Regularity for the stationary Navier-Stokes equations over bumpy boundaries and a local wall law

檜垣充朗 (神戸大学)

joint work with

Christophe Prange (CNRS 研究員・ボルドー大学)

The 45th Sapporo Symposium on Partial Differential Equations (北海道大学, 8月17日, 2020)

Background: Boundary Roughness Effect

We consider viscous incompressible fluids above rough bumpy boundaries $x_2 > \varepsilon \gamma(x_1/\varepsilon)$ with γ Lipschitz and the no-slip boundary condition.

General concern

The effect of wall-roughness on fluid flows.

 \Rightarrow The flow may paradoxically be better behaved than flat boundaries.

The Navier wall law

The wall law is a boundary condition on the flat boundary describing an averaged effect from the $O(\varepsilon)$ -scale on large scale flows of order O(1). When the boundary is periodic, it gives a slip condition, with $\alpha = \alpha(\gamma)$,

$$u_1 = \varepsilon \alpha \partial_2 u_1, \quad u_2 = 0 \quad \text{on} \quad \partial \mathbb{R}^2_+.$$

- Stationary: Jäger · Mikelić ('01), Gérard-Varet ('09), Gérard-Varet · Masmoudi ('10)
- Nonstationary: Mikelić · Nečasová · Neuss-Radu ('13)
- IBVP: Higaki ('16)

To investigate such effects from the point of view of the regularity theory, especially, of the mesoscopic regularity of the steady Navier-Stokes flows.

2D steady Navier-Stokes equations

 $(\mathsf{NS}^{\varepsilon})$

$$\left\{ \begin{array}{ll} -\Delta u^{\varepsilon}+\nabla p^{\varepsilon}=-u^{\varepsilon}\cdot\nabla u^{\varepsilon} & \text{in } B_{1,+}^{\varepsilon} \\ \nabla\cdot u^{\varepsilon}=0 & \text{in } B_{1,+}^{\varepsilon} \\ u^{\varepsilon}=0 & \text{on } \Gamma_{1}^{\varepsilon}. \end{array} \right.$$

•
$$u^{\varepsilon} = (u_1^{\varepsilon}(x), u_2^{\varepsilon}(x))^{\top}$$
: velocity field
• $p^{\varepsilon} = p^{\varepsilon}(x)$: pressure field

$$P_{\mu}^{\epsilon}$$

For
$$\varepsilon \in (0, 1]$$
 and $r \in (0, 1]$,
 $B_{r,+}^{\varepsilon} = \{x \in \mathbb{R}^2 \mid x_1 \in (-r, r), \quad \varepsilon \gamma(\frac{x_1}{\varepsilon}) < x_2 < \varepsilon \gamma(\frac{x_1}{\varepsilon}) + r\},$
 $\Gamma_r^{\varepsilon} = \{x \in \mathbb{R}^2 \mid x_1 \in (-r, r), \quad x_2 = \varepsilon \gamma(\frac{x_1}{\varepsilon})\}.$

• $\gamma \in W^{1,\infty}$: boundary function, $\gamma(x_1) \in (-1,0)$ for all $x_1 \in \mathbb{R}$ For an open set $\Omega \subset \mathbb{R}^3$ with the Lebesgue measure $|\Omega|$,

$$\int_{\Omega} |f| = \frac{1}{|\Omega|} \int_{\Omega} |f|, \qquad (\overline{f})_{\Omega} = \frac{1}{|\Omega|} \int_{\Omega} f.$$

Regularity Theory

Small Scales ($\lesssim \varepsilon$ **)** \Rightarrow The Schauder theory

The small-scale regularity is determined by the regularity of data.

- Ladyženskaja ('69): Hölder estimate by potential theory
- Giaquinta · Modica ('82): the Campanato spaces

Dependence on the continuity of γ' when the boundary is $x_2 = \gamma(x_1)$.

Large Scales ($\varepsilon \lesssim r \le 1$)

The large-scale regularity is determined by the macroscopic properties.

