Equivalence of Solutions of Eikonal Equation on Metric Spaces

Qing Liu
Fukuoka University

Joint work with
Nageswari Shanmugalingam (University of Cincinnati)
Xiaodan Zhou (Okinawa Institute of Science and Technology)

The 45th Sapporo Symposium on Partial Differential Equations
August 18, 2020

Introduction

- Let (\mathcal{X}, d) be a complete metric space and Ω be a bounded open set of \mathcal{X}. A special case: \mathcal{X} is a complete length space, that is, for any $x, y \in \mathcal{X}$, $d(x, y)=\inf \{$ length of $\xi: \xi$ is a Lipschitz curve joining x and $y\}$.

Introduction

- Let (\mathcal{X}, d) be a complete metric space and Ω be a bounded open set of \mathcal{X}. A special case: \mathcal{X} is a complete length space, that is, for any $x, y \in \mathcal{X}$,

$$
d(x, y)=\inf \{\text { length of } \xi: \xi \text { is a Lipschitz curve joining } x \text { and } y\} .
$$

- We study

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with

$$
u=g \quad \text { on } \partial \Omega,
$$

where $g \in C(\partial \Omega)$ is given.

Introduction

- Let (\mathcal{X}, d) be a complete metric space and Ω be a bounded open set of \mathcal{X}. A special case: \mathcal{X} is a complete length space, that is, for any $x, y \in \mathcal{X}$,

$$
d(x, y)=\inf \{\text { length of } \xi: \xi \text { is a Lipschitz curve joining } x \text { and } y\} .
$$

- We study

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with

$$
u=g \quad \text { on } \partial \Omega,
$$

where $g \in C(\partial \Omega)$ is given.

- Difficulties in general metric spaces:

Introduction

- Let (\mathcal{X}, d) be a complete metric space and Ω be a bounded open set of \mathcal{X}. A special case: \mathcal{X} is a complete length space, that is, for any $x, y \in \mathcal{X}$,

$$
d(x, y)=\inf \{\text { length of } \xi: \xi \text { is a Lipschitz curve joining } x \text { and } y\} .
$$

- We study

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with

$$
u=g \quad \text { on } \partial \Omega,
$$

where $g \in C(\partial \Omega)$ is given.

- Difficulties in general metric spaces:
\diamond Unclear meaning of $|\nabla u|$

Introduction

- Let (\mathcal{X}, d) be a complete metric space and Ω be a bounded open set of \mathcal{X}. A special case: \mathcal{X} is a complete length space, that is, for any $x, y \in \mathcal{X}$,

$$
d(x, y)=\inf \{\text { length of } \xi: \xi \text { is a Lipschitz curve joining } x \text { and } y\} .
$$

- We study

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with

$$
u=g \quad \text { on } \partial \Omega,
$$

where $g \in C(\partial \Omega)$ is given.

- Difficulties in general metric spaces:
\diamond Unclear meaning of $|\nabla u|$
\diamond Loss of measure, inner product, and smooth function class

Introduction

- Let (\mathcal{X}, d) be a complete metric space and Ω be a bounded open set of \mathcal{X}. A special case: \mathcal{X} is a complete length space, that is, for any $x, y \in \mathcal{X}$,

$$
d(x, y)=\inf \{\text { length of } \xi: \xi \text { is a Lipschitz curve joining } x \text { and } y\} .
$$

- We study

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with

$$
u=g \quad \text { on } \partial \Omega,
$$

where $g \in C(\partial \Omega)$ is given.

- Difficulties in general metric spaces:
\diamond Unclear meaning of $|\nabla u|$
\diamond Loss of measure, inner product, and smooth function class
\diamond Possible lack of local compactness

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

The case when $n=1$,

$$
\Omega=(-1,1), g(\pm 1)=0
$$

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

1) Vanishing viscosity

The case when $n=1$,

$$
\Omega=(-1,1), g(\pm 1)=0
$$

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

1) Vanishing viscosity
2) Optimal control (minimum exit time from x at speed 1)

