Pseudo-parallel CR submanifolds of a complex space form

Mayuko Kon

Shinshu University
Dec. 2. 2011

Pseudo-parallel CR submanifolds of a complex space form

Mayuko Kon

Shinshu University
Dec. 2. 2011

Table of Contents

(1) Definition and basic formulas
(2) Pseudo-parallel CR submanifolds of a complex space form
(3) For the case that M is real hypersurface

- $\bar{M}: m$-dimensional Riemannian manifold,
- G : Riemannian metric of \bar{M},
- $\bar{\nabla}$: operator of covariant differetiation on \bar{M}.
- M : n-dimensional submanifold isometrically immersed in \bar{M},
- g : induced metric on M,

$$
(g(X, Y):=G(X, Y), X, Y: \text { vector fields in } M)
$$

- $T_{x}(M), T_{x}(M)^{\perp}$: tangent space and the normal space of M at x.
X, Y : vector field on M, V : normal vector field on M.
Gauss formula

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y)
$$

($\nabla_{X} Y$: tangential component, $B(X, Y)$: normal component) Then

- ∇ is the operator of covariant differentiation w.r.t. g,
- $B(a X, b Y)=a b B(X, Y), a, b$: functions,
- $B(X, Y)=B(Y, X)$.

We call
∇ : induced connection,
B : second fundamental form.

Weingarten formula

$$
\bar{\nabla}_{X} V=-A_{V} X+D_{X} V
$$

$\left(-A_{V} X \text { : tangential component, } D_{X} V \text { : normal component }\right)_{\equiv}$

Then we can show that

- $A_{b V}(a X)=a b A_{V} X$,
- $D_{a X}(b V)=a(X b) V+a b D_{X} V$,
- $g(B(X, Y), V)=g\left(A_{V} X, Y\right)$,
- D is a metric connection in the normal bundle $T(M)^{\perp}$ of M in \bar{M} w.r.t. the induced metric on $T(M)^{\perp}$.

We call
A : associated second fundamental form to B (or, second fundamental form)
D : normal connection.

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, Z) & :=D_{X} B(Y, Z)-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right) \\
\left(\nabla_{X} A\right)_{V} Y & :=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V} \nabla_{X} Y
\end{aligned}
$$

Using the Gauss and Weingarten formulas,

$$
\begin{aligned}
\bar{R}(X, Y) Z= & \bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z \\
= & R(X, Y) Z-A_{B(Y, Z)} X+A_{B(X, Z)} Y \\
& +\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)
\end{aligned}
$$

Equation of Gauss:

$$
\begin{aligned}
g(\bar{R}(X, Y) Z, W)= & g(R(X, Y) Z, W)-g(B(X, W), B(Y, Z)) \\
& +g(B(Y, W), B(X, Z))
\end{aligned}
$$

Equation of Codazzi:

$$
(\bar{R}(X, Y) Z)^{\perp}=\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)
$$

- curvature tensor of the normal bundle of M

$$
R^{\perp}(X, Y) V:=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V
$$

Using the Gauss and Weingarten formulas,

$$
\begin{aligned}
\bar{R}(X, Y) V= & \bar{\nabla}_{X} \bar{\nabla}_{Y} V-\bar{\nabla}_{Y} \bar{\nabla}_{X} V-\bar{\nabla}_{[X, Y]} V \\
= & R^{\perp}(X, Y) V-B\left(X, A_{V} Y\right)+B\left(Y, A_{V} X\right) \\
& -\left(\nabla_{X} A\right)_{V} Y+\left(\nabla_{Y} A\right)_{V} X,
\end{aligned}
$$

from which we obtain
Equation of Ricci:

$$
g(\bar{R}(X, Y) V, U)=g\left(R^{\perp}(X, Y) V, U\right)+g\left(\left[A_{U}, A_{V}\right] X, Y\right)
$$

- \bar{M} : Kaehler manifold,
- J : complex structure of \bar{M},
- G : Kaehler metric of \bar{M},
- $\forall X, Y, G(J X, J Y)=G(X, Y)$
- the fundamental 2-form $\Phi(X, Y):=G(X, J Y)$ is closed.
- $\bar{\nabla}$: the operator of covariant differentiation in \bar{M}.
holomorphic sectional curvature
p: 2-dimensional subspace spanned by orthonormal basis $\{X, Y\}$,

$$
K(p):=G(\bar{R}(X, Y) Y, X)
$$

If p is invariant by the complex structure J, then $K(p)$ is called the holomorphic sectional curvature by p. Then,

$$
K(p)=G(\bar{R}(X, J X) J X, X)
$$

If $K(p)$ is constant for all planes p in $T_{x}(M)$ invariant by J and for all $x \in \bar{M}$, then \bar{M} is called a complex space form.

