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§1. Introduction

We consider the following IBVP of doubly nonlinear parabolic equation:

aB(u(x, 1)) — Apu(x, t) > f(x,1) xt)eQ:=Qx(0,T),
(P) u(x,t) =0 (xt) € 0Q x (0, T),
u(x, 0) = uo(X) XeQ,

@ QcR"(n>1): bounded domain with smooth boundary 9Q.
@ f : given external force.
@ pe (1, 00): exponent of p-Laplacian Apu := V - (JVU[P-2VU).

@ 3:R — 2% s a (multi-valued) maximal monotone graph on R satisfying 0 € 5(0).

To show existence of solution to (P) without any assumptions of 3 except 0 € 3(0). \
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§1. Introduction

B:R — 2% is said to be

@ monotone if 8 is non-increasing, i.e.,
(s1-S)(o1-02) 20 VYoiep(s) (i=12).

@ maximal monotone if 8 is monotone and there is no monotonic extension of 3.
This is equivalent to R(I + 28) = R for any 2 > 0.

ex.1 Bis continuous (single-valued) non-increasing mapping with D(8) = R or R(B) = R,
eg.f(9=1s2s(r>1), Ae=e-1
ex.2 Bis possibly multi-valued, e.g.,
(=00,0] if s= -1,

-1 ifs<0,
1 if se (-1,1),
B(s)=sgn@) =1 [-1,1] ifs=0, A(s) =sgn'(s =
[0, ) if s=1,
1 if s> 0.
%) otherwise .
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§1. Introduction

(Examples of (P))

ex.1 LetB(s) =|92s. Then
Alul2u—Apu = f.

(see, e.g., Raviart 1970, Bamberger 1977, Tsutsumi 1988...)

ex.2 Let p=2andp(u) = € -1, v=_¢" Then the equation is equivalent to
ov—Alogv="~f Vjo=1

(see, e.g., Berryman—Holland 1982, Esteban—Rodriguez—Vazquez 1988...)

ex.3 Miyoshi-Tsutsumi (2016) derived
v -V-(Viogv”2Vlogy) = f

from the singular limit of a generalized Carleman model.
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§1. Introduction

* Previous studies of solvability for generalized 3:
@ Grange—Mignot 1972 : abstract evolution equation (Au)’ + Bu> f.
@ Boundedness condition of A and B « growth condition of .
@ Standard time discretization technique with properties of subdifferential.
@ Barbu 1979 : abstract evolution equation (Au)’ + Bu> f.

@ Hilbert setting.
@ Avoid growth or coerciveness conditions of A by using (A,u, Bu)y > 0.
@ Existence of 9;8(u) — A,u > f for p> 2 and D(8) = R.

@ Alt-Luckhaus 1983 : PDE 98(u) — Apu > f.

@ Galerkin’s method and convergence argument in L.
@ f: single or multi-valued with growth condition of “jump”.

To show existence of solution to (P) without assumptions, e.g.,
growth condition (boundedness), coerciveness, single-valuedness, or D(8) = R.
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§2. Main Result

We consider the following (weak) solution:

Definition

Let (uo, &o) satisfy £o(X) € B(Up(X)) for a.e. X € Q.

Then (u, £) is said to be a solution to (P) with the initial data (uo, &) if

ue L0, T;WP(Q)), &eW-(0,T; WP (Q) NLV(0, T; LY (),
£(x 1) € B(u(x,t)) fora.e. (xt) € Q,

&) — Apu(t) = f(t) in WLP(Q) forae. te(0,T),
{ £(-, 0) = &o.

Remark
Regularity of (u, ¢) given above leads to for every t;,t; € [0, T] (see Alt-Luckhaus 1983)

fg (€0 t)dx— f (€0 t)dx+ f " IVuFdt = f 2 f 0 )u(x Hxdt

where j is the primitive function of 3 (i.e., 8 = d]) and j* is its conjugate.

| A
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§2. Main Result

Let f = 0.
. 0 s=0,
@ If 8 =0, we have j*(s) =
+ oo  otherwise.

Then (P) has a unique solution for any given up € Wé’p(Q)

o) = { W) t=0,
0 t>0.

