ON MOD *p* RIEMANN-ROCH FORMULAE FOR MAPPING CLASS GROUPS

TOSHIYUKI AKITA

1. INTRODUCTION AND DEFINITIONS

Let Σ_g be a closed oriented surface of genus $g \ge 2$ and Γ_g the mapping class group of Σ_g . There are two well-known families of cohomology classes of Γ_g , Morita-Mumford classes (or Mumford-Morita-Miller classes) and Chern classes (of the homology representation).

Over \mathbb{Q} , these two classes are related by the Grothendieck-Riemann-Roch theorem (see (1)). The author conjectured in [1] that similar relations hold over \mathbb{Z} (see Conjecture 1). The purpose of this talk is to explain some affirmative evidences for the conjecture.

Now we recall definitions of Morita-Mumford classes and Chern classes of Γ_g . Let $\pi : E \to B$ be an oriented Σ_g -bundle, $T_{E/B}$ the tangent bundle along the fiber of π , and $e \in H^2(E;\mathbb{Z})$ the Euler class of $T_{E/B}$. Then the *k*-th Morita-Mumford class $e_k \in H^{2k}(B;\mathbb{Z})$ of π is defined by

$$e_k := \pi_!(e^{k+1})$$

where $\pi_1 : H^*(E;\mathbb{Z}) \to H^{*-2}(B;\mathbb{Z})$ is the Gysin homomorphism (or the itegration along the fiber). Passing to the universal Σ_g -bundle, one obtains the *k*-th Morita-Mumford class $e_k \in H^{2k}(\Gamma_g;\mathbb{Z})$ of Γ_g .

On the other hand, the natural action of Γ_g on $H_1(\Sigma_g; \mathbb{R})$ induces a homomorphism $\Gamma_g \to Sp(2g, \mathbb{R})$. The homomorphism yields a continuous map $B\Gamma_g \to BU(g)$ of classifying spaces, for the maximal compact subgroup of $Sp(2g, \mathbb{R})$ is isomorphic to U(g). The *k*-th Chern class $c_k \in H^{2k}(\Gamma_g; \mathbb{Z})$ of Γ_g is the pull-back of the universal *k*-th Chern class $c_k \in H^{2k}(BU(g); \mathbb{Z})$.

2. Integral Riemann-Roch conjecture for Γ_g

Over \mathbb{Q} , Morita-Mumford classes and Chern classes of Γ_g are related by the Grothendieck-Riemann-Roch theorem. Let $s_k \in H^{2k}(\Gamma_g;\mathbb{Z})$ be the *k*-th Newton class of Γ_g , which is defined by $s_k := N_k(c_1, c_2, \ldots, c_k)$ where N_k is the *k*-th Newton polynomial. Note that $g + \sum_{k\geq 1} s_k/k! \in H^*(\Gamma_g;\mathbb{Q})$ is nothing but the pull-back of the universal Chern character ch $\in H^*(BU(g);\mathbb{Q})$. For all $k \geq 1$, $s_{2k} \in H^*(\Gamma_g;\mathbb{Q})$ vanishes, and the Grothendieck-Riemann-Roch theorem (or the Atiyah-Singer index theorem) implies

(1)
$$\frac{B_{2k}}{2k}e_{2k-1} = s_{2k-1} \in H^*(\Gamma_g; \mathbb{Q}),$$

where B_{2k} is the 2k-th Bernoulli number (see [11, 12]).

Let N_{2k} and D_{2k} be coprime integers satisfying $N_{2k}/D_{2k} = B_{2k}/(2k)$ (i.e. the numerator and the denominator of $B_{2k}/(2k)$). The equation (1) implies that the difference $N_{2k}e_{2k-1} - D_{2k}s_{2k-1} \in H^*(\Gamma_g;\mathbb{Z})$ is a torsion element. Moreover, in virtue of the Harer's stability theorem [7], there is a natural number L_{2k-1} , which depends only on k and is independent of g, satisfying

$$L_{2k-1}(N_{2k}e_{2k-1} - D_{2k}s_{2k-1}) = 0 \in H^*(\Gamma_g; \mathbb{Z}).$$

What is the least value of L_{2k-1} satisfying the last equation? The author made quite an optimistic conjecture in [1] that the least value is $L_{2k-1} = 1$ for all $k \ge 1$:

Conjecture 1 (integral Riemann-Roch formulae for Γ_g).

$$N_{2k}e_{2k-1} - D_{2k}s_{2k-1} = 0 \in H^*(\Gamma_g; \mathbb{Z})$$

holds for all $k \ge 1$ *and* $g \ge 2$ *.*

The conjecture is affirmative for k = 1 (i.e. $e_1 = 12s_1 \in H^2(\Gamma_g; \mathbb{Z})$ for all $g \ge 2$), since $H^2(\Gamma_g, \mathbb{Z}) \cong \mathbb{Z}$ for $g \ge 3$ as was proved by Harer [6] (see [1] for the case g = 2).