• Gérard-Varet ('09): $C^{0,\mu}$ -est. uniform in ε by a mesoscopic Hölder

$$\left(\oint_{B_{r,+}^{\varepsilon}} |u^{\varepsilon}|^2 \right)^{\frac{1}{2}} \leq C(\mu) \left(\oint_{B_{1,+}^{\varepsilon}} |u^{\varepsilon}|^2 \right)^{\frac{1}{2}} r^{\mu} \,, \quad \mu \in (0,1) \,,$$

combined with the classical estimates near the boundary $x_2 = \varepsilon \gamma(x_1/\varepsilon)$

- Kenig · Prange ('18): linear elliptic system, mesoscopic Lipschitz
- Zhuge ('20, preprint): mesoscopic Lipschitz, the quantitative method

Main Theorems (CVPDE)

Theorem 1 (mesoscopic Lipschitz)

 $\begin{array}{l} \forall \, M \in (0,\infty), \, \exists \, \varepsilon^{(1)} = \varepsilon^{(1)}(\|\gamma\|_{W^{1,\infty}}, M) \in (0,1) \text{ s.t.} \\ \forall \, \varepsilon \in (0,\varepsilon^{(1)}], \, \forall \, r \in [\varepsilon/\varepsilon^{(1)},1], \text{ any weak solution } u^{\varepsilon} \text{ to } (\mathsf{NS}^{\varepsilon}) \text{ with} \end{array}$

(*)
$$\left(\oint_{B_{1,+}^{\varepsilon}} |u^{\varepsilon}|^2 \right)^{\frac{1}{2}} \le M$$

satisfies

$$\left(\oint_{B_{r,+}^{\varepsilon}} |u^{\varepsilon}|^2
ight)^{rac{1}{2}} \leq C_M^{(1)} r \, ,$$

where the constant $C_M^{(1)}$ is independent of ε and r.

Theorem 2 (polynomial approximation)

Fix $M \in (0,\infty)$, $\mu \in (0,1)$. Then, $\exists \varepsilon^{(2)} = \varepsilon^{(2)}(\|\gamma\|_{W^{1,\infty}}, M, \mu) \in (0,1)$ s.t. for all weak solutions u^{ε} to (NS^{ε}) satisfying (*), the following holds. (i) $\forall \varepsilon \in (0, \varepsilon^{(2)}], \forall r \in [\varepsilon/\varepsilon^{(2)}, 1]$, we have

$$\left(\oint_{B_{r,+}^{\varepsilon}} |u^{\varepsilon}(x) - c_r^{\varepsilon} x_2 \mathbf{e}_1|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \le C_M^{(2)} (r^{1+\mu} + \varepsilon^{\frac{1}{2}} r^{\frac{1}{2}}),$$

where the coefficient $c_r^\varepsilon=c_r^\varepsilon(\|\gamma\|_{W^{1,\infty}},M,\mu)$ is a functional of $u^\varepsilon.$

(ii) Let γ be 2π -periodic in addition. Then, $\exists \alpha = \alpha(\|\gamma\|_{W^{1,\infty}}) \in \mathbb{R}$ s.t. $\forall \varepsilon \in (0, \varepsilon^{(2)}], \forall r \in [\varepsilon/\varepsilon^{(2)}, 1]$, we have

$$\left(\oint_{B_{r,+}^{\varepsilon}} |u^{\varepsilon}(x) - c_r^{\varepsilon}(x_2 + \varepsilon \alpha) \mathbf{e}_1|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \leq \widetilde{C_M^{(2)}}(r^{1+\mu} + \varepsilon^{\frac{3}{2}}r^{-\frac{1}{2}}) \,.$$

Remark

The polynomial approximation requires an analysis of the boundary layer.

Remark (Consequences)

(i) When $r = O(\varepsilon)$, the estimates are no better than the one in Theorem 1. Hence there is no improvement at this scale. On the other hand, if we consider the case $r \in [(\varepsilon/\varepsilon^{(2)})^{\delta}, 1]$ with $\delta \in (0, 1)$, then we see that

$$r^{1+\mu} + \varepsilon^{\frac{1}{2}} r^{\frac{1}{2}} \le (1 + (\varepsilon^{(2)})^{\frac{1}{2}} r^{\frac{1-\delta}{2\delta} - \mu}) r^{1+\mu}.$$

Therefore, we call the estimates in Theorem 2 mesoscopic $C^{1,\mu}$ -estimates at the scales $r \in [(\varepsilon/\varepsilon^{(2)})^{\delta}, 1]$ with $\delta \in (0, (2\mu + 1)^{-1}]$.

(ii) A comparison between two estimates in Theorem 2 highlights the regularity improvement coming from the boundary periodicity: in fact,

$$\varepsilon^{\frac{3}{2}}r^{-\frac{1}{2}} < \varepsilon^{\frac{1}{2}}r^{\frac{1}{2}}, \quad r \in (\varepsilon, 1].$$

Remark (Relation with the wall law)

(i) Let us define a polynomial P^{ε}_N by

 $P_N^{\varepsilon}(x) = (x_2 + \varepsilon \alpha) \