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1. INTRODUCTION AND DEFINITIONS

Let Σg be a closed oriented surface of genusg ≥ 2 andΓg the mapping class
group of Σg. There are two well-known families of cohomology classes ofΓg,
Morita-Mumford classes (or Mumford-Morita-Miller classes) and Chern classes (of
the homology representation).

OverQ, these two classes are related by the Grothendieck-Riemann-Roch theo-
rem (see (1)). The author conjectured in [1] that similar relations hold overZ (see
Conjecture 1). The purpose of this talk is to explain some affirmative evidences for
the conjecture.

Now we recall definitions of Morita-Mumford classes and Chern classes ofΓg.
Let π : E → B be an orientedΣg-bundle,TE/B the tangent bundle along the fiber of
π, ande∈ H2(E;Z) the Euler class ofTE/B. Then thek-th Morita-Mumford class
ek ∈ H2k(B;Z) of π is defined by

ek := π!(ek+1)

whereπ! : H∗(E;Z)→ H∗−2(B;Z) is the Gysin homomorphism (or the itegration
along the fiber). Passing to the universalΣg-bundle, one obtains thek-th Morita-
Mumford classek ∈ H2k(Γg;Z) of Γg.

On the other hand, the natural action ofΓg onH1(Σg;R) induces a homomorphism
Γg → Sp(2g,R). The homomorphism yields a continuous mapBΓg → BU(g) of
classifying spaces, for the maximal compact subgroup ofSp(2g,R) is isomorphic
toU(g). Thek-th Chern classck ∈H2k(Γg;Z) of Γg is the pull-back of the universal
k-th Chern classck ∈ H2k(BU(g);Z).

2. INTEGRAL RIEMANN -ROCH CONJECTURE FORΓg

Over Q, Morita-Mumford classes and Chern classes ofΓg are related by the
Grothendieck-Riemann-Roch theorem. Letsk∈H2k(Γg;Z) be thek-th Newton class
of Γg, which is defined bysk := Nk(c1,c2, . . . ,ck) whereNk is thek-th Newton poly-
nomial. Note thatg+ ∑k≥1sk/k! ∈ H∗(Γg;Q) is nothing but the pull-back of the
universal Chern character ch∈ H∗(BU(g);Q). For all k≥ 1, s2k ∈ H∗(Γg;Q) van-
ishes, and the Grothendieck-Riemann-Roch theorem (or the Atiyah-Singer index
theorem) implies

(1)
B2k

2k
e2k−1 = s2k−1 ∈ H∗(Γg;Q),
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whereB2k is the 2k-th Bernoulli number (see [11, 12]).
Let N2k and D2k be coprime integers satisfyingN2k/D2k = B2k/(2k) (i.e. the

numerator and the denominator ofB2k/(2k)). The equation (1) implies that the dif-
ferenceN2ke2k−1−D2ks2k−1 ∈ H∗(Γg;Z) is a torsion element. Moreover, in virtue
of the Harer’s stability theorem [7], there is a natural numberL2k−1, which depends
only onk and is independent ofg, satisfying

L2k−1(N2ke2k−1−D2ks2k−1) = 0∈ H∗(Γg;Z).

What is the least value ofL2k−1 satisfying the last equation? The author made quite
an optimistic conjecture in [1] that the least value isL2k−1 = 1 for all k≥ 1:

Conjecture 1 (integral Riemann-Roch formulae forΓg).

N2ke2k−1−D2ks2k−1 = 0∈ H∗(Γg;Z)

holds for all k≥ 1 and g≥ 2.

The conjecture is affirmative fork = 1 (i.e. e1 = 12s1 ∈ H2(Γg;Z) for all g≥ 2),
sinceH2(Γg,Z) ∼= Z for g ≥ 3 as was proved by Harer [6] (see [1] for the case
g = 2).

There seems no obvious reasons for Conjecutre 1 to be affirmative fork ≥ 2.
However, the author and Kawazumi showed that the conjecture holds for any cyclic
subgroupC of Γg. More precisely, the restriction ofN2ke2k−1−D2ks2k−1 (k≥ 1) to
C vanishes inH∗(C;Z). Moreover, Kawazumi showed that a sligtly weaker version
of the conjecture holds for hyperelliptic mapping class groups [9]. The proof of the
last two results involves number theoretic properties of Bernoulli numbers such as
the Voronoi’s congruence.

If we consider the “modp reduction” of Conjecture 1, there are yet other affirma-
tive evidences which will be discussed in the next section.

