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Introduction Definitions Equivalence

Introduction

Let (X , d) be a complete metric space and ⌦ be a bounded open set of X .

A special case: X is a complete length space, that is, for any x , y 2 X ,

d(x , y) = inf{length of ⇠: ⇠ is a Lipschitz curve joining x and y}.

We study
|ru| = 1 in ⌦ (1)

with
u = g on @⌦,

where g 2 C(@⌦) is given.

Di�culties in general metric spaces:

⇧ Unclear meaning of |ru|

⇧ Loss of measure, inner product, and smooth function class

⇧ Possible lack of local compactness
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The eikonal equation

Consider |ru| = 1 in ⌦ ⇢ Rn with u = g 2 C(@⌦).

There are no classical solutions in general.
There are infinitely many Lipschitz solutions satisfying the equation a.e.

The case when n = 1,
⌦ = (�1, 1), g(±1) = 0

1) Vanishing viscosity

2) Optimal control
(minimum exit time from x at speed 1)

u(x) = inf
|h|"

u(x + h) + ", 8"⌧ 1

3) Viscosity tests
Test by � 2 C

1 at x )

4) Monge solutions

(sub-slope) lim sup
y!x

[u(x)� u(y)]+
|x � y | = 1, 8x
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Definitions of metric viscosity solutions

Several notions of metric viscosity solutions will be mentioned:

(1) Curve-based solutions (c-solutions) using optimal control
⇧ [Giga-Hamamuki-Nakayasu ’14] [Nakayasu ’14]

⇧ Very weak space structures, strong assumptions on PDEs

(2) Slope-based solutions (s-solutions) using viscosity tests
⇧ [Ambrosio-Feng ’14] [Gangbo-åwiÍch ’14, ’15] [L-Nakayasu ’19]

⇧ Strong space structures, weak assumptions on PDEs

(3) Monge solutions using sub-slope
⇧ Our new notion extends [Newcomb-Su ’95] in Rn to metric spaces

⇧ Strong space structures, strong assumptions on PDEs, simple
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Curves

Let Ax (R,X ) be the set of Lipschitz curves ⇠ in X with ⇠(0) = x and
|⇠0|  1 a.e. in R

For ⇠ 2 Ax (R,X ), let

T
+ := inf{t � 0 : ⇠(t) /2 ⌦},

T
� := sup{t  0 : ⇠(t) /2 ⌦}.

The solution is expected to be
u(x) = inf

⇠2Ax (R,X )

�
T

+ + g
�
⇠(T+)

�  
.

At least formally, we can view
|ru|(x) = sup

⇠2Ax (R,X )
(u � ⇠)0(0)

Qing Liu (Fukuoka Univ.) Eikonal equations on metric spaces August 18, 2020 5 / 12



Introduction Definitions Equivalence

Curves

Let Ax (R,X ) be the set of Lipschitz curves ⇠ in X with ⇠(0) = x and
|⇠0|  1 a.e. in R

For ⇠ 2 Ax (R,X ), let

T
+ := inf{t � 0 : ⇠(t) /2 ⌦},

T
� := sup{t  0 : ⇠(t) /2 ⌦}.

The solution is expected to be
u(x) = inf

⇠2Ax (R,X )

�
T

+ + g
�
⇠(T+)

�  
.

At least formally, we can view
|ru|(x) = sup

⇠2Ax (R,X )
(u � ⇠)0(0)

Qing Liu (Fukuoka Univ.) Eikonal equations on metric spaces August 18, 2020 5 / 12



Introduction Definitions Equivalence

Curves

Let Ax (R,X ) be the set of Lipschitz curves ⇠ in X with ⇠(0) = x and
|⇠0|  1 a.e. in R

For ⇠ 2 Ax (R,X ), let

T
+ := inf{t � 0 : ⇠(t) /2 ⌦},

T
� := sup{t  0 : ⇠(t) /2 ⌦}.

The solution is expected to be
u(x) = inf

⇠2Ax (R,X )

�
T

+ + g
�
⇠(T+)

�  
.

At least formally, we can view
|ru|(x) = sup

⇠2Ax (R,X )
(u � ⇠)0(0)

Qing Liu (Fukuoka Univ.) Eikonal equations on metric spaces August 18, 2020 5 / 12



Introduction Definitions Equivalence

Curves

Let Ax (R,X ) be the set of Lipschitz curves ⇠ in X with ⇠(0) = x and
|⇠0|  1 a.e. in R

For ⇠ 2 Ax (R,X ), let

T
+ := inf{t � 0 : ⇠(t) /2 ⌦},

T
� := sup{t  0 : ⇠(t) /2 ⌦}.

The solution is expected to be
u(x) = inf

⇠2Ax (R,X )

�
T

+ + g
�
⇠(T+)

�  
.