Proposition.

Let \bar{M} be a real $2 n$-dimensional Kaehlerian manifold. If \bar{M} is of constant curvature, then \bar{M} is flat provided $n>1$.

Theorem.

A Kaehlerian manifold \bar{M} is of constant holomorphic sectional curvature c if and only if

$$
\begin{aligned}
\bar{R}(X, Y) Z= & \frac{1}{4}(G(X, Z) Y-G(Y, Z) X+G(J X, Y) J Y \\
& -G(J Y, Z) J X+2 G(J X, Y) J Z)
\end{aligned}
$$

Theorem.

A simply connected complete Kaehlerian manifold \bar{M} of constant holomorpic sectional curvature c can be identified with the complex projective space $\mathbb{C} P^{n}$, the complex hyperbolic space $\mathbb{C} H^{n}$ or \mathbb{C}^{n} according as $c>0, c<0$ or $c=0$.

For $X \in T M, V \in T M^{\perp}$, we put

$$
J X=P X+F X, \quad J V=t V+f V
$$

$P X$: tangential part of $J X, F X$: normal part of $J X$, $t V$: tangential part of $J V, \quad f V$: normal part of $J V$.
from $J^{2}=-I$, we have

$$
\begin{aligned}
& P^{2}=-I-t F, F P+f F=0 \\
& P t+t f=0, f^{2}=-I-F t
\end{aligned}
$$

$$
\begin{aligned}
& \left(\nabla_{X} P\right) Y:=\nabla_{X}(P Y)-P \nabla_{X} Y,\left(\nabla_{X} F\right) Y:=D_{X}(F Y)-F \nabla_{X} Y, \\
& \left(\nabla_{X} t\right) V:=\nabla_{X}(t V)-t D_{X} V, \quad\left(\nabla_{X} f\right) V:=D_{X}(f V)-f D_{X} V
\end{aligned}
$$

From the Gauss and Weingarten formulas, we have $t B(X, Y)=f B(X, Y)=\left(\nabla_{X} P\right) Y-A_{F Y} X+B(X, P Y)+\left(\nabla_{X} F\right) Y$.

Comparing the tangential and normal parts, we have $\left(\nabla_{X} P\right) Y=A_{F Y} X+t B(X, Y),\left(\nabla_{X} F\right) Y=-B(X, P Y)+f B(X, Y)$.

Similarly,

$$
\left(\nabla_{X} t\right) V=-P A_{V} X+A_{f V} X,\left(\nabla_{X} f\right) V=-F A_{V} X-B(X, t V)
$$

Equations of Gauss and Codazzi

When \bar{M} is a complex space form,

- equation of Gauss

$$
\begin{aligned}
R(X, Y) Z= & \bar{R}(X, Y) Z+A_{B(Y, Z)} X-A_{B(X, Z)} Y \\
= & c\{g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X \\
& -g(P X, Z) P Y-2 g(P X, Y) P Z\} \\
& +A_{B(Y, Z)} X-A_{B(X, Z)} Y .
\end{aligned}
$$

- equation of Codazzi

$$
\begin{aligned}
& g\left(\left(\nabla_{X} A\right)_{V} Y, Z\right)-g\left(\left(\nabla_{Y} A\right)_{V} X, Z\right) \\
&=(\bar{R}(X, Y) Z)^{\perp} \\
&= c\{g(Y, P Z) g(X, t V)-g(X, P Z) g(Y, t V) \\
&-2 g(X, P Y) g(Z, t V)\} .
\end{aligned}
$$

Normal curvature tensor

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$
R^{\perp}(X, Y) V=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V
$$

Then we have the equation of Ricci

$$
\begin{aligned}
& G\left(R^{\perp}(X, Y) V, U\right)+g\left(\left[A_{U}, A_{V}\right] X, Y\right) \\
& \quad=c\{g(Y, t V) g(X, t U)-g(X, t V) g(Y, t U) \\
& \quad-2 g(X, P Y) g(V, f U)\}
\end{aligned}
$$