R if s=0, .
@ IfB(s) = we have j* = 0.
(%) otherwise ,

Then (P) has a unique solution u = 0 and & = &, for any given & € LP (Q).
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§2. Main Result

Theorem 3.1

Let p € (1,0), g € [P, o] and 0 € 4(0). Then for any Uy € W2 P(Q), & € LP (Q) N LY(<), and
f e WHP'(0, T; LF (Q)) N L=(0, T; LY(Q)), there exist at least one solution to (P) with the
initial data (up, &) satisfying

supllE®liy < T OSUFTJIIf(t)IILp' + [1€oll e,
<t<

0<t<T

supllé@lla < T 0sul:TJ 1T (®)llLa + lI€ollLa.
<t<

0<t<T

Furthermore, it holds that for every t;, t, € [0, T]

173 to
fg P (€0x t))dx— f (€ t)dx+ f IVUE)IF,dt = f f £, u(x, tydxdt

8/18



§2. Main Result

With additional conditions of initial data, we can obtain a solution which is Lipschitz

continuous with respect to t:

Theorem 3.2

In addition to assumptions in Theorem 3.1, let A,up € L” (Q). Then there exist at least one

solution to (P) with the initial data (uo, &) satisfying
supllé@®)lly < T suplIf®)lle + lI€oll e,
O<t<T 0<t<T
supllE@lla < T OSUEF) 1T ©llLa + [I€ollLa,
<t<

0<t<T
llE(ts) — E)lI < Clty —to] Vi, t, € [0, T].
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§3. Sketch of proof

We adopt the standard time discretization technique (Raviart 1970, Grange—Mignot 1972).
Let N € N and 7 := T/N. Then define u, = {u%, ul,...,uN} and & = {£0,£%, ..., €N} by

f—m(x) “E0 A= 9 xeq

n+1(X) € ﬁ(u“*l(x)) XeQ,
umi(x) = X € 0Q,

where W := g, &2 := &, and M := %fn(rnﬂ)r f(., s)ds
We next connect U, = {u%,ul,...,uN} and & = {£9,&%,. .., &N} between [0, T] by

u™t ifte (nr, (n+ 1)1,
mu() =1 " (n, (n+ 1)7]

u? ift =0,

n+l _ ¢n

A(t) = T (t—nr) + &0 ifte[nr (n+ L)l

By discussing the limits as T — 0, we observe the convergence I1,u, and A.¢; to a desired
solution to (P).
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§3. Sketch of proof

Therefore to prove Theorem 3.1, we have to assure the solvability of

£(X) — Apu(x) = h(x) X € Q,
(B) | &(¥) € Bu(x) XeQ,
ux)=0 X € 0Q.

Let p € (1, ), g € (1, ], and 0 € 5(0). Then for every h € LP (Q) N LYL), (E) possesses a
unique solution u € WyP(Q) such that &, Apu € LP (Q) N L9(Q) and

€l < Ml 1I€lla < lIhllLa.

Formally, we can interpret the inequalities above as the result of integration by parts:

f 1B 2B(U)Apud X = —(q - 1) f B2 (WIVUPdx < 0,
Q Q

where 8 > 0 since g is monotone.
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§3. Sketch of proof

@ Ifhe W-LP(Q), the following functional possesses a minimizer:
1
I(U) := ¥(u) + F—)||Vu||fp - f h(x)u(x)dx,
Q

where y(u) := f j(u(x))dx> 0and j is a primitive function of 3 (i.e., 8 = 9j).
[9)
@ When we deal with the functional | on Wg’p(Q), we have
aW(]).\pI(U) = Bwé,pd/(u) — Apu — hand the minimizer satisfies 0 € awé.\pl(u).

However, ¢ € d,,1.0¢(U) may NOT satisfy £(X) € B(u(x)) a.e. Q unless D(8) = R
0
(cf. Brézis 1972).
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§3. Sketch of proof

@ Then we first consider
. 1
[1(u) i=fu(U(X))dX+ —IIVUIIEp—fh(X)U(X)dX
Q p Q

in LP(Q). Then it holds that 8, sy, (U) = 8, (U)
(B, Yosida approximation of 8in R, j,: Moreau—Yosida regularization of j in R,
B realization of B, in LP(Q) x L ().

