粗い境界付近の粘性流体の 数学解析

An Introduction to

Gérard-Varet, D., Masmoudi, N.: Relevance of the slip condition for fluid flows near an irregular boundary. Comm. Math.Phys. **295** (1), 99-137(2010)

Department of Mathematics, Kyoto University, Mitsuo Higaki

渦の特徴付け (Hokkaido University, July 25-27, 2016)

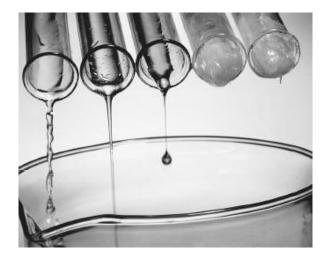
http://www.fluidvisual.com/about/fluid-vision/

Viscous Fluid and No-slip Condition

Incompressible fluid: fluid which does not change its volume (ex. water)
In this presentation, we deal with only incompressible fluids.

Viscosity: fluid's resistance to flow

thin



http://www.synlube.com/viscosit.htm

The motion of viscous fluid is described by the Navier-Stokes equations.

The viscosity of water is low $(1.0 \times 10^{-6} \text{ m}^2/\text{s} \text{ at } 20^{\circ}\text{C})$.

However, the effect of the viscosity can not be neglected near surfaces.

Let $\vec{u}(t,x) = (u_1(t,x), u_2(t,x), u_3(t,x))$ be the velocity field of the fluid at time t and position x.

Then, \vec{u} satisfies on the surface (=boundary)

 \vec{u} (t,x) = (0, 0, 0).

This condition is called the no-slip boundary condition.

⇒ <u>https://www.youtube.com/watch?v=cUTkqZeiMow</u>

Namely, a viscous fluid "sticks" to the boundary.

Roughness-induced Effect

Flow near complex boundaries ? (ex. geophysical fluid dynamics)

http://images.nationalgeographic.com/wpf/media-live/photos/000/911/c ache/91190_990x742-cb1438273462.jpg

The structure of flows near a solid wall with a rough surface ?

Achdou • Pironneau • Valentin (1998) : numerical analysis

Observation

Step1. Fluids flow into cavities with causing small-scale vortices

Step2. There is the large-scale flow away from the boundary

Step3. Near the boundary, the slipping effect is induced by the interaction between these two scales flows

Journal of Computational Physics 147, 187-218 (1998)



It is hard to analyze Step1 - Step3 mathematically.

There are still many unknown aspects of the creation of vortices near boundaries.

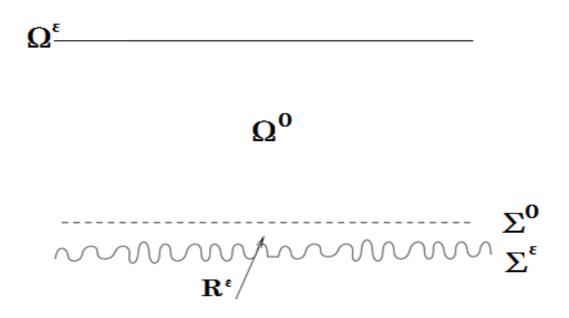
The slip induced by the boundary-roughness is analyzed by Gérard-Varet, D., Masmoudi, N.: Relevance of the slip condition for fluid flows near an irregular boundary. Comm. Math. Phys. **295** (1), 99-137(2010).

⇒ Averaged effect of roughness

Model

• Ω^{ϵ} : two-dimensional channel with a periodic rough boundary Σ^{ϵ}

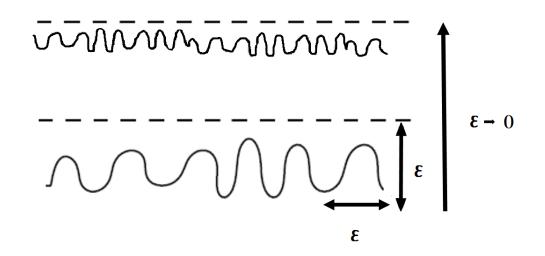
• $\vec{u}^{\varepsilon} = (u_1^{\varepsilon}(x), u_2^{\varepsilon}(x))$: stationary flow in Ω^{ε} , flowing from left to right, viscosity = 1



The amplitude and the pulse width of Σ^{ϵ} are assumed to be of order ϵ .

When $\varepsilon \rightarrow 0$,

- 1. Σ^ε oscillates highly (gets rougher)
- 2. Σ^ϵ gets closer to some flat boundary Σ^0



Problem: Profile of $\overrightarrow{u^{\epsilon}}$ when $\epsilon \rightarrow 0$?

