ,η,G) on $S^{2m+1}\text{,}$
 - For any point $z \in S^{2m+1}$ we put $\xi := Jz$, (J : almost complex structure of C^{m+1})

•
$$\phi := \pi' \cdot J$$
,

- η : 1-form dual to ξ ,
- G: standard metric tensor field on S^{2m+1} s.t. $G(\phi X, \phi Y) = G(X, Y) - \eta(X)\eta(Y)$.

Then, we have $\eta(\xi) = 1$ and $\phi^2(X) = -X + \eta(X)\xi$.

 $\begin{array}{c} \textbf{Definition and basic formulas} \\ \textbf{Pseudo-parallel CR submanifolds of a complex space form} \\ \textbf{For the case that } M \text{ is real hypersurface} \end{array}$

$$\begin{split} \bar{\pi}: S^{2m+1} &\longrightarrow \mathbb{C}P^m: \text{standard fibration,} \\ N: (n+1)\text{-dimensional submanifold immersed in } S^{2m+1}\text{,} \\ M: n\text{-dimensional submanifold in } \mathbb{C}P^m. \end{split}$$

We assume that N is tangent to the vertical vector field ξ of S^{2m+1} and there exists a fibration $\pi:N\to M$ s.t. the following diagram commutes and the immersion i' is a diffeomorphism on the fibers.

$$\begin{array}{cccc} N & \stackrel{i'}{\longrightarrow} & S^{2m+1} \\ \pi \downarrow & & \downarrow \bar{\pi} \\ M & \stackrel{i}{\longrightarrow} & \mathbb{C}P^m, \end{array}$$

where the immersion i' is a diffeomorphism on the fibres.

・ロン ・回と ・ヨン ・ヨン

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

$$\begin{array}{cccc} N & \stackrel{i'}{\longrightarrow} & S^{2m+1} \\ \downarrow & & \downarrow \pi \\ M & \stackrel{i}{\longrightarrow} & \mathbb{C}P^m, \end{array}$$

*: the horizontal lift.

$$(JX)^* = \phi X^*, \ G(X^*, Y^*) = g(X, Y)^*$$

for any vectors X and Y tangent to $\mathbb{C}P^m$.

 α : second fundamental form of N in S^{2m+1} , B: second fundamental form of M in $\mathbb{C}P^m$. Then,

$$\alpha(X^*,Y^*) = B(X,Y)^*, \quad \alpha(\xi,\xi) = 0.$$

イロト イポト イヨト イヨト

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Besides,

$$(\nabla_{X^*}\alpha)(Y^*, Z^*) = [(\nabla_X B)(Y, Z) + g(PX, Y)FZ + g(PX, Z)FY]^*, (\nabla_{X^*}\alpha)(Y^*, \xi) = [fB(X, Y) - B(X, PY) - B(Y, PX)]^*, (\nabla_{X^*}\alpha)(\xi, \xi) = -2(FPX)^*$$

for any vectors X, Y and Z tangent to M. If α is parallel, then FP = 0 and M is a CR submanifold of $\mathbb{C}P^m$.

- 4 同 2 4 日 2 4 日 2

$K^{\perp}\colon$ the curvature tensor of the normal bundle of N. Then,

$$G(K^{\perp}(X^*, Y^*)V^*, U^*) = [g(R^{\perp}(X, Y)V, U) - 2g(X, PY)g(fV, U)]$$

$$G(K^{\perp}(X^*, \xi)V^*, U^*) = g((\nabla_X f)V, U)^*$$

$$(X, Y \in TM, \quad V, U \in TM^{\perp})$$

Lemma

The normal connection of N in S^{2m+1} is flat \iff the normal connection of M in $\mathbb{C}P^m$ is semi-flat and $\nabla f = 0$.

Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Example

$$N = S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k) \longrightarrow S^{n+k}, \quad n+1 = \sum_{i=1}^k m_i.$$

 $(m_1,\cdots m_k: \text{ odd numbers, } r_1^2+\cdots+r_k^2=1)$

 $M=\pi(N): \ {\rm CR} \ {\rm submanifold} \ {\rm of} \ {\mathbb C}P^m \ (2m+1>n+k).$

- Since the normal connection of N is flat, the normal connection of M is semi-flat and $\nabla f = 0$.
- When $r_i = (m_i/(n+1))^{1/2}$ $(i = 1, \dots, k)$, N is minimal and hence M is also minimal.

