Euclidean space

$$
\begin{aligned}
& a=\left[\begin{array}{l}
a^{1} \\
a^{2} \\
a^{3}
\end{array}\right], b=\left[\begin{array}{l}
b^{1} \\
b^{2} \\
b^{3}
\end{array}\right] \in \mathbb{R}^{3} \\
& \langle a, b\rangle:=a^{1} b^{1}+a^{2} b^{2}+a^{3} b^{3} \in \mathbb{R} \\
& |a|:=\langle a, a\rangle^{1 / 2} \in \mathbb{R} \\
& a \times b:=\left[\begin{array}{l}
a^{2} b^{3}-a^{3} b^{2} \\
a^{3} b^{1}-a^{1} b^{3} \\
a^{1} b^{2}-a^{2} b^{1}
\end{array}\right] \in \mathbb{R}^{3}
\end{aligned}
$$

What is a surface ?

$$
\begin{aligned}
& D \subset \mathbb{R}^{2}:=\left\{\left[\begin{array}{l}
u^{1} \\
u^{2}
\end{array}\right]=:\left(u^{i}\right)=: u\right\}: \text { a domain } \\
& f: D \rightarrow \mathbb{R}^{3}:=\left\{\left[\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right]=:\left(x^{\alpha}\right)=: x\right\}: \text { a } C^{\infty} \text { map } \\
& \partial_{i} f:=\left(\frac{\partial f^{\alpha}}{\partial u^{i}}\right)=\left[\begin{array}{l}
\partial_{i} f^{1} \\
\partial_{i} f^{2} \\
\partial_{i} f^{3}
\end{array}\right]: D \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

Definition 1.1.

f is a surface $\stackrel{\text { def }}{\Longleftrightarrow}\left\{\partial_{1} f(u), \partial_{2} f(u)\right\}$ are linearly independent for $\forall u \in D$

$$
\Longleftrightarrow \partial_{1} f(u) \times \partial_{2} f(u) \neq 0 \text { for } \forall u \in D
$$

$$
n(u):=\left|\partial_{1} f(u) \times \partial_{2} f(u)\right|^{-1} \partial_{1} f(u) \times \partial_{2} f(u)
$$

the unit normal vector of f at u

$$
\begin{aligned}
f_{*} T_{u} D & :=\operatorname{span}\left\{\partial_{1} f(u), \partial_{2} f(u)\right\} \\
& =\left\{v^{1} \partial_{1} f(u)+v^{2} \partial_{2} f(u) \in \mathbb{R}^{3} \mid v^{1}, v^{2} \in \mathbb{R}\right\} \\
& =\left\{X \in \mathbb{R}^{3} \mid\langle X, n(u)\rangle=0\right\}
\end{aligned}
$$

the tangent space of f at u

What is a minimal surface ?

$$
\begin{aligned}
g_{i j}(u):= & \left\langle\partial_{i} f(u), \partial_{j} f(u)\right\rangle \\
& \quad \text { (the coefficients of) the } \\
\text { Area }(f):= & \int_{D}\left|\partial_{1} f(u) \times \partial_{2} f(u)\right| d u^{1} d u^{2} \\
= & \int_{D} \sqrt{\operatorname{det}\left(g_{i j}(u)\right)} d u^{1} d u^{2}
\end{aligned}
$$

(the coefficients of) the first fundamental form of f at u
$f: D \rightarrow \mathbb{R}^{3}$ a surface
$\left\{f_{t}\right\}$ a variation of f, i.e.
$f_{t}: D \rightarrow \mathbb{R}^{3}$ is a surface, $t \in(-\varepsilon, \varepsilon), f_{0}=f,\left.f_{t}\right|_{\partial D}=\left.f\right|_{\partial D}$.

$f: D \rightarrow \mathbb{R}^{3}$ a surface
$\left\{f_{t}\right\}$ a variation of f, i.e.

$$
f_{t}: D \rightarrow \mathbb{R}^{3} \text { is a surface, } t \in(-\varepsilon, \varepsilon), \quad f_{0}=f,\left.\quad f_{t}\right|_{\partial D}=\left.f\right|_{\partial D} .
$$

Definition 1.2.

f is a minimal surface

$$
\left.\stackrel{\text { def }}{\Longrightarrow} \frac{d}{d t}\right|_{t=0} \operatorname{Area}\left(f_{t}\right)=0 \text { for any variation }\left\{f_{t}\right\} \text { of } f
$$

Exercise 1.3.

Choose a picture of a minimal surface and explain its properties.

Exercise 1.4.

Find various properties of the following family of surfaces:

$$
f_{t}\left(u^{1}, u^{2}\right)=\left[\begin{array}{r}
\left|1-t^{2}\right|^{-1 / 2}\left(t u^{1}+\sin u^{1} \cosh u^{2}\right) \\
\left|1-t^{2}\right|^{-1 / 2}\left(u^{2}+t \cos u^{1} \sinh u^{2}\right) \\
\cosh u^{1} \sinh u^{2}
\end{array}\right]
$$

See the animation!

