ON MOD p RIEMANN-ROCH FORMULAE FOR MAPPING CLASS GROUPS

TOSHIYUKI AKITA

1. Introduction and Definitions

Let Σ_{g} be a closed oriented surface of genus $g \geq 2$ and Γ_{g} the mapping class group of Σ_{g}. There are two well-known families of cohomology classes of Γ_{g}, Morita-Mumford classes (or Mumford-Morita-Miller classes) and Chern classes (of the homology representation).

Over \mathbb{Q}, these two classes are related by the Grothendieck-Riemann-Roch theorem (see (1)). The author conjectured in [1] that similar relations hold over \mathbb{Z} (see Conjecture 1). The purpose of this talk is to explain some affirmative evidences for the conjecture.

Now we recall definitions of Morita-Mumford classes and Chern classes of Γ_{g}. Let $\pi: E \rightarrow B$ be an oriented Σ_{g}-bundle, $T_{E / B}$ the tangent bundle along the fiber of π, and $e \in H^{2}(E ; \mathbb{Z})$ the Euler class of $T_{E / B}$. Then the k-th Morita-Mumford class $e_{k} \in H^{2 k}(B ; \mathbb{Z})$ of π is defined by

$$
e_{k}:=\pi_{!}\left(e^{k+1}\right)
$$

where $\pi_{!}: H^{*}(E ; \mathbb{Z}) \rightarrow H^{*-2}(B ; \mathbb{Z})$ is the Gysin homomorphism (or the itegration along the fiber). Passing to the universal Σ_{g}-bundle, one obtains the k-th MoritaMumford class $e_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ of Γ_{g}.

On the other hand, the natural action of Γ_{g} on $H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$ induces a homomorphism $\Gamma_{g} \rightarrow \operatorname{Sp}(2 g, \mathbb{R})$. The homomorphism yields a continuous map $B \Gamma_{g} \rightarrow B U(g)$ of classifying spaces, for the maximal compact subgroup of $\operatorname{Sp}(2 g, \mathbb{R})$ is isomorphic to $U(g)$. The k-th Chern class $c_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ of Γ_{g} is the pull-back of the universal k-th Chern class $c_{k} \in H^{2 k}(B U(g) ; \mathbb{Z})$.

2. Integral Riemann-Roch conjecture for Γ_{g}

Over \mathbb{Q}, Morita-Mumford classes and Chern classes of Γ_{g} are related by the Grothendieck-Riemann-Roch theorem. Let $s_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ be the k-th Newton class of Γ_{g}, which is defined by $s_{k}:=N_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ where N_{k} is the k-th Newton polynomial. Note that $g+\sum_{k \geq 1} s_{k} / k!\in H^{*}\left(\Gamma_{g} ; \mathbb{Q}\right)$ is nothing but the pull-back of the universal Chern character ch $\in H^{*}(B U(g) ; \mathbb{Q})$. For all $k \geq 1, s_{2 k} \in H^{*}\left(\Gamma_{g} ; \mathbb{Q}\right)$ vanishes, and the Grothendieck-Riemann-Roch theorem (or the Atiyah-Singer index theorem) implies

$$
\begin{equation*}
\frac{B_{2 k}}{2 k} e_{2 k-1}=s_{2 k-1} \in H^{*}\left(\Gamma_{g} ; \mathbb{Q}\right) \tag{1}
\end{equation*}
$$

where $B_{2 k}$ is the $2 k$-th Bernoulli number (see [11, 12]).
Let $N_{2 k}$ and $D_{2 k}$ be coprime integers satisfying $N_{2 k} / D_{2 k}=B_{2 k} /(2 k)$ (i.e. the numerator and the denominator of $B_{2 k} /(2 k)$). The equation (1) implies that the difference $N_{2 k} e_{2 k-1}-D_{2 k} s_{2 k-1} \in H^{*}\left(\Gamma_{g} ; \mathbb{Z}\right)$ is a torsion element. Moreover, in virtue of the Harer's stability theorem [7], there is a natural number $L_{2 k-1}$, which depends only on k and is independent of g, satisfying

$$
L_{2 k-1}\left(N_{2 k} e_{2 k-1}-D_{2 k} s_{2 k-1}\right)=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{Z}\right)
$$