3. MOD p RIEMANN -ROCH CONJECTURE FORΓg

Let p be a prime number andFp the field of p elements. In what follows, we
collect affirmative evidences for the “modp reduction” of Conjecture 1:

Conjecture 2 (mod p Riemann-Roch formulae forΓg).

(2) N2ke2k−1−D2ks2k−1 = 0∈ H∗(Γg;Fp)

holds for all k≥ 1 and g≥ 2.

3.1. Steenrod operations.For an odd primep, let

Pi : Hk(−;Fp)→ Hk+2i(p−1)(−;Fp)

be thei-th reduced power operation. Applying the generalized Riemann-Roch the-
orem (see [2]) to the total reduced power operation, one can prove the following
equation:

Pi(ek) =
(

k
i

)
ek+i(p−1) ∈ H∗(Γg;Fp).

The last formula, together with the Kummer’s congruence on Bernoulli numbers,
implies the following result:
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Theorem 3.1.Let p be an odd prime. If

N2ke2k−1−D2ks2k−1 = 0∈ H∗(Γg;Fp)

holds for some g≥ 2 and k≥ 1, and if
(2k−1

i

)
is prime to p, then

N2k+i(p−1)e2k−1+i(p−1)−D2k+i(p−1)s2k−1+i(p−1) = 0∈ H∗(Γg;Fp).

In other words, the affirmative solution of Conjecture 2 for somek implies that
for k+ i(p−1)/2, provided

(2k−1
i

)
is prime top. In particular, since Conjecture 2

is affirmative fork = 1, one has:

Proposition 3.2. Let p be an odd prime. Then

Npn+1epn−Dpn+1spn = 0∈ H∗(Γg;Fp)

for all n≥ 0.

Similar considerations are possible forp = 2 by using squaring operations in
place of reduced power operations.

3.2. Elementary abelianp-subgroups. In view of the last subsection, it is reason-
able to consider Conjecture 2 for smallk relative top. Recall thatE = (Z/pZ)n is
called an elementary abelianp-group (of rankn). We have proved:

Proposition 3.3 ([1]). Let E⊂ Γg be an elementary abelian p-subgroup of rank
n≥ 2. Then ek = 0∈ H∗(E;Fp) for all k ≥ 1.

The proposition is an easy consequence of the Kawazumi-Uemura formula for
Morita-Mumford classes on finite subgroups ofΓg [10]. Recently, we made the
following calculation:

Proposition 3.4. Let E⊂ Γg be an elementary abelian p-subgroup of rank n≥ 2.
Then D2ks2k−1 = 0∈ H∗(E;Fp), provided2k−1≤ p.

The calculation relies on (i) properties of theG-equivariant coboridim group of
surfaces along the lines of [5, 14] (ii) theG-signature theorem (iii) the Evens-Kahn-
Roush formulae for induced representations [3].

Applying Quillen’s F-isomorphism theorem [13] to the last two propositions, we
obtain the following result:

Theorem 3.5. For all g ≥ 2, N2ke2k−1−D2ks2k−1 ∈ H∗(Γg;Fp) is nilpotent, pro-
vided2k−1≤ p.

Hereu∈ H∗(Γ;Fp) is said to be nilpotent ifur = 0 for somer ≥ 1. The assump-
tion of the theorem can be relaxed by using Theorem 3.1. But we omit the detail for
simplicity.

3.3. von Staudt’s theorem. Recall that von Staudt’s theorem asserts that a primep
dividesD2k if and only if p−1 divides 2k (see [8] for instance). Hence Conjecture
2 implies the following conjecture which was established in [1], providedk is odd.

Conjecture 3. If k ≡−1 (mod p−1) then ek ∈ H∗(Γg;Fp) vanishes.
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Let H∗(Γ•;Fp) = limg→∞ H∗(Γg;Fp) be the stable modp cohomology andek ∈
H∗(Γ•;Fp) the stable modp Morita-Mumford class. Among other things, Galatius,
Madsen, and Tillmann [4] proved the following:

Theorem 3.6.ek ∈ H∗(Γ•;Fp) vanishes if and only if k≡−1 (mod p−1).

(”only if” part was also proved in [1].) This proves Conjecture 3 in thestable
range. Moreover, Conjecture 3 is affirmative for hyperelliptic mapping class groups
[9]. Note that Theorem 3.6 implies Conjecture 2 forp = 2,3 in the stable range, for
D2k is divisible by 6 for allk.
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