イロト イポト イヨト イヨト 二日

pseudo-parallel CR submanifold

As a generalisation of Einstein manifold, a Riemannian manifold (M,g) has a semi-parallel Ricci operator if

R(X,Y)S = 0

for all vector fields X and Y on M. As a generalization of locally

symmetric Riemannian manifold, (M,g) is said to be (locally) semi-symmetric if

R(X,Y)R = 0

for all vector fields X and Y on M.

イロト イポト イヨト イヨト

- In 1972, P. J, Ryan proposed a question:
 - " Euclidean hypersurfaces with semi-parallel Ricci operator $(R \cdot S = 0)$ are semisymmetric $(R \cdot R = 0)$? "
- F. Defever constructed hypersurface in Euclidean 6-space E^6 with semi-parallel Ricci operator which are not semi-symmetric.
- B. E. Abdalla and F. Dillen generalized Defevers construction for hypersurfaces of dimension greater than 5.

- 4 回 ト 4 ヨ ト 4 ヨ ト

One of the generalization of Ricci semi-parallelity is the Ricci pseudo-parallelity:

$$R(X,Y) \cdot S = \alpha(X \wedge Y)S,$$

 α : function.

$$(X \wedge Y)Z := g(Y, Z)X - g(X, Z)Y.$$

ex)

every Cartan's isoparametric hypersurface in spheres has pseudo-parallel Ricci operator.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem (K, 2011)

M: an *n*-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c \neq 0$, with semi-flat normal connection. We suppose h > 2. If $(R(X, Y)A)_V = \alpha((X \land Y)A)_V$ for any V normal to M and X

If $(R(X, Y)A)_V = \alpha((X \land Y)A)_V$ for any V normal to M and X and Y tangent to M, α being a function, then M is a hypersurface of totally geodesic $M^{\frac{n+1}{2}}(c)$ in $M^m(c)$.

Theorem (G. A. Lobos and M. Ortega, 2004)

Let M be a connected pseudo-parallel real hypersurface in Mⁿ(c), n ≥ 2.
R(X,Y)A = α(X ∧ Y)A
⇒ M is one of the following:
(a) (c > 0) 1 < α = cot²(r), 0 < r < π/2, M is an open subset of a geodesic hypersphere of radius r,
(b) (c < 0) α = 1 and M is an open subset of a horosphere,
(c) (c < 0) 0 < α = tanh²(r) < 1, r > 0, and M is an open subset of a tube of radius r over a totally geodesic CHⁿ⁻¹.

・ロン ・回 と ・ 回 と ・ 回 と

Outline of the proof

• Using the condition of $R\cdot A$ and the equation of Gauss, get some equations for $g(A_VX,Y)$

•
$$V \in N_x \Longrightarrow A_V = 0$$
,

- $X \in H_x$ and $Y \in H_x^{\perp} \Longrightarrow g(A_V X, Y) = 0$,
- $X, Y \in H_x \Longrightarrow g(A_V X, Y) = \alpha_V g(X, Y), \ \alpha_V$: function
- $X, Y \in H_x^{\perp} \Longrightarrow A_V X = \beta X$, β :function.
- We prove dim $H_x^{\perp} = 1$.
- Check that the first normal space has constant dimension and is parallel with respect to the normal connection.

Proof of theorem

Lemma 1

 $R(X,Y)A = \alpha(X \wedge Y)A$, α : function, then,

$$A_{fV}X = 0 \quad for \ X \in T_x(M), \tag{1}$$

$$g(A_V X, Y) = 0 \quad for \ X \in H_x, Y \in H_x^{\perp}.$$
(2)

Moreover, if the dimension of the holomorphic tangent space h>2,

$$g(A_V X, Y) = -\frac{1}{h} \operatorname{tr}(A_V P^2) g(X, Y) \quad for \ X, Y \in H_x, \ (3)$$
$$PA_V = A_V P, \tag{4}$$

where $\ensuremath{\mathrm{tr}}$ denotes the trace of an operator.