What is the least value of $L_{2 k-1}$ satisfying the last equation? The author made quite an optimistic conjecture in [1] that the least value is $L_{2 k-1}=1$ for all $k \geq 1$:

Conjecture 1 (integral Riemann-Roch formulae for Γ_{g}).

$$
N_{2 k} e_{2 k-1}-D_{2 k} S_{2 k-1}=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{Z}\right)
$$

holds for all $k \geq 1$ and $g \geq 2$.
The conjecture is affirmative for $k=1$ (i.e. $e_{1}=12 s_{1} \in H^{2}\left(\Gamma_{g} ; \mathbb{Z}\right)$ for all $g \geq 2$), since $H^{2}\left(\Gamma_{g}, \mathbb{Z}\right) \cong \mathbb{Z}$ for $g \geq 3$ as was proved by Harer [6] (see [1] for the case $g=2$).

There seems no obvious reasons for Conjecutre 1 to be affirmative for $k \geq 2$. However, the author and Kawazumi showed that the conjecture holds for any cyclic subgroup C of Γ_{g}. More precisely, the restriction of $N_{2 k} e_{2 k-1}-D_{2 k} s_{2 k-1}(k \geq 1)$ to C vanishes in $H^{*}(C ; \mathbb{Z})$. Moreover, Kawazumi showed that a sligtly weaker version of the conjecture holds for hyperelliptic mapping class groups [9]. The proof of the last two results involves number theoretic properties of Bernoulli numbers such as the Voronoi's congruence.

If we consider the "mod p reduction" of Conjecture 1 , there are yet other affirmative evidences which will be discussed in the next section.

3. MOD p RIEMANN-ROCH CONJECTURE FOR Γ_{g}

Let p be a prime number and \mathbb{F}_{p} the field of p elements. In what follows, we collect affirmative evidences for the "mod p reduction" of Conjecture 1:

Conjecture $2\left(\bmod p\right.$ Riemann-Roch formulae for $\left.\Gamma_{g}\right)$.

$$
\begin{equation*}
N_{2 k} e_{2 k-1}-D_{2 k} s_{2 k-1}=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right) \tag{2}
\end{equation*}
$$

holds for all $k \geq 1$ and $g \geq 2$.
3.1. Steenrod operations. For an odd prime p, let

$$
P^{i}: H^{k}\left(-; \mathbb{F}_{p}\right) \rightarrow H^{k+2 i(p-1)}\left(-; \mathbb{F}_{p}\right)
$$

be the i-th reduced power operation. Applying the generalized Riemann-Roch theorem (see [2]) to the total reduced power operation, one can prove the following equation:

$$
P^{i}\left(e_{k}\right)=\binom{k}{i} e_{k+i(p-1)} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right) .
$$

The last formula, together with the Kummer's congruence on Bernoulli numbers, implies the following result:

Theorem 3.1. Let p be an odd prime. If

$$
N_{2 k} e_{2 k-1}-D_{2 k} s_{2 k-1}=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

holds for some $g \geq 2$ and $k \geq 1$, and if $\binom{2 k-1}{i}$ is prime to p, then

$$
N_{2 k+i(p-1)} e_{2 k-1+i(p-1)}-D_{2 k+i(p-1)} s_{2 k-1+i(p-1)}=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

In other words, the affirmative solution of Conjecture 2 for some k implies that for $k+i(p-1) / 2$, provided $\binom{2 k-1}{i}$ is prime to p. In particular, since Conjecture 2 is affirmative for $k=1$, one has:

Proposition 3.2. Let p be an odd prime. Then

$$
N_{p^{n}+1} e_{p^{n}}-D_{p^{n}+1} s_{p^{n}}=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

for all $n \geq 0$.
Similar considerations are possible for $p=2$ by using squaring operations in place of reduced power operations.
3.2. Elementary abelian p-subgroups. In view of the last subsection, it is reasonable to consider Conjecture 2 for small k relative to p. Recall that $E=(\mathbb{Z} / p \mathbb{Z})^{n}$ is called an elementary abelian p-group (of rank n). We have proved:

Proposition 3.3 ([1]). Let $E \subset \Gamma_{g}$ be an elementary abelian p-subgroup of rank $n \geq 2$. Then $e_{k}=0 \in H^{*}\left(E ; \mathbb{F}_{p}\right)$ for all $k \geq 1$.