There seems no obvious reasons for Conjecutre 1 to be affirmative for $k \ge 2$. However, the author and Kawazumi showed that the conjecture holds for any cyclic subgroup C of Γ_g . More precisely, the restriction of $N_{2k}e_{2k-1} - D_{2k}s_{2k-1}$ $(k \ge 1)$ to C vanishes in $H^*(C;\mathbb{Z})$. Moreover, Kawazumi showed that a sligtly weaker version of the conjecture holds for hyperelliptic mapping class groups [9]. The proof of the last two results involves number theoretic properties of Bernoulli numbers such as the Voronoi's congruence.

If we consider the "mod *p* reduction" of Conjecture 1, there are yet other affirmative evidences which will be discussed in the next section.

3. MOD *p* RIEMANN-ROCH CONJECTURE FOR Γ_g

Let *p* be a prime number and \mathbb{F}_p the field of *p* elements. In what follows, we collect affirmative evidences for the "mod *p* reduction" of Conjecture 1:

Conjecture 2 (mod *p* Riemann-Roch formulae for Γ_g).

(2)
$$N_{2k}e_{2k-1} - D_{2k}s_{2k-1} = 0 \in H^*(\Gamma_g; \mathbb{F}_p)$$

holds for all $k \ge 1$ *and* $g \ge 2$ *.*

3.1. Steenrod operations. For an odd prime p, let

$$P^i: H^k(-; \mathbb{F}_p) \to H^{k+2i(p-1)}(-; \mathbb{F}_p)$$

be the *i*-th reduced power operation. Applying the generalized Riemann-Roch theorem (see [2]) to the total reduced power operation, one can prove the following equation:

$$P^{i}(e_{k}) = \binom{k}{i} e_{k+i(p-1)} \in H^{*}(\Gamma_{g}; \mathbb{F}_{p}).$$

The last formula, together with the Kummer's congruence on Bernoulli numbers, implies the following result:

Theorem 3.1. Let p be an odd prime. If

$$N_{2k}e_{2k-1} - D_{2k}s_{2k-1} = 0 \in H^*(\Gamma_g; \mathbb{F}_p)$$

holds for some $g \ge 2$ and $k \ge 1$, and if $\binom{2k-1}{i}$ is prime to p, then

 $N_{2k+i(p-1)}e_{2k-1+i(p-1)} - D_{2k+i(p-1)}s_{2k-1+i(p-1)} = 0 \in H^*(\Gamma_g; \mathbb{F}_p).$

In other words, the affirmative solution of Conjecture 2 for some k implies that for k + i(p-1)/2, provided $\binom{2k-1}{i}$ is prime to p. In particular, since Conjecture 2 is affirmative for k = 1, one has:

Proposition 3.2. Let p be an odd prime. Then

$$N_{p^n+1}e_{p^n} - D_{p^n+1}s_{p^n} = 0 \in H^*(\Gamma_g; \mathbb{F}_p)$$

for all $n \ge 0$.

Similar considerations are possible for p = 2 by using squaring operations in place of reduced power operations.

3.2. Elementary abelian *p*-subgroups. In view of the last subsection, it is reasonable to consider Conjecture 2 for small *k* relative to *p*. Recall that $E = (\mathbb{Z}/p\mathbb{Z})^n$ is called an elementary abelian *p*-group (of rank *n*). We have proved:

Proposition 3.3 ([1]). Let $E \subset \Gamma_g$ be an elementary abelian *p*-subgroup of rank $n \geq 2$. Then $e_k = 0 \in H^*(E; \mathbb{F}_p)$ for all $k \geq 1$.