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

1) Vanishing viscosity
2) Optimal control (minimum exit time from x at speed 1)

$$
u(x)=\inf _{|h| \leq \varepsilon} u(x+h)+\varepsilon, \forall \varepsilon \ll 1
$$

The case when $n=1$,
$\Omega=(-1,1), g(\pm 1)=0$

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

The case when $n=1$, $\Omega=(-1,1), g(\pm 1)=0$

1) Vanishing viscosity
2) Optimal control
(minimum exit time from x at speed 1)

$$
u(x)=\inf _{|h| \leq \varepsilon} u(x+h)+\varepsilon, \forall \varepsilon \ll 1
$$

3) Viscosity tests

Test by $\phi \in C^{1}$ above at $x \Rightarrow|\nabla \phi(x)| \leq 1$

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

The case when $n=1$, $\Omega=(-1,1), g(\pm 1)=0$

1) Vanishing viscosity
2) Optimal control
(minimum exit time from x at speed 1)

$$
u(x)=\inf _{|h| \leq \varepsilon} u(x+h)+\varepsilon, \forall \varepsilon \ll 1
$$

3) Viscosity tests

Test by $\phi \in C^{1}$ below at $x \Rightarrow|\nabla \phi(x)| \geq 1$

The eikonal equation

Consider $|\nabla u|=1$ in $\Omega \subset \mathbb{R}^{n}$ with $u=g \in C(\partial \Omega)$.

- There are no classical solutions in general.
- There are infinitely many Lipschitz solutions satisfying the equation a.e.

The case when $n=1$,
$\Omega=(-1,1), g(\pm 1)=0$

1) Vanishing viscosity
2) Optimal control
(minimum exit time from x at speed 1)

$$
u(x)=\inf _{|h| \leq \varepsilon} u(x+h)+\varepsilon, \forall \varepsilon \ll 1
$$

3) Viscosity tests

Test by $\phi \in C^{1}$ below at $x \Rightarrow|\nabla \phi(x)| \geq 1$
4) Monge solutions
(sub-slope) $\limsup _{y \rightarrow x} \frac{[u(x)-u(y)]_{+}}{|x-y|}=1, \forall x$

Definitions of metric viscosity solutions

Several notions of metric viscosity solutions will be mentioned:
(1) Curve-based solutions (c-solutions) using optimal control \diamond [Giga-Hamamuki-Nakayasu '14] [Nakayasu '14]
\diamond Very weak space structures, strong assumptions on PDEs

Definitions of metric viscosity solutions

Several notions of metric viscosity solutions will be mentioned:
(1) Curve-based solutions (c-solutions) using optimal control \diamond [Giga-Hamamuki-Nakayasu '14] [Nakayasu '14] \diamond Very weak space structures, strong assumptions on PDEs
(2) Slope-based solutions (s-solutions) using viscosity tests $\diamond[A m b r o s i o-F e n g ~ ' 14] ~[G a n g b o-S ́ w i e ̨ c h ~ ' 14, ~ ' 15] ~[L-N a k a y a s u ~ ' 19] ~$ \diamond Strong space structures, weak assumptions on PDEs

Definitions of metric viscosity solutions

Several notions of metric viscosity solutions will be mentioned:
(1) Curve-based solutions (c-solutions) using optimal control \diamond [Giga-Hamamuki-Nakayasu '14] [Nakayasu '14]
\diamond Very weak space structures, strong assumptions on PDEs
(2) Slope-based solutions (s-solutions) using viscosity tests $\diamond[A m b r o s i o-F e n g ~ ' 14] ~[G a n g b o-S ́ w i e ̨ c h ~ ' 14, ~ ' 15] ~[L-N a k a y a s u ~ ' 19] ~$ \diamond Strong space structures, weak assumptions on PDEs
(3) Monge solutions using sub-slope
\diamond Our new notion extends [Newcomb-Su '95] in \mathbb{R}^{n} to metric spaces \diamond Strong space structures, strong assumptions on PDEs

