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Background: Boundary Roughness Effect

We consider viscous incompressible fluids above rough bumpy boundaries
x9 > e7v(x1 /) with v Lipschitz and the no-slip boundary condition.
General concern

The effect of wall-roughness on fluid flows.
= The flow may paradoxically be better behaved than flat boundaries.

The Navier wall law

The wall law is a boundary condition on the flat boundary describing an
averaged effect from the O(e)-scale on large scale flows of order O(1).
When the boundary is periodic, it gives a slip condition, with @ = a(~),

up = eadbur, us =0 on 8]1%1.

e Stationary: Jager- Mikeli¢ ('01), Gérard-Varet ('09),
Gérard-Varet - Masmoudi ('10)

e Nonstationary: Mikeli¢ - Ne€asovd - Neuss-Radu ('13)

o IBVP: Higaki ('16)
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To investigate such effects from the point of view of the regularity theory,
especially, of the mesoscopic regularity of the steady Navier-Stokes flows.

3/17



2D steady Navier-Stokes equations
—Au® + Vp® = —u-Vu® in Bf |
(NS?) V-uf =0 in B |
u® =0 onIg.

= (u§(z),u5(x)) " velocity field

= p°(x): pressure field ’ //

For e € (0,1] and 7 € (0, 1], M.

Bf7+:{x€R2|m1€(—r,r), f:’y(g)<x2<€’y( )—i—r}
IS ={z €R? |21 € (—r,1), xgzm(%)}.

e v € WL boundary function, y(x1) € (—1,0) for all z; € R

For an open set 2 C R? with the Lebesgue measure ||,

fir=g [ Ga=g [ 1
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Small Scales (< €) = The Schauder theory
The small-scale regularity is determined by the regularity of data.

o LadyZenskaja ('69): Holder estimate by potential theory
e Giaquinta - Modica ('82): the Campanato spaces

Dependence on the continuity of 7/ when the boundary is xo = y(z1).

Large Scales (¢ <r <1)
The large-scale regularity is determined by the macroscopic properties.
e Gérard-Varet ('09): C%t-est. uniform in ¢ by a mesoscopic Holder

<]{3 \UEP); < C(p) (ﬂ \usp)éru? e (0,1),

$,+ 1,4+
combined with the classical estimates near the boundary zo = ey(x1/¢)
o Kenig- Prange ('18): linear elliptic system, mesoscopic Lipschitz
@ Zhuge ('20, preprint): mesoscopic Lipschitz, the quantitative method
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Theorem 1 (mesoscopic Lipschitz)

VM € (0,00), IeM = eO(||y|lpr.0, M) € (0,1) s.t.
Ve e (0,eW], Vr e [¢/eM, 1], any weak solution uf to (NS) with

1

(* (f, ) <ar
satisfies
0,

where the constant C](Vlf) is independent of ¢ and r.

1
) <,

e
T+
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Theorem 2 (polynomial approximation)

Fix M € (0,00), g € (0,1). Then, 3e® = @ (||ly|| 10, M, 1) € (0,1)
s.t. for all weak solutions u® to (NS?) satisfying (), the following holds.

(i) Ve € (0,6?], Vr € [¢/e?, 1], we have

(%

where the coefficient ¢ = ¢S (||v|[y1.00, M, ) is a functional of u°.

1

3
|u(x) — Exge |2 dm> < C’](VZI)(TH" I 5%7*%) ,
T+

(ii) Let v be 27-periodic in addition. Then, 3a = a(||y|lw1.«) € R s.t.
Ve € (0,e?], Vr € [¢/e@), 1], we have

,

Remark

1
2 ) &
[uf (z) — (22 + ca)eq | dx) < CQ (1 1 3 7).
ot

The polynomial approximation requires an analysis of the boundary layer.
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Remark (Consequences)

(i) When r = O(e), the estimates are no better than the one in Theorem
1. Hence there is no improvement at this scale. On the other hand, if we
consider the case r € [(¢/e(2))%,1] with § € (0,1), then we see that

)
TW_“)TH“ :

N|—=

Pl eaps < (1+ (@)

Therefore, we call the estimates in Theorem 2 mesoscopic C'#-estimates
at the scales r € [(/e(®)?, 1] with § € (0, (2p +1)71].

(ii) A comparison between two estimates in Theorem 2 highlights the
regularity improvement coming from the boundary periodicity: in fact,
3
2

11
rT2 <e2rz, re(sl].

=

€
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Remark (Relation with the wall law)

(i) Let us define a polynomial P§, by
PX(z) = (z2 + ca)ey .
Then Pj; is an explicit (shear flow) solution to
—Auy + Vpy = —uiy - Vuy, in R
(NSS,) V-us, =0 in R2
UN,1 = 5a82uN’1, UN,2 = 0 on 8R2
with a trivial pressure p%; = 0.

(ii) The second estimate reads as follows: any weak solution u° to (NS?)
can be approximated, at mesoscopic scales, by the Navier polynomial Pg,
multiplied by a constant depending on u® (a local Navier wall law).
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We apply a compactness argument originating from the works by
Avellaneda - Lin (87, '89) on uniform estimates in homogenization.

Compactness

The mesoscopic regularity is inherited from the limit system when ¢ — 0
posed in a domain with a flat boundary. Here no regularity is needed for
the original boundary, beyond the boundedness of v and of its gradient.