The proposition is an easy consequence of the Kawazumi-Uemura formula for Morita-Mumford classes on finite subgroups of Γ_{g} [10]. Recently, we made the following calculation:

Proposition 3.4. Let $E \subset \Gamma_{g}$ be an elementary abelian p-subgroup of rank $n \geq 2$. Then $D_{2 k} s_{2 k-1}=0 \in H^{*}\left(E ; \mathbb{F}_{p}\right)$, provided $2 k-1 \leq p$.

The calculation relies on (i) properties of the G-equivariant coboridim group of surfaces along the lines of [5,14] (ii) the G-signature theorem (iii) the Evens-KahnRoush formulae for induced representations [3].

Applying Quillen's F-isomorphism theorem [13] to the last two propositions, we obtain the following result:

Theorem 3.5. For all $g \geq 2, N_{2 k} e_{2 k-1}-D_{2 k} s_{2 k-1} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)$ is nilpotent, provided $2 k-1 \leq p$.

Here $u \in H^{*}\left(\Gamma ; \mathbb{F}_{p}\right)$ is said to be nilpotent if $u^{r}=0$ for some $r \geq 1$. The assumption of the theorem can be relaxed by using Theorem 3.1. But we omit the detail for simplicity.
3.3. von Staudt's theorem. Recall that von Staudt's theorem asserts that a prime p divides $D_{2 k}$ if and only if $p-1$ divides $2 k$ (see [8] for instance). Hence Conjecture 2 implies the following conjecture which was established in [1], provided k is odd.

Conjecture 3. If $k \equiv-1(\bmod p-1)$ then $e_{k} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)$ vanishes.

Let $H^{*}\left(\Gamma_{\bullet} ; \mathbb{F}_{p}\right)=\lim _{g \rightarrow \infty} H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)$ be the stable $\bmod p$ cohomology and $e_{k} \in$ $H^{*}\left(\Gamma_{\bullet} ; \mathbb{F}_{p}\right)$ the stable mod p Morita-Mumford class. Among other things, Galatius, Madsen, and Tillmann [4] proved the following:
Theorem 3.6. $e_{k} \in H^{*}\left(\Gamma_{\bullet} ; \mathbb{F}_{p}\right)$ vanishes if and only if $k \equiv-1(\bmod p-1)$.
("only if" part was also proved in [1].) This proves Conjecture 3 in the stable range. Moreover, Conjecture 3 is affirmative for hyperelliptic mapping class groups [9]. Note that Theorem 3.6 implies Conjecture 2 for $p=2,3$ in the stable range, for $D_{2 k}$ is divisible by 6 for all k.

References

[1] T. Akita, Nilpotency and triviality of mod p Morita-Mumford classes of mapping class groups of surfaces, Nagoya Math. J. 165 (2002), 1-22.
[2] E. Dyer, Cohomology Theories, Benjamin, New York (1969).
[3] L. Evens, D. S. Kahn, An integral Riemann-Roch formula for induced representations of finite groups, Trans. Amer. Math. Soc. 245 (1978), 331-347.
[4] S. Galatius, Ib Madsen, U. Tillmann, Divisibility of the stable Miller-Morita-Mumford classes, J. Amer. Math. Soc. 19 (2006), 759-779.
[5] R. Grieder, G-actions on Riemann surfaces and the associated group of singular orbit data, math.AT/9902048.
[6] J. L. Harer, The second homology group of the mapping class group of an oriented surface, Invent. Math. 72 (1983), 221-239.
[7] ___ Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985), 215-249.
[8] K. Ireland, M. I. Rosen, A classical introduction to modern number theory, GTM 84, SpringerVerlag, 1990.
[9] N. Kawazumi, Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups, Topology Appl. 125 (2002), 363-383.
[10] N. Kawazumi, T. Uemura, Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries, Kodai Math. J. 21 (1998), 372-380.
[11] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551-577.
[12] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and Geometry Vol. II, Birkhäuser, Boston (1983), 271-328.
[13] D. Quillen, The spectrum of an equivariant cohomology ring. I and II, Ann. of Math. 94 (1971), 549-572 and 573-602.
[14] D. Sjerve, Q. J. Yang, The Eichler trace of \mathbb{Z}_{p} actions on Riemann surfaces, Canadian J. Math. 50 (1998), 620-637.

Department of Mathematics, Hokkaido University,
E-mail address: akita@math.sci.hokudai.ac.jp