イロン イヨン イヨン イヨン

э

Since $(R(X,Y)A)_V = \alpha((X \wedge Y)A)_V$, we have

$$\begin{aligned} R(X,Y)A_VZ &= A_{R^{\perp}(X,Y)V}Z + A_VR(X,Y)Z \\ &= 2cg(X,PY)A_{fV}Z + A_VR(X,Y)Z + \alpha g(X,A_VZ)Y \\ &- \alpha g(Y,A_VZ)X - \alpha g(X,Z)A_VY + \alpha g(Y,Z)A_VX. \end{aligned}$$

Thus we have

$$trR(X,Y)A_VA_{fV}$$

= $2cg(X,PY)trA_{fV}^2 + trR(X,Y)A_{fV}A_V$
+ $2\alpha g(X,A_VA_{fV}Y) - 2\alpha g(Y,A_VA_{fV}X).$

By the equation of Ricci, we have $A_{fV}A_V = A_VA_{fV}$. Thus we obtain $\operatorname{tr} A_{fV}^2 = 0$, which proves (1).

・ロン ・回 とくほど ・ ほとう

Since the normal connection of ${\cal M}$ is semi-flat, the equation of Ricci gives

$$A_a A_b X = A_b A_a X$$

for any $X \in H_x$. Using these equations, we can shows that

$$-(h+1)cg(PA_VX,Y) - ctr(P^2A_V)g(PX,Y) + cg(P^2A_VPX,Y) - 2cg(PA_VP^2X,Y) = 0,$$
(5)

Using this, we have $g(A_VX, Y) = 0$ for $X \in H_x^{\perp}$ and $Y \in H_x$.

イロト イポト イヨト イヨト

Next we consider the case that $X, Y \in H_x$. We have

$$-(h-1)cg(PA_VX,Y) - cg(A_VPX,Y) - ctr(P^2A_V)g(PX,Y) = 0,-(h-1)cg(A_VPX,Y) + cg(A_VX,PY) - ctr(P^2A_V)g(PX,Y) = 0.$$

From these equations and the assumption that h > 2, we get

$$g(PA_VX,Y) - g(A_VY,PX) = 0.$$

From this, we have $PA_V = A_V P$ for any V normal to M. Thus we obtain

$$g(A_V X, Y) = -\frac{1}{h} \operatorname{tr}(A_V P^2) g(X, Y)$$

for $X, Y \in H_x$.

Lemma 2

$$R(X,Y)A = \alpha(X \wedge Y)A$$
, α : function $\Longrightarrow \dim H_x^{\perp} = 1$.

We take an o.n.b.
$$\{v_1, \dots, v_q, v_{q+1}, \dots, v_p\}$$
 of $T_x^{\perp}(M)$,
 $v_1, \dots, v_q \in FH_x^{\perp}$
 $v_{q+1}, \dots, v_p \in N_x$.
Since A_{v_1} is symmetric, taking a suitable basis $\{e_1, \dots, e_n\}$ of
 $T_x(M)$,

$$A_{v_1} = \begin{pmatrix} a_1 & 0 & & \\ & \ddots & & 0 & \\ 0 & a_1 & & \\ \hline & & & b_1 & 0 & \\ & 0 & & \ddots & \\ & & & 0 & b_q \end{pmatrix},$$

where
$$a_1 = -\frac{1}{h} \operatorname{tr}(A_{v_1} P^2)$$
.

・ロト ・回 ト ・ヨト ・ヨー

We compute the sectional curvature $g(R(e_{h+j},e_{h+i})e_{h+i},e_{h+j} \mbox{ by two ways;}$

• using (5),

$$(b_i - b_j)(g(R(e_{h+j}, e_{h+i})e_{h+i}, e_{h+j}) + \alpha) = 0.$$

• using the equation of Gauss and Lemma 1,

$$g(R(e_{h+j}, e_{h+i})e_{h+i}, e_{h+j}) = 0.$$

So we have $b_i = b_j$ for any $i \neq j$, that is, $A_{v_1}X = b_1X$ for any $X \in H_x^{\perp}$.

・ロン ・四マ ・ヨマ ・ヨマ

By the similar computation, we see that $A_{v_i}X = b_iX$ $(i = 2, \cdots, q)$ for $X \in H_x^{\perp}$, where b_2, \cdots, b_q are functions. Thus we have

$$A_{v_i}tv_j = b_itv_j.$$

On the other hand, since $A_V t U = A_U t V$ for any $U, V \in FH_x^{\perp}$, we have

$$A_{v_i}tv_j = A_{v_j}tv_i = b_jtv_i.$$

Since tv_i and tv_j are linearly independent, we see that $q = \dim H_x^{\perp} = 1$ or $b_1 = \cdots = b_q = 0$.