The normal connection is flat $\stackrel{\text { def }}{\Longleftrightarrow} R^{\perp}=0$, semi-flat $\stackrel{\text { def }}{\Longleftrightarrow} R^{\perp}(X, Y) V=2 c g(X, P Y) f V$

Definition of a CR submanifold in a Kaehler manifold

Definition

$M: C R$ submanifold if there exists differentiable distribution $H: x \longrightarrow H_{x} \subset T_{x}(M)$ on M s.t.
(i) $\forall x \in M, J H_{x}=H_{x}$,
(ii) $\forall x \in M, J H_{x}^{\perp} \subset T_{x}(M)^{\perp}$

We call H_{x} a holomorphic tangent space.
At each point $x \in M$,

$$
\begin{aligned}
& T_{x}(M)=H_{x}+H_{x}^{\perp} \\
& T_{x}(M)^{\perp}=J H_{x}^{\perp}+N_{x}
\end{aligned}
$$

$$
\begin{aligned}
& T_{x}(M)=H_{x}+H_{x}^{\perp} \\
& T_{x}(M)^{\perp}=J H_{x}^{\perp}+N_{x}
\end{aligned}
$$

We put $\operatorname{dim} H_{x}:=h, \operatorname{dim} H_{x}^{\perp}=q, \operatorname{codim} M=p$.

- If $p=1$, then M is a real hypersurface, (If $\bar{M}=M^{m}(c), H_{x}^{\perp}=\{\xi\}$)
- If $q=0\left(J T_{x}(M) \subset T_{x}(M)\right), M$ is called invariant submanifold,
- If $h=0\left(J T_{x}(M) \subset T_{x}(M)^{\perp}\right), M$ is called anti-invariant (totally real) submanifold,
- If $p=q, M$ is called a generic submanifold,
- If $p>0, q>0, M$ is called non-trivial (proper).

the name of CR submanifold

M^{\prime} : differentiable manifold, $T\left(M^{\prime}\right)^{C}$: complexified tangent bundle.

A CR structure on M^{\prime} is a complex subbundle D of $T\left(M^{\prime}\right)^{C}$ s.t. $D_{x} \cap \bar{D}_{x}=\{0\}$ and D is involutive.
On a CR manifold, there exists a (real) distribution H and a field of endomorphism $p: H \longrightarrow H$ s.t. $p^{2}=-I_{H}$.

$$
H=\operatorname{Re}(D \oplus \bar{D}), D_{x}=\left\{X-\sqrt{-1} p X: X \in H_{x}\right\}
$$

Theorem (B. Y. Chen 1973)

M : CR submanifold of a Hermitian manifold \bar{M}. If M is non-trivial, then M is a CR manifold.

f-structures

- M : CR submanifold $\Leftrightarrow F P=0$ (equivalently, $f F=0, t f=0, P t=0$).
- M : CR submanifold of a Kaehlerian manifold \bar{M}, then P is an f-structure in M (i.e. $P^{3}+P=0$) and f is an f -structure (i.e. $f^{3}+f=0$) in the normal bundle of M.

Relation to the submanifolds in a sphere

The method of the standard fibration to push known theorems on the sphere down to $\mathbb{C} P^{m}$ by considering the commutative diagram (H. B. Lawson Jr., M. Okumura, K.Yano, M. Kon);

$$
\begin{array}{ccc}
N & \xrightarrow{i^{\prime}} & S^{2 m+1} \\
\pi \downarrow & & \downarrow \bar{\pi} \\
M & \xrightarrow{i} & \mathbb{C} P^{m} .
\end{array}
$$

$S^{2 m+1}=\left\{z \in \mathbb{C}^{m+1}:|z|=1\right\}:(2 m+1)$-dimensional unit sphere,
We put
$\pi^{\prime}: T_{z}\left(\mathbb{C}^{m+1}\right) \longrightarrow T_{z}\left(S^{2 m+1}\right):$ the orthogonal projection.

- contact metric structure (ϕ, ξ, η, G) on $S^{2 m+1}$,
- For any point $z \in S^{2 m+1}$ we put $\xi:=J z$,
(J : almost complex structure of C^{m+1})
- $\phi:=\pi^{\prime} \cdot J$,
- η : 1-form dual to ξ,
- G : standard metric tensor field on $S^{2 m+1}$

$$
\text { s.t. } G(\phi X, \phi Y)=G(X, Y)-\eta(X) \eta(Y) \text {. }
$$

Then, we have $\eta(\xi)=1$ and $\phi^{2}(X)=-X+\eta(X) \xi$.
$\bar{\pi}: S^{2 m+1} \longrightarrow \mathbb{C} P^{m}:$ standard fibration, $N:(n+1)$-dimensional submanifold immersed in $S^{2 m+1}$, $M: n$-dimensional submanifold in $\mathbb{C} P^{m}$.