Definitions of metric viscosity solutions

Several notions of metric viscosity solutions will be mentioned:
(1) Curve-based solutions (c-solutions) using optimal control
\diamond [Giga-Hamamuki-Nakayasu '14] [Nakayasu '14]
\diamond Very weak space structures, strong assumptions on PDEs
(2) Slope-based solutions (s-solutions) using viscosity tests $\diamond[A m b r o s i o-F e n g ~ ' 14] ~[G a n g b o-S ́ w i e ̨ c h ~ ' 14, ~ ' 15] ~[L-N a k a y a s u ~ ' 19] ~$ \diamond Strong space structures, weak assumptions on PDEs
(3) Monge solutions using sub-slope
\diamond Our new notion extends [Newcomb-Su '95] in \mathbb{R}^{n} to metric spaces \diamond Strong space structures, strong assumptions on PDEs, simple

Curves

- Let $\mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ be the set of Lipschitz curves ξ in \mathcal{X} with $\xi(0)=x$ and $\left|\xi^{\prime}\right| \leq 1$ a.e. in \mathbb{R}

Curves

- Let $\mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ be the set of Lipschitz curves ξ in \mathcal{X} with $\xi(0)=x$ and $\left|\xi^{\prime}\right| \leq 1 \quad$ a.e. in \mathbb{R}

For $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$, let

$$
\begin{aligned}
T^{+} & :=\inf \{t \geq 0: \xi(t) \notin \Omega\} \\
T^{-} & :=\sup \{t \leq 0: \xi(t) \notin \Omega\}
\end{aligned}
$$

Curves

- Let $\mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ be the set of Lipschitz curves ξ in \mathcal{X} with $\xi(0)=x$ and $\left|\xi^{\prime}\right| \leq 1 \quad$ a.e. in \mathbb{R}

For $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$, let

$$
\begin{aligned}
T^{+} & :=\inf \{t \geq 0: \xi(t) \notin \Omega\} \\
T^{-} & :=\sup \{t \leq 0: \xi(t) \notin \Omega\}
\end{aligned}
$$

- The solution is expected to be

$$
u(x)=\inf _{\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})}\left\{T^{+}+g\left(\xi\left(T^{+}\right)\right)\right\}
$$

Curves

- Let $\mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ be the set of Lipschitz curves ξ in \mathcal{X} with $\xi(0)=x$ and $\left|\xi^{\prime}\right| \leq 1 \quad$ a.e. in \mathbb{R}

For $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$, let
$T^{+}:=\inf \{t \geq 0: \xi(t) \notin \Omega\}$,
$T^{-}:=\sup \{t \leq 0: \xi(t) \notin \Omega\}$.

- The solution is expected to be

$$
u(x)=\inf _{\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})}\left\{T^{+}+g\left(\xi\left(T^{+}\right)\right)\right\}
$$

- At least formally, we can view

$$
|\nabla u|(x)=\sup _{\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})}(u \circ \xi)^{\prime}(0)
$$

Curve-based solutions of $|\nabla u|=1$

Definition [Giga-Hamamuki-Nakayasu '14]

- $u \in \operatorname{USC}(\Omega)$ is called a c-subsolution if for any $x \in \Omega$ and $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$, $u \circ \xi$ satisfies $\left|(u \circ \xi)^{\prime}(0)\right| \leq 1$ in the viscosity sense, i.e.,

$$
\left|\phi^{\prime}(0)\right| \leq 1
$$

when $\phi \in C^{1}(\mathbb{R})$ s.t. $u \circ \xi-\phi$ attains a local maximum at $t=0$.

- $u \in \operatorname{LSC}(\Omega)$ is called a c-supersolution if for any $x \in \Omega$ and $\varepsilon>0$, there is $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ and $w \in \operatorname{LSC}\left(T^{-}, T^{+}\right)$with $-\infty<T^{ \pm}<\infty$ such that

$$
w(0)=u(x), \quad w \geq u \circ \xi-\varepsilon,
$$

and w satisfies $\left|w^{\prime}\right| \geq 1-\varepsilon$ everywhere in $\left(T^{-}, T^{+}\right)$in the viscosity sense.

- $u \in C(\Omega)$ is called a c-solution if it is both a c-sub and a c-supersolution.