We use such regularity in order to verify the boundary layer expansion

1
2
||2) )

uf(z) = (W)BiJr (33261 + z—:v(g)) +o(r) in (]{35
T+
P (@) = @) s, a(2).
nt e
The strategies are summarized as
e Construction of the boundary layer corrector (v, q)
@ Mesoscopic regularity by compactness

@ lteration of the compactness argument
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The expansion u(z) ~ ev(x/e) and pf(z) ~ q(x/e) leads to
—Av+Vqg=0, y € Qb

(BL) V-v=0, y € QM
v(y,7(Y) = =v(Y)er,

where QP! = {y € R? | yo > y(y1)}.

Proposition 1

v e HE (QP) to (BL) satisfying

n+l poo
sup / / Volyr, y2)I? dya dyr < C(lllwee)
n€Z Jn ~v(y')

(Outlined Proof) Gérard-Varet - Masmoudi ('10), Kenig - Prange ('18).
@ Equivalent problem on a strip with the Dirichlet-to-Neumann op. DN

1 1
e Estimates for DN in H2_ . (Note that Wh> — H?2 )

@ The Saint-Venant energy estimate controlling the nonlocality
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— AU 4+ VP =-V - (U @b +b U
(MNS?) ~ XU -VU® +V-F° in Bf |

V.U®=0 inBj, U°=0 onTY,

b (z) = C° (wpe1 + ev(g)) , zeBi,.
Note that V- b° =0 in Bf , and b° =0 on I'f.
The Caccioppoli inequality
3Ky € (0,00) depending only on ||7y||yy1. s.t. V& € (0,1), we have

VU 355 ,) < Ko((1 = O) 20 NEa s
4 e
+ (IC°1* + (1 = 0)731C°[3) IU° sz

OO = OV g+ IFNEaga ) -
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Lemma 1

VB € (0,00), VM € (0,00), V€ (0,1), 36g = bo(M, ) € (0,1) s.t.
Yy with [[y]lwiee < B8, V0 € (0,60], Fe, = ,(8, M, 1, 0) € (0,1) sit.
Ve € (0,64, V(X°,C°) € [-1,1]%, VF© € L*(B§f | )**3 with

| F€l L2 ) < Mey,
s

any weak solution U¢ to (MNS?) with

(+4) ][ U2 < M2
B

e
1,+

satisfies

/

Remark

’Us(l‘) - (82U1€)B§+(:E2e1 + 50(2)”2 de < M292+2“.

e
0,+

We can choose the scale parameter 6 freely as long as 6 € (0, 6p).
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Iteration

Lemma 2
Fix 8 € (0,00), M € (0,00), and 11 € (0,1). Let 6y € (0, %) be the
constant in Lemma 1. Choose 0 = (M, 1) € (0,6o] small to satisfy
41— 6)2 (Ci (1 — 0#)71(6 + 22 M%)z M=)
and C(1—60")"%(6+285M*)MO <1,
where C is a numerical constant. Moreover, let ¢, =¢,(0) € (0,1) be

the corresponding constant for # in Lemma 1. Then, Vk € N,
Ve € (0,08 1622 TMe2)], any weak sol. uf to (NS°) with () satisfies

][ |u®(z) — af, (z2e1 + ev( )‘ do < M29E+2k

ok +

B

jaf] < Co873(1 — )71 (6 +2°(1 — ) 2M*)2 M Z D
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Basic idea
Induction on k € N using compactness (Lemma 1) at each step.

Difficulty

Nonlinearity and lack of smallness.

Let the estimates hold for £ € N and let € € (0, 9k+2(2+“)53].
We define U*/%" = U=/%" (y)) and P=/?" = P</%"(y) by

1 ek,y

£ k g 13 E
Ue/? (y) = g(+m)k (“ (Qky) - ek% (?/261 + %’U(?)D )

X k
P ) = e (F(09) — aza(" L))

Then we see that, by the induction assumption,
02 2
][E/Gk |U€/ | < M
Bily

and that (Us/ek,Ps/Gk) is a weak solution to ...
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Modified Navier-Stokes equations
[~ AU 4V, P = v, (U o (6°6/%)
+(0kb5/9k> ® Ug/ek)
_9(2+u)kU5/9k .V, Ue/ek’
+V, - F/" in BY/"
Vy U =0 in B/ U/ =0 onT/"

\ 9

where

bs/G ( ) ce ( eky ce —9k €
k y291+9k ( ))7 k= U ag,
F/% (y) = =674 (/7" (y) ® 10 (1)~ (Ciyze1) ® (Ciyzer)) -

Key ingredient
A suitable choice of the scale parameter § = 6(M) controlling the
coefficients of M. This is done in the spirit of the Newton shooting.
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Fix 11 € (0,1) and set £(2) = g22F1)e2 . We take £ € (0,£()].
Since every 1 € [¢/£(), 0] satisfies 7 € (6%, 0%1] with some 2 < k € N,

£,
<(f
By,
3
< MOHWE=D=5 4 =345 | 5<][ |v(§)|2 dx)
e

< MUHR-1=5 4 (9_% sup \ai\) ez (0 1)z .
keN

1
3
|uf (x) — axoer|? d:r:)

2
luf () — agxoeq|? dm)

Then, from 0¥=1 € (0,67 1r),
1
3
(]l [uf (z) = afasen|? dw) < CO(M, 1, 0)(r1+# + e273).
B
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