We assume that N is tangent to the vertical vector field ξ of $S^{2 m+1}$ and there exists a fibration $\pi: N \rightarrow M$ s.t. the following diagram commutes and the immersion i^{\prime} is a diffeomorphism on the fibers.

$$
\begin{array}{ccc}
N & \xrightarrow{i^{\prime}} & S^{2 m+1} \\
\pi \downarrow & & \downarrow \bar{\pi} \\
M & \xrightarrow{i} & \mathbb{C} P^{m},
\end{array}
$$

where the immersion i^{\prime} is a diffeomorphism on the fibres.

$$
\begin{array}{ccc}
N & \xrightarrow{i^{\prime}} & S^{2 m+1} \\
\downarrow & & \downarrow \pi \\
M & \xrightarrow{i} & \mathbb{C} P^{m}
\end{array}
$$

*: the horizontal lift.

$$
(J X)^{*}=\phi X^{*}, G\left(X^{*}, Y^{*}\right)=g(X, Y)^{*}
$$

for any vectors X and Y tangent to $\mathbb{C} P^{m}$.
α : second fundamental form of N in $S^{2 m+1}$,
B : second fundamental form of M in $\mathbb{C} P^{m}$.
Then,

$$
\alpha\left(X^{*}, Y^{*}\right)=B(X, Y)^{*}, \quad \alpha(\xi, \xi)=0 .
$$

Besides,
$\left(\nabla_{X^{*}} \alpha\right)\left(Y^{*}, Z^{*}\right)=\left[\left(\nabla_{X} B\right)(Y, Z)+g(P X, Y) F Z+g(P X, Z) F Y\right]^{*}$,
$\left(\nabla_{X^{*}} \alpha\right)\left(Y^{*}, \xi\right)=[f B(X, Y)-B(X, P Y)-B(Y, P X)]^{*}$,
$\left(\nabla_{X^{*}} \alpha\right)(\xi, \xi)=-2(F P X)^{*}$
for any vectors X, Y and Z tangent to M.
If α is parallel, then $F P=0$ and M is a $C R$ submanifold of $\mathbb{C} P^{m}$.
K^{\perp} : the curvature tensor of the normal bundle of N.
Then,

$$
\begin{aligned}
& G\left(K^{\perp}\left(X^{*}, Y^{*}\right) V^{*}, U^{*}\right)=\left[g\left(R^{\perp}(X, Y) V, U\right)-2 g(X, P Y) g(f ; U)\right] \\
& G\left(K^{\perp}\left(X^{*}, \xi\right) V^{*}, U^{*}\right)=g\left(\left(\nabla_{X} f\right) V, U\right)^{*} \\
& \left(X, Y \in T M, \quad V, U \in T M^{\perp}\right)
\end{aligned}
$$

Lemma

The normal connection of N in $S^{2 m+1}$ is flat the normal connection of M in $\mathbb{C} P^{m}$ is semi-flat and $\nabla f=0$.

Example

$$
N=S^{m_{1}}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right) \longrightarrow S^{n+k}, \quad n+1=\sum_{i=1}^{k} m_{i}
$$

($m_{1}, \cdots m_{k}$: odd numbers, $r_{1}^{2}+\cdots+r_{k}^{2}=1$)
$M=\pi(N):$ CR submanifold of $\mathbb{C} P^{m}(2 m+1>n+k)$.

- Since the normal connection of N is flat, the normal connection of M is semi-flat and $\nabla f=0$.
- When $r_{i}=\left(m_{i} /(n+1)\right)^{1 / 2}(i=1, \cdots, k), N$ is minimal and hence M is also minimal.

pseudo-parallel CR submanifold

As a generalisation of Einstein manifold,
a Riemannian manifold (M, g) has a semi-parallel Ricci operator if

$$
R(X, Y) S=0
$$

for all vector fields X and Y on M. As a generalization of locally
symmetric Riemannian manifold,
(M, g) is said to be (locally) semi-symmetric if

$$
R(X, Y) R=0
$$

for all vector fields X and Y on M.