Curve-based solutions of $|\nabla u|=1$

Definition [Giga-Hamamuki-Nakayasu '14]

- $u \in \operatorname{USC}(\Omega)$ is called a c-subsolution if for any $x \in \Omega$ and $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$, $u \circ \xi$ satisfies $\left|(u \circ \xi)^{\prime}(0)\right| \leq 1$ in the viscosity sense, i.e.,

$$
\left|\phi^{\prime}(0)\right| \leq 1
$$

when $\phi \in C^{1}(\mathbb{R})$ s.t. $u \circ \xi-\phi$ attains a local maximum at $t=0$.

- $u \in \operatorname{LSC}(\Omega)$ is called a c-supersolution if for any $x \in \Omega$ and $\varepsilon>0$, there is $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ and $w \in \operatorname{LSC}\left(T^{-}, T^{+}\right)$with $-\infty<T^{ \pm}<\infty$ such that

$$
w(0)=u(x), \quad w \geq u \circ \xi-\varepsilon,
$$

and w satisfies $\left|w^{\prime}\right| \geq 1-\varepsilon$ everywhere in $\left(T^{-}, T^{+}\right)$in the viscosity sense.

- $u \in C(\Omega)$ is called a c-solution if it is both a c-sub and a c-supersolution.

Curve-based solutions of $|\nabla u|=1$

Definition [Giga-Hamamuki-Nakayasu '14]

- $u \in \operatorname{USC}(\Omega)$ is called a c-subsolution if for any $x \in \Omega$ and $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$, $u \circ \xi$ satisfies $\left|(u \circ \xi)^{\prime}(0)\right| \leq 1$ in the viscosity sense, i.e.,

$$
\left|\phi^{\prime}(0)\right| \leq 1
$$

when $\phi \in C^{1}(\mathbb{R})$ s.t. $u \circ \xi-\phi$ attains a local maximum at $t=0$.

- $u \in \operatorname{LSC}(\Omega)$ is called a c-supersolution if for any $x \in \Omega$ and $\varepsilon>0$, there is $\xi \in \mathcal{A}_{x}(\mathbb{R}, \mathcal{X})$ and $w \in \operatorname{LSC}\left(T^{-}, T^{+}\right)$with $-\infty<T^{ \pm}<\infty$ such that

$$
w(0)=u(x), \quad w \geq u \circ \xi-\varepsilon,
$$

and w satisfies $\left|w^{\prime}\right| \geq 1-\varepsilon$ everywhere in $\left(T^{-}, T^{+}\right)$in the viscosity sense.

- $u \in C(\Omega)$ is called a c-solution if it is both a c-sub and a c-supersolution.
- u is called a local c-supersolution if $\left|w^{\prime}\right| \geq 1-\varepsilon$ in $(-\delta, \delta)$ for $\delta=\delta(x)>0$ small instead of $\left(T^{-}, T^{+}\right)$. We can accordingly define local c-solutions.

Slopes and test classes

Let Ω be an open set of a length space \mathcal{X}. For $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$ and $x \in \Omega$, let

- local slope $|\nabla u|(x)=\limsup _{y \rightarrow x} \frac{|u(y)-u(x)|}{d(x, y)}$
(usc envelope) $\quad|\nabla u|^{*}(x)=\limsup _{y \rightarrow x}|\nabla u|(y)$
- super/sub-slope $\left|\nabla^{ \pm} u\right|(x)=\limsup _{y \rightarrow x} \frac{[u(y)-u(x)]_{ \pm}}{d(x, y)} \quad\left([a]_{ \pm}:=\max \{ \pm a, 0\}\right)$

Slopes and test classes

Let Ω be an open set of a length space \mathcal{X}. For $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$ and $x \in \Omega$, let

- local slope $|\nabla u|(x)=\limsup _{y \rightarrow x} \frac{|u(y)-u(x)|}{d(x, y)}$
(usc envelope) $\quad|\nabla u|^{*}(x)=\limsup _{y \rightarrow x}|\nabla u|(y)$
- super/sub-slope $\left|\nabla^{ \pm} u\right|(x)=\limsup _{y \rightarrow x} \frac{[u(y)-u(x)]_{ \pm}}{d(x, y)} \quad\left([a]_{ \pm}:=\max \{ \pm a, 0\}\right)$