At least formally, we can view
|ru|(x) = sup

⇠2Ax (R,X )
(u � ⇠)0(0)

Qing Liu (Fukuoka Univ.) Eikonal equations on metric spaces August 18, 2020 5 / 12



Introduction Definitions Equivalence

Curve-based solutions of |ru| = 1

Definition [Giga-Hamamuki-Nakayasu ’14]

u 2 USC(⌦) is called a c-subsolution if for any x 2 ⌦ and ⇠ 2 Ax (R,X ),
u � ⇠ satisfies |(u � ⇠)0(0)|  1 in the viscosity sense, i.e.,

|�0(0)|  1

when � 2 C
1(R) s.t. u � ⇠ � � attains a local maximum at t = 0.

u 2 LSC(⌦) is called a c-supersolution if for any x 2 ⌦ and " > 0, there is
⇠ 2 Ax (R,X ) and w 2 LSC(T�,T+) with �1 < T

± < 1 such that

w(0) = u(x), w � u � ⇠ � ",

and w satisfies |w 0| � 1 � " everywhere in (T�,T+) in the viscosity sense.

u 2 C(⌦) is called a c-solution if it is both a c-sub and a c-supersolution.

I u is called a local c-supersolution if |w 0| � 1� " in (��, �) for � = �(x) > 0

small instead of (T�,T+) . We can accordingly define local c-solutions.

Qing Liu (Fukuoka Univ.) Eikonal equations on metric spaces August 18, 2020 6 / 12
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Slopes and test classes

Let ⌦ be an open set of a length space X . For u 2 Liploc(⌦) and x 2 ⌦, let

local slope |ru|(x) = lim sup
y!x

|u(y)� u(x)|
d(x , y)

(usc envelope) |ru|⇤(x) = lim sup
y!x

|ru|(y)

super/sub-slope |r±
u|(x) = lim sup

y!x

[u(y)� u(x)]±
d(x , y)

([a]± := max{±a, 0})

Test classes:

C(⌦) :=
�

u 2 Liploc(⌦) : |r+
u| = |ru| and |ru| is continuous in ⌦

 _

C(⌦) :=
�

u 2 Liploc(⌦) : |r�
u| = |ru| and |ru| is continuous in ⌦

 ^
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Slope-based solutions of |ru| = 1

Definition [Gangbo-åwiÍch ’15]

Let ⌦ be an open subset of a complete length space (X , d).

u 2 USC(⌦) is called an s-subsolution if

|r 1|(x)� |r 2|⇤(x)  1

holds for any  1 2 C(⌦) and  2 2 Liploc(⌦) such that u �  1 �  2 attains
a local maximum at x 2 ⌦.

u 2 LSC(⌦) is called an s-supersolution if

|r 1|(x) + |r 2|⇤(x) � 1

holds for any  1 2 C(⌦) and  2 2 Liploc(⌦) such that u �  1 �  2 attains
a local minimum at x 2 ⌦.

u 2 C(⌦) is called an s-solution if it is an s-sub and an s-supersolution.
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Monge solutions of |ru| = 1

Definition (Generalization of [Newcomb-Su ’95] in length spaces)

Let ⌦ be an open subset of a complete length space (X , d).

u 2 Liploc(⌦) is called a Monge subsolution if, at any x 2 ⌦,

|r�
u|(x)

✓
= lim sup

y!x

[u(x)� u(y)]+
d(x , y)

◆
 1.

u 2 Liploc(⌦) is called a Monge supersolution if, at any x 2 ⌦,

|r�
u|(x) � 1.

u 2 Liploc(⌦) is called a Monge solution if it is both a Monge sub- and
supersolution, i.e., at any x 2 ⌦,

|r�
u|(x) = 1.

Qing Liu (Fukuoka Univ.) Eikonal equations on metric spaces August 18, 2020 9 / 12



Introduction Definitions Equivalence

Main result

Consider the eikonal equation:
|ru| = 1 in ⌦. (1)

Theorem (Equivalence of solutions)

Let ⌦ be an open set of a complete length space (X , d). Let u 2 C(⌦). Then
the following statements are equivalent:
(a) u is a local c-solution of (1);
(b) u is a locally uniformly continuous s-solution of (1);
(c) u is a Monge solution of (1).
In addition, if any of (a)–(c) holds, then u is locally Lipschitz with

|ru|(x) = |r�
u|(x) = 1 for all x 2 ⌦.

The local uniform continuity can be dropped if X is locally compact.
It turns out that u 2 C(⌦) (certain weak concavity).
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Introduction Definitions Equivalence

Remarks

Under the same assumptions, we can generalize our result for

|ru| = f (x) in ⌦,

if f > 0 is locally uniformly continuous (or continuous if X is loc. cpt.).

If (X , d) is not a length space but only a rectifiably connected space, take

d̃(x , y) = inf {length of ⇠ : ⇠ is a rectifiable curve connecting x and y} .

We can still apply our result, since (X , d̃) is a length space.
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Introduction Definitions Equivalence

Conclusion and future problems

The known metric viscosity solution are equivalent in rectifiably
connected metric spaces, especially in length spaces.

The Monge solution can be used as a convenient alternative notion of
solutions to the eikonal equation in metric spaces.

Future Projects
Equivalence of solutions to the time dependent problem:

@tu + H(x , |ru|) = 0 in X ⇥ (0,1).

The eikonal equation with discontinuities in metric measure spaces:

|ru| = f (x) with f only measurable.

Thank you for your kind attention!
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