We suppose that $b_1 = \cdots = b_q = 0$. Since $[A_U, A_V] = 0$ for any U and V normal to M, by the equation of Ricci, we have

$$0 = c\{g(Y,tV)g(X,tU) - g(X,tV)g(Y,tU)\}$$

for any $X, Y \in T_x(M)$.

If dim $H_x > 2$, we can take U and V orthogonal to each other. Putting X = tU and Y = tV, we have c = 0. This is a contradiction.

So we see that q = 1. Consequently, we obtain $\dim H_x^{\perp} = 1$.

イロト イポト イヨト イヨト

Lemma

$$R(X,Y)A = \alpha(X \wedge Y)A$$
, α : function

M is a hypersurface of totally geodesic $M^{\frac{n+1}{2}}(c)$ in $M^m(c)$.

$$\begin{split} N_0(x) &= \{ V \in T_x(M)^{\perp} \mid A_V = 0 \}, \\ N_1(x): \text{ orthogonal complement of } N_0(x) \text{ in } T_x(M)^{\perp} \\ \text{(first normal space)} \end{split}$$

We prove that the first normal space has constant dimension and it is parallel with respect to the normal connection.

If
$$A_V = 0$$
 for $V \in FH_x^{\perp}$, then $N_1(x) = \emptyset$.
If $A_V \neq 0$, then $N_0(x) = N_x$ and $N_1(x) = FH_x^{\perp}$ is of dimension 1.
For $V \in FH_x^{\perp}$ and $U \in N_x$,

$$g(D_X V, fU) = -g(V, (\nabla_X f)U) = -g(V, -FA_U X - B(X, tU)) = 0.$$

Thus,

$$D_X V \in FH_x^{\perp}.$$

So the first normal space is parallel with respect to the normal connection.

Thus we see that M is a hypersurface of totally geodesic $M^{\frac{n+1}{2}}(c)$ in $M^m(c).$ q.e.d

For the case that M is real hypersurface

If the curvature tensor ${\cal R}$ and the Ricci tensor ${\cal S}$ of ${\cal M}$ satisfy

$$g((R(X,Y)S)Z,W) = \alpha g(((X \wedge Y)S)Z,W), \ X,Y,Z,W \perp \xi,$$

 α being a function, we call S the pseudo $\eta\text{-parallel Ricci tensor.}$

c.f.

- (R(X,Y)S)Z = 0 (Kimura and Maeda, 1989),
- (R(X,Y)S)Z + (R(Y,Z)S)X + (R(Z,X)S)Y = 0(Ki, Nakagawa and Suh, 1990)
- $g((R(X,Y)S)Z,W) = 0, X, Y, Z, W \perp \xi$ (K, 2007),
- $(R(X,Y)S)Z = \alpha g((X \wedge Y)S)Z$ (Inoguchi).

Let M be a real hypersurface of a complex space form $M^n(c)$, $c\neq 0,~n\geq 3.$ Then S is pseudo $\eta\text{-parallel}$ if and only if M is pseudo-Einstein.

・ロン ・回と ・ヨン・

Let M be a real hypersurface of a complex projective space $\mathbb{C}P^n$, $n \geq 3$. If S is pseudo η -parallel, then M is locally congruent to one of the following:

- (i) a geodesic hypersphere of radius $r \ (0 < r < \pi/2),$
- (ii) a minimal tube of radius $\pi/4$ over a complex projective space $\mathbb{C}P^{\frac{n-1}{2}}$ with principal curvatures 1, -1 and 0 whose multiplicities are n-1, n-1 and 1, respectively.

・ロン ・回 と ・ 回 と ・ 回 と

Let M be a real hypersurface of a complex hyperbolic space $\mathbb{C}H^n$, $n \geq 3$. If S is pseudo η -parallel, then M is locally congruent to one of the following:

- (i) a geodesic hypersphere,
- (ii) a tube over a complex hyperbolic hyperplane,
- (iii) a horosphere.

・ロン ・回と ・ヨン ・ヨン

Let M be a real hypersurface of a complex space form $M^n(c)$, $c \neq 0$, $n \geq 3$. The shape operator A is pseudo η -parallel if and only if M is either η -umbilical or it is locally a ruled real hypersurface.

・ロン ・回と ・ヨン ・ヨン

Definition and basic formulas Pseudo-parallel CR submanifolds of a complex space form For the case that M is real hypersurface

Thank you for your attention!

・ロト ・回 ト ・ヨト ・ヨト

æ