Test classes:

$$
\overline{\mathcal{C}}(\Omega):=\left\{u \in \operatorname{Lip}_{l o c}(\Omega):\left|\nabla^{+} u\right|=|\nabla u| \text { and }|\nabla u| \text { is continuous in } \Omega\right\}
$$

Slopes and test classes

Let Ω be an open set of a length space \mathcal{X}. For $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$ and $x \in \Omega$, let

- local slope $|\nabla u|(x)=\underset{y \rightarrow x}{\limsup } \frac{|u(y)-u(x)|}{d(x, y)}$
(usc envelope) $\quad|\nabla u|^{*}(x)=\limsup _{y \rightarrow x}|\nabla u|(y)$
- super/sub-slope $\left|\nabla^{ \pm} u\right|(x)=\limsup _{y \rightarrow x} \frac{[u(y)-u(x)]_{ \pm}}{d(x, y)} \quad\left([a]_{ \pm}:=\max \{ \pm a, 0\}\right)$

Test classes:

$$
\begin{array}{ll}
\overline{\mathcal{C}}(\Omega):=\left\{u \in \operatorname{Lip}_{l o c}(\Omega):\left|\nabla^{+} u\right|=|\nabla u| \text { and }|\nabla u| \text { is continuous in } \Omega\right\} & \bigvee \\
\underline{\mathcal{C}}(\Omega):=\left\{u \in \operatorname{Lip}_{l o c}(\Omega):\left|\nabla^{-} u\right|=|\nabla u| \text { and }|\nabla u| \text { is continuous in } \Omega\right\} & \bigwedge
\end{array}
$$

Slope-based solutions of $|\nabla u|=1$

Definition [Gangbo-Święch '15]

Let Ω be an open subset of a complete length space (\mathcal{X}, d).

- $u \in U S C(\Omega)$ is called an s-subsolution if

$$
\left|\nabla \psi_{1}\right|(x)-\left|\nabla \psi_{2}\right|^{*}(x) \leq 1
$$

holds for any $\psi_{1} \in \underline{\mathcal{C}}(\Omega)$ and $\psi_{2} \in \operatorname{Lip}_{\text {loc }}(\Omega)$ such that $u-\psi_{1}-\psi_{2}$ attains a local maximum at $x \in \Omega$.

- $u \in \operatorname{LSC}(\Omega)$ is called an s-supersolution if

$$
\left|\nabla \psi_{1}\right|(x)+\left|\nabla \psi_{2}\right|^{*}(x) \geq 1
$$

holds for any $\psi_{1} \in \overline{\mathcal{C}}(\Omega)$ and $\psi_{2} \in \operatorname{Lip}_{\text {loc }}(\Omega)$ such that $u-\psi_{1}-\psi_{2}$ attains a local minimum at $x \in \Omega$.

- $u \in C(\Omega)$ is called an s-solution if it is an s-sub and an s-supersolution.

Monge solutions of $|\nabla u|=1$

Definition (Generalization of [Newcomb-Su '95] in length spaces)

Let Ω be an open subset of a complete length space (\mathcal{X}, d).

- $u \in \operatorname{Lip}_{\text {occ }}(\Omega)$ is called a Monge subsolution if, at any $x \in \Omega$,

$$
\left|\nabla^{-} u\right|(x)\left(=\lim _{y \rightarrow x} \sup \frac{[u(x)-u(y)]_{+}}{d(x, y)}\right) \leq 1 .
$$

- $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$ is called a Monge supersolution if, at any $x \in \Omega$,

$$
\left|\nabla^{-} u\right|(x) \geq 1 .
$$

- $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$ is called a Monge solution if it is both a Monge sub- and supersolution, i.e., at any $x \in \Omega$,

$$
\left|\nabla^{-} u\right|(x)=1 .
$$

Main result

Consider the eikonal equation:

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega . \tag{1}
\end{equation*}
$$

Theorem (Equivalence of solutions)

Let Ω be an open set of a complete length space (\mathcal{X}, d). Let $u \in C(\Omega)$. Then the following statements are equivalent:
(a) u is a local c-solution of (1);
(b) u is a locally uniformly continuous s-solution of (1);
(c) u is a Monge solution of (1).