The proposition is an easy consequence of the Kawazumi-Uemura formula for Morita-Mumford classes on finite subgroups of Γ_g [10]. Recently, we made the following calculation:

Proposition 3.4. Let $E \subset \Gamma_g$ be an elementary abelian *p*-subgroup of rank $n \ge 2$. Then $D_{2k}s_{2k-1} = 0 \in H^*(E; \mathbb{F}_p)$, provided $2k - 1 \le p$.

The calculation relies on (i) properties of the *G*-equivariant coboridim group of surfaces along the lines of [5, 14] (ii) the *G*-signature theorem (iii) the Evens-Kahn-Roush formulae for induced representations [3].

Applying Quillen's F-isomorphism theorem [13] to the last two propositions, we obtain the following result:

Theorem 3.5. For all $g \ge 2$, $N_{2k}e_{2k-1} - D_{2k}s_{2k-1} \in H^*(\Gamma_g; \mathbb{F}_p)$ is nilpotent, provided $2k - 1 \le p$.

Here $u \in H^*(\Gamma; \mathbb{F}_p)$ is said to be nilpotent if $u^r = 0$ for some $r \ge 1$. The assumption of the theorem can be relaxed by using Theorem 3.1. But we omit the detail for simplicity.

3.3. von Staudt's theorem. Recall that von Staudt's theorem asserts that a prime p divides D_{2k} if and only if p-1 divides 2k (see [8] for instance). Hence Conjecture 2 implies the following conjecture which was established in [1], provided k is odd.

Conjecture 3. If $k \equiv -1 \pmod{p-1}$ then $e_k \in H^*(\Gamma_g; \mathbb{F}_p)$ vanishes.

Let $H^*(\Gamma_{\bullet}; \mathbb{F}_p) = \lim_{g \to \infty} H^*(\Gamma_g; \mathbb{F}_p)$ be the stable mod p cohomology and $e_k \in H^*(\Gamma_{\bullet}; \mathbb{F}_p)$ the stable mod p Morita-Mumford class. Among other things, Galatius, Madsen, and Tillmann [4] proved the following:

Theorem 3.6. $e_k \in H^*(\Gamma_{\bullet}; \mathbb{F}_p)$ vanishes if and only if $k \equiv -1 \pmod{p-1}$.

("only if" part was also proved in [1].) This proves Conjecture 3 in the *stable range*. Moreover, Conjecture 3 is affirmative for hyperelliptic mapping class groups [9]. Note that Theorem 3.6 implies Conjecture 2 for p = 2,3 in the stable range, for D_{2k} is divisible by 6 for all k.

REFERENCES

- [1] T. Akita, Nilpotency and triviality of mod p Morita-Mumford classes of mapping class groups of surfaces, Nagoya Math. J. 165 (2002), 1-22.
- [2] E. Dyer, Cohomology Theories, Benjamin, New York (1969).
- [3] L. Evens, D. S. Kahn, An integral Riemann-Roch formula for induced representations of finite groups, Trans. Amer. Math. Soc. 245 (1978), 331–347.
- [4] S. Galatius, Ib Madsen, U. Tillmann, *Divisibility of the stable Miller-Morita-Mumford classes*, J. Amer. Math. Soc. 19 (2006), 759-779.
- [5] R. Grieder, *G*-actions on Riemann surfaces and the associated group of singular orbit data, math.AT/9902048.
- [6] J. L. Harer, The second homology group of the mapping class group of an oriented surface, Invent. Math. 72 (1983), 221–239.
- [7] _____, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985), 215–249.
- [8] K. Ireland, M. I. Rosen, A classical introduction to modern number theory, GTM 84, Springer-Verlag, 1990.
- [9] N. Kawazumi, Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups, Topology Appl. 125 (2002), 363–383.
- [10] N. Kawazumi, T. Uemura, Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries, Kodai Math. J. 21 (1998), 372–380.
- [11] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551–577.
- [12] D. Mumford, *Towards an enumerative geometry of the moduli space of curves*, in *Arithmetic and Geometry* Vol. II, Birkhäuser, Boston (1983), 271–328.
- [13] D. Quillen, *The spectrum of an equivariant cohomology ring*. *I and II*, Ann. of Math. 94 (1971), 549–572 and 573–602.
- [14] D. Sjerve, Q. J. Yang, *The Eichler trace of* \mathbb{Z}_p *actions on Riemann surfaces*, Canadian J. Math. 50 (1998), 620-637.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, *E-mail address*: akita@math.sci.hokudai.ac.jp