- In 1972, P. J, Ryan proposed a question:
" Euclidean hypersurfaces with semi-parallel Ricci operator $(R \cdot S=0)$ are semisymmetric $(R \cdot R=0)$?"
- F. Defever constructed hypersurface in Euclidean 6-space E^{6} with semi-parallel Ricci operator which are not semi-symmetric.
- B. E. Abdalla and F. Dillen generalized Defevers construction for hypersurfaces of dimension greater than 5 .

One of the generalization of Ricci semi-parallelity is the Ricci pseudo-parallelity:

$$
R(X, Y) \cdot S=\alpha(X \wedge Y) S
$$

α : function.

$$
(X \wedge Y) Z:=g(Y, Z) X-g(X, Z) Y
$$

ex)
every Cartan's isoparametric hypersurface in spheres has pseudo-parallel Ricci operator.

Theorem (K, 2011)

M : an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c \neq 0$, with semi-flat normal connection. We suppose $h>2$.
If $(R(X, Y) A)_{V}=\alpha((X \wedge Y) A)_{V}$ for any V normal to M and X and Y tangent to M, α being a function, then M is a hypersurface of totally geodesic $M^{\frac{n+1}{2}}(c)$ in $M^{m}(c)$.

Theorem (G. A. Lobos and M. Ortega, 2004)

Let M be a connected pseudo-parallel real hypersurface in $M^{n}(c), n \geq 2$.
$R(X, Y) A=\alpha(X \wedge Y) A$
$\Longrightarrow M$ is one of the following:
(a) $(c>0) 1<\alpha=\cot ^{2}(r), 0<r<\pi / 2, M$ is an open subset of a geodesic hypersphere of radius r,
(b) $(c<0) \alpha=1$ and M is an open subset of a horosphere,
(c) $(c<0) 0<\alpha=\tanh ^{2}(r)<1, r>0$, and M is an open subset of a tube of radius r over a totally geodesic $\mathbb{C} H^{n-1}$.

Outline of the proof

- Using the condition of $R \cdot A$ and the equation of Gauss, get some equations for $g\left(A_{V} X, Y\right)$
- $V \in N_{x} \Longrightarrow A_{V}=0$,
- $X \in H_{x}$ and $Y \in H_{x}^{\perp} \Longrightarrow g\left(A_{V} X, Y\right)=0$,
- $X, Y \in H_{x} \Longrightarrow g\left(A_{V} X, Y\right)=\alpha_{V} g(X, Y), \alpha_{V}$: function
- $X, Y \in H_{x}^{\perp} \Longrightarrow A_{V} X=\beta X, \beta$:function.
- We prove $\operatorname{dim} H_{x}^{\perp}=1$.
- Check that the first normal space has constant dimension and is parallel with respect to the normal connection.

Proof of theorem

Lemma 1

$R(X, Y) A=\alpha(X \wedge Y) A, \alpha:$ function, then,

$$
\begin{align*}
& A_{f V} X=0 \quad \text { for } X \in T_{x}(M) \tag{1}\\
& g\left(A_{V} X, Y\right)=0 \quad \text { for } X \in H_{x}, Y \in H_{x}^{\perp} \tag{2}
\end{align*}
$$

Moreover, if the dimension of the holomorphic tangent space $h>2$,

$$
\begin{align*}
& g\left(A_{V} X, Y\right)=-\frac{1}{h} \operatorname{tr}\left(A_{V} P^{2}\right) g(X, Y) \quad \text { for } X, Y \in H_{x} \tag{3}\\
& P A_{V}=A_{V} P \tag{4}
\end{align*}
$$

where tr denotes the trace of an operator.

Since $(R(X, Y) A)_{V}=\alpha((X \wedge Y) A)_{V}$, we have

$$
\begin{aligned}
& R(X, Y) A_{V} Z=A_{R^{\perp}(X, Y) V} Z+A_{V} R(X, Y) Z \\
& =2 c g(X, P Y) A_{f V} Z+A_{V} R(X, Y) Z+\alpha g\left(X, A_{V} Z\right) Y \\
& \quad-\alpha g\left(Y, A_{V} Z\right) X-\alpha g(X, Z) A_{V} Y+\alpha g(Y, Z) A_{V} X .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\operatorname{tr} & R(X, Y) A_{V} A_{f V} \\
= & 2 c g(X, P Y) \operatorname{tr} A_{f V}^{2}+\operatorname{tr} R(X, Y) A_{f V} A_{V} \\
& +2 \alpha g\left(X, A_{V} A_{f V} Y\right)-2 \alpha g\left(Y, A_{V} A_{f V} X\right)
\end{aligned}
$$

By the equation of Ricci, we have $A_{f V} A_{V}=A_{V} A_{f V}$. Thus we obtain $\operatorname{tr} A_{f V}^{2}=0$, which proves (1).