In addition, if any of (a)-(c) holds, then u is locally Lipschitz with

$$
|\nabla u|(x)=\left|\nabla^{-} u\right|(x)=1 \quad \text { for all } x \in \Omega .
$$

Main result

Consider the eikonal equation:

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega . \tag{1}
\end{equation*}
$$

Theorem (Equivalence of solutions)

Let Ω be an open set of a complete length space (\mathcal{X}, d). Let $u \in C(\Omega)$. Then the following statements are equivalent:
(a) u is a local c-solution of (1);
(b) u is a locally uniformly continuous s-solution of (1);
(c) u is a Monge solution of (1).

In addition, if any of (a)-(c) holds, then u is locally Lipschitz with

$$
|\nabla u|(x)=\left|\nabla^{-} u\right|(x)=1 \quad \text { for all } x \in \Omega .
$$

- The local uniform continuity can be dropped if \mathcal{X} is locally compact.

Main result

Consider the eikonal equation:

$$
\begin{equation*}
|\nabla u|=1 \quad \text { in } \Omega . \tag{1}
\end{equation*}
$$

Theorem (Equivalence of solutions)

Let Ω be an open set of a complete length space (\mathcal{X}, d). Let $u \in C(\Omega)$. Then the following statements are equivalent:
(a) u is a local c-solution of (1);
(b) u is a locally uniformly continuous s-solution of (1);
(c) u is a Monge solution of (1).

In addition, if any of (a)-(c) holds, then u is locally Lipschitz with

$$
|\nabla u|(x)=\left|\nabla^{-} u\right|(x)=1 \quad \text { for all } x \in \Omega .
$$

- The local uniform continuity can be dropped if \mathcal{X} is locally compact.
- It turns out that $u \in \underline{C}(\Omega)$ (certain weak concavity).

Remarks

- Under the same assumptions, we can generalize our result for

$$
|\nabla u|=f(x) \quad \text { in } \Omega,
$$

if $f>0$ is locally uniformly continuous (or continuous if \mathcal{X} is loc. cpt.).

Remarks

- Under the same assumptions, we can generalize our result for

$$
|\nabla u|=f(x) \quad \text { in } \Omega,
$$

if $f>0$ is locally uniformly continuous (or continuous if \mathcal{X} is loc. cpt.).

- If (\mathcal{X}, d) is not a length space but only a rectifiably connected space, take $\tilde{d}(x, y)=\inf \{$ length of $\xi: \xi$ is a rectifiable curve connecting x and $y\}$.

We can still apply our result, since (\mathcal{X}, \tilde{d}) is a length space.

Conclusion and future problems

- The known metric viscosity solution are equivalent in rectifiably connected metric spaces, especially in length spaces.
- The Monge solution can be used as a convenient alternative notion of solutions to the eikonal equation in metric spaces.

Conclusion and future problems

- The known metric viscosity solution are equivalent in rectifiably connected metric spaces, especially in length spaces.
- The Monge solution can be used as a convenient alternative notion of solutions to the eikonal equation in metric spaces.

Future Projects

- Equivalence of solutions to the time dependent problem:

$$
\partial_{t} u+H(x,|\nabla u|)=0 \quad \text { in } \mathcal{X} \times(0, \infty)
$$

- The eikonal equation with discontinuities in metric measure spaces:

$$
|\nabla u|=f(x) \quad \text { with } f \text { only measurable. }
$$

Conclusion and future problems

- The known metric viscosity solution are equivalent in rectifiably connected metric spaces, especially in length spaces.
- The Monge solution can be used as a convenient alternative notion of solutions to the eikonal equation in metric spaces.

Future Projects

- Equivalence of solutions to the time dependent problem:

$$
\partial_{t} u+H(x,|\nabla u|)=0 \quad \text { in } \mathcal{X} \times(0, \infty)
$$

- The eikonal equation with discontinuities in metric measure spaces:

$$
|\nabla u|=f(x) \quad \text { with } f \text { only measurable. }
$$

Thank you for your kind attention!