@ Remark that f j,l(u)dx may NOT coincide with

Ya(u) = inf {” fj(v)dx} unless p = 2. Moreover,

VeLP(Q)

@ f, is Lipschitz continuous LP — LP, but NOT LP - L” if 1< p < 2.
@ The domain of 3, dose NOT coincide with LP(Q) when 1 < p < 2 (e.g., 8 = Id).
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§3. Sketch of proof

Let 1 < p < 2 and consider
A i 1 op
La(u) := SlIUllzz + | ja(u) + —[IVUll, = [ h()u(x)dx
2 Q p Q

in L2. Then the minimizer u, € L2(Q) mWé’p(Q) of 1, satisfies Au, + 8,(u,) — Apuy = hin L2,
To establish uniform boundedness, multiply it by ki(8.(u,)) for g < 2 or K{, (8.(uy)) for
q > 2, where

[s92s  if |9 =m,

K3 (9) :=
m2s  iflg<m "

|99-2s if |9 < M,
M%lsgnl) iflg = M.

Ki(s) = {

Letting m — 0 or M — oo, we obtain ||8,(uy)llLa < |IhllLa-

By using this estimate and letting 2 — 0, we can assure the solvability of (E).

14/18



§3. Sketch of proof

Applying Theorem 3.3 to
n+1 _&n
é:'r (X) é:'r(x) _ ApU.rrHl(X) — an(X) X € Q,
T
P (%) € BUI(X) xeQ,
u™(x) =0 X € 0Q,

we have

1
67 e < 1167 + 7 7ILa < [1€7]1La + 7 sup [If (©)l]La.
Ost<T

which leads to (remark 7 = T/N)

sup 1€ < liéolla + T sup I f(t)lIa
=1.2,....N o<t<T

n=
ie.,
SUp [|A-&-(®)llLa < lléolla + T suplf(®lia —  supllé®lia < lolla + T sup || f ()]l
o<t<T o<t<T o<t<T o<t<T
ast— 0.
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§3. Sketch of proof

To prove Theorem 3.2, we need the following lemma:

Lemma
Let h € LP(Q) and (u;, &) be the unique solution to

&(X) — Apui(X) = hi(xX) X€Q,
E) | &) € Buw(x) X€Q,
u(x)=0 X € 0Q,

such that &, Apl; € LP (Q), where i = 1,2. Then

[l€2 = &allia < [Ihy = hallpa.

() Let uy (i = 1,2) be a unique solution to
©), Ba(ui(X) = Apui(¥) = hi(x) XeQ,
A ui(X) =0 X € 6Q.

Remark that ||8; (U (X)ll_» is uniformly bounded

and (uy, Ba(ui(X))) converges to (u;, &) (unique solution to (E);) as 1 — 0.
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§3. Sketch of proof

Testing (E)1—(E) a2 by sgrf(uy; — Uy2) (Sgrf: minimal section of sgn), we have

| (1 00) ~ B9/ < I — .
{xeQ; U (N#U2(x)}
= [1B1(Uar) = Ba(Uallir < lIhe = halls.
Applying Dunford-Pettis’s theorem, we have ||¢; — &|l.1 < [Ihy — hyll1. =
Recall that u, = {2, UL, ..., uN} and & = {£0, &L, ..., &N} are defined by

&0 -9
T

—AUM(X) = f'(X) xeQ,

PI™ ) 60 € BUI(X) xeQ,
u™i(x) =0 X € 0Q,
1 el

where U :=up, &2:= &, f =1 [ 7 f(,, 9)ds
Moreover, &1 1= & — tApUp — 72, 71 = f(-,0).
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§3. Sketch of proof

Applying Lemma to (P)™! and (P)", we get

lErt = &Ml < Tl = £ 7M1 + 167 = 67l

N-1
f
foranyn=0,1,...,N - 1. Since Z 1M — 7Y < —H dt, we obtain
n=0 L

Zuf" i +
3
sf

(we need Apup € LP (Q) in order to apply Lemma to (P)?), which leads to

§n+1 fn §0 gf

L1

df
EHU dt+[|ApUo + fOll

”Aré‘r(tl) - A'rf'r(tZ)“Ll < Cltl - t2|-

Therefore by letting  — 0, we can assure that the solution constructed in the proof of
Theorem 3.1 satisfy [|£(t1) — £(t)ll.2 < Clty — to| when Agug € L1(Q).
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