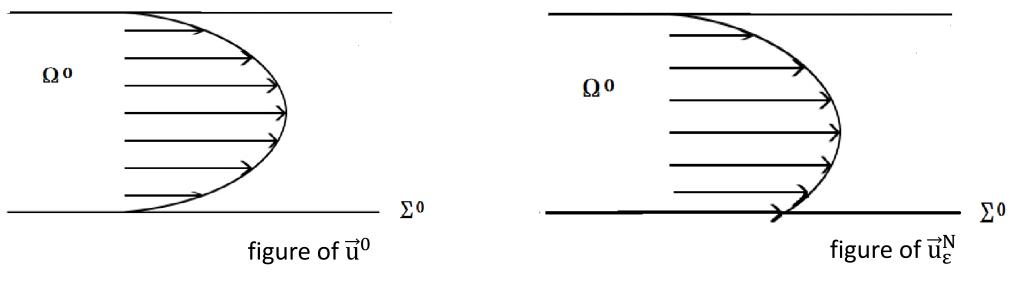
If "roughness induces slip" is correct, a precise profile of $\overline{u^{\epsilon}}$ should be given by a flow slipping on Σ^{0} .

We consider the two flows which are expected to give a approximation of $\overline{u^{\epsilon}}$.

1. Flow \vec{u}^0 which does not slip on Σ^0

<u>Idea</u> Since \vec{u}^{ε} = (0, 0) on Σ^ε, approximately \vec{u}^{ε} = (0, 0) on Σ⁰. 2. Flow \vec{u}_{ϵ}^{N} which slips on Σ^{0}

Idea We use the Navier-slip condition $u_1 = \epsilon \alpha \partial_2 u_1$, $u_2 = 0$ on Σ^0 .



The constant α depends only on the "shape" of the boundary.

Main Result

Theorem (Gérard-Varet Masmoudi (2010)) **The slipping flow** $\vec{u}_{\varepsilon}^{N}$ **approximates** \vec{u}^{ε} **better** than the no-slip flow \vec{u}^{0} .

Note

Approximation rates are obtained in the order of ε

Key Ingredients

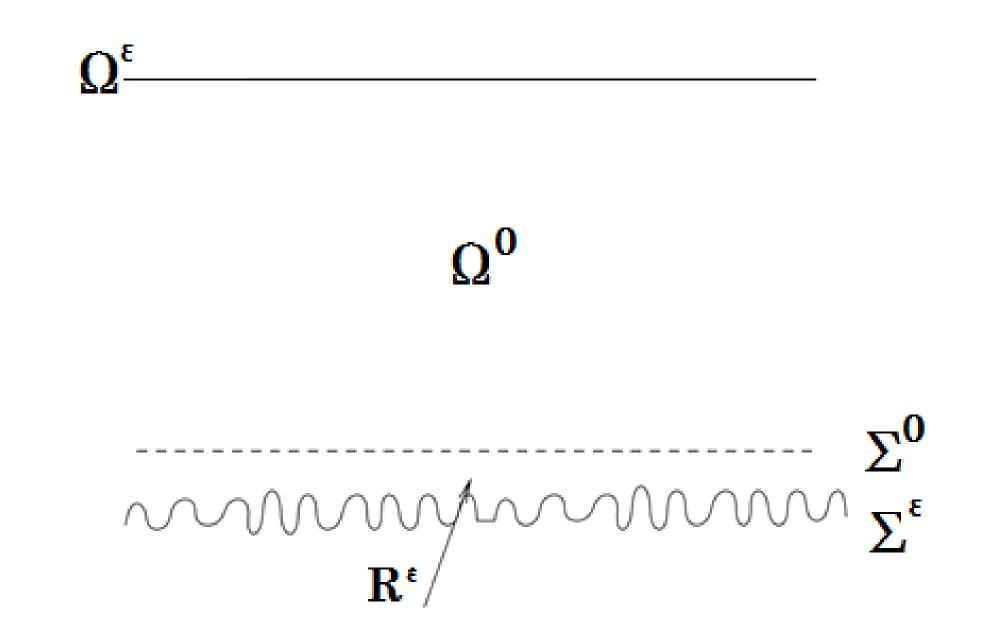
<u>Difficulty</u>

The derivation of the Navier-slip condition. Particularly, the determination of the constant α .

Key Ingredients

Since the rough boundary oscillates, the difference of \vec{u}^{ϵ} and \vec{u}^{0} has an oscillating structure in R^{ϵ} .

A detailed analysis on this oscillating structure reveals the constant α .



Conclusion

The boundary-roughness induces the slipping effect on the fluid dynamics, contrary to the no-slip condition on the boundary.

Further Study

- This argument describes the steady state
- Does the Navier-slip condition hold for time-changing flows?
- \Rightarrow Yes. But the initial state should be considered carefully.

Higaki, M. : Navier wall law for nonstationary viscous incompressible flows. JDE. **260** (10), 7358-7396 (2016).