Since the normal connection of M is semi-flat, the equation of Ricci gives

$$
A_{a} A_{b} X=A_{b} A_{a} X
$$

for any $X \in H_{x}$. Using these equations, we can shows that

$$
\begin{align*}
& -(h+1) c g\left(P A_{V} X, Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y) \\
& \quad+c g\left(P^{2} A_{V} P X, Y\right)-2 c g\left(P A_{V} P^{2} X, Y\right)=0 \tag{5}
\end{align*}
$$

Using this, we have $g\left(A_{V} X, Y\right)=0$ for $X \in H_{x}^{\perp}$ and $Y \in H_{x}$.

Next we consider the case that $X, Y \in H_{x}$. We have

$$
\begin{aligned}
& -(h-1) c g\left(P A_{V} X, Y\right)-c g\left(A_{V} P X, Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)=0 \\
& -(h-1) c g\left(A_{V} P X, Y\right)+c g\left(A_{V} X, P Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)=0 .
\end{aligned}
$$

From these equations and the assumption that $h>2$, we get

$$
g\left(P A_{V} X, Y\right)-g\left(A_{V} Y, P X\right)=0
$$

From this, we have $P A_{V}=A_{V} P$ for any V normal to M.
Thus we obtain

$$
g\left(A_{V} X, Y\right)=-\frac{1}{h} \operatorname{tr}\left(A_{V} P^{2}\right) g(X, Y)
$$

for $X, Y \in H_{x}$.

Lemma 2

$R(X, Y) A=\alpha(X \wedge Y) A, \alpha:$ function $\Longrightarrow \operatorname{dim} H_{x}{ }^{\perp}=1$.
We take an o.n.b. $\left\{v_{1}, \cdots, v_{q}, v_{q+1}, \cdots, v_{p}\right\}$ of $T_{x}^{\perp}(M)$,
$v_{1}, \cdots, v_{q} \in F H_{x}^{\perp}$
$v_{q+1}, \cdots, v_{p} \in N_{x}$.
Since $A_{v_{1}}$ is symmetric, taking a suitable basis $\left\{e_{1}, \cdots . e_{n}\right\}$ of $T_{x}(M)$,

$$
A_{v_{1}}=\left(\begin{array}{ccc|ccc}
a_{1} & & 0 & & & \\
& \ddots & & & 0 & \\
0 & & a_{1} & & & \\
\hline & & & b_{1} & & 0 \\
& 0 & & & \ddots & \\
& & & 0 & & b_{q}
\end{array}\right)
$$

where $a_{1}=-\frac{1}{h} \operatorname{tr}\left(A_{v_{1}} P^{2}\right)$.

We compute the sectional curvature $g\left(R\left(e_{h+j}, e_{h+i}\right) e_{h+i}, e_{h+j}\right.$ by two ways;

- using (5),

$$
\left(b_{i}-b_{j}\right)\left(g\left(R\left(e_{h+j}, e_{h+i}\right) e_{h+i}, e_{h+j}\right)+\alpha\right)=0
$$

- using the equation of Gauss and Lemma 1,

$$
g\left(R\left(e_{h+j}, e_{h+i}\right) e_{h+i}, e_{h+j}\right)=0
$$

So we have $b_{i}=b_{j}$ for any $i \neq j$, that is, $A_{v_{1}} X=b_{1} X$ for any $X \in H_{x}^{\perp}$.

By the similar computation, we see that $A_{v_{i}} X=b_{i} X(i=2, \cdots, q)$ for $X \in H_{x}^{\perp}$, where b_{2}, \cdots, b_{q} are functions. Thus we have

$$
A_{v_{i}} t v_{j}=b_{i} t v_{j}
$$

On the other hand, since $A_{V} t U=A_{U} t V$ for any $U, V \in F H_{x}^{\perp}$, we have

$$
A_{v_{i}} t v_{j}=A_{v_{j}} t v_{i}=b_{j} t v_{i}
$$

Since $t v_{i}$ and $t v_{j}$ are linearly independent, we see that $q=\operatorname{dim} H_{x}^{\perp}=1$ or $b_{1}=\cdots=b_{q}=0$.

We suppose that $b_{1}=\cdots=b_{q}=0$.
Since $\left[A_{U}, A_{V}\right]=0$ for any U and V normal to M, by the equation of Ricci, we have

$$
0=c\{g(Y, t V) g(X, t U)-g(X, t V) g(Y, t U)\}
$$

for any $X, Y \in T_{x}(M)$.
If $\operatorname{dim} H_{x}>2$, we can take U and V orthogonal to each other.
Putting $X=t U$ and $Y=t V$, we have $c=0$. This is a contradiction.
So we see that $q=1$.
Consequently, we obtain $\operatorname{dim} H_{x}^{\perp}=1$.

Lemma

$R(X, Y) A=\alpha(X \wedge Y) A, \alpha$: function \Longrightarrow
M is a hypersurface of totally geodesic $M^{\frac{n+1}{2}}(c)$ in $M^{m}(c)$.
$N_{0}(x)=\left\{V \in T_{x}(M)^{\perp} \mid A_{V}=0\right\}$,
$N_{1}(x)$: orthogonal complement of $N_{0}(x)$ in $T_{x}(M)^{\perp}$ (first normal space)

We prove that the first normal space has constant dimension and it is parallel with respect to the normal connection.

If $A_{V}=0$ for $V \in F H_{x}^{\perp}$, then $N_{1}(x)=\emptyset$.
If $A_{V} \neq 0$, then $N_{0}(x)=N_{x}$ and $N_{1}(x)=F H_{x}^{\perp}$ is of dimension 1 .
For $V \in F H_{x}^{\perp}$ and $U \in N_{x}$,
$g\left(D_{X} V, f U\right)=-g\left(V,\left(\nabla_{X} f\right) U\right)=-g\left(V,-F A_{U} X-B(X, t U)\right)=0$.
Thus,

$$
D_{X} V \in F H_{x}^{\perp}
$$

So the first normal space is parallel with respect to the normal connection.
Thus we see that M is a hypersurface of totally geodesic $M^{\frac{n+1}{2}}(c)$ in $M^{m}(c)$.

For the case that M is real hypersurface

If the curvature tensor R and the Ricci tensor S of M satisfy

$$
g((R(X, Y) S) Z, W)=\alpha g(((X \wedge Y) S) Z, W), X, Y, Z, W \perp \xi
$$

α being a function, we call S the pseudo η-parallel Ricci tensor.
c.f.

- $(R(X, Y) S) Z=0$ (Kimura and Maeda, 1989),
- $(R(X, Y) S) Z+(R(Y, Z) S) X+(R(Z, X) S) Y=0$
(Ki, Nakagawa and Suh, 1990)
- $g((R(X, Y) S) Z, W)=0, X, Y, Z, W \perp \xi(\mathrm{~K}, 2007)$,
- $(R(X, Y) S) Z=\alpha g((X \wedge Y) S) Z$ (Inoguchi).

Theorem (Inoguchi-K, 2011).

Let M be a real hypersurface of a complex space form $M^{n}(c)$, $c \neq 0, n \geq 3$. Then S is pseudo η-parallel if and only if M is pseudo-Einstein.

Theorem (Inoguchi-K, 2011).

Let M be a real hypersurface of a complex projective space $\mathbb{C} P^{n}$, $n \geq 3$. If S is pseudo η-parallel, then M is locally congruent to one of the following:
(i) a geodesic hypersphere of radius $r(0<r<\pi / 2)$,
(ii) a minimal tube of radius $\pi / 4$ over a complex projective space $\mathbb{C} P^{\frac{n-1}{2}}$ with principal curvatures $1,-1$ and 0 whose multiplicities are $n-1, n-1$ and 1 , respectively.

Theorem (Inoguchi-K, 2011).

Let M be a real hypersurface of a complex hyperbolic space $\mathbb{C} H^{n}$, $n \geq 3$. If S is pseudo η-parallel, then M is locally congruent to one of the following:
(i) a geodesic hypersphere,
(ii) a tube over a complex hyperbolic hyperplane,
(iii) a horosphere.

Theorem (Inoguchi-K, 2011).

Let M be a real hypersurface of a complex space form $M^{n}(c)$, $c \neq 0, n \geq 3$. The shape operator A is pseudo η-parallel if and only if M is either η-umbilical or it is locally a ruled real hypersurface.

Thank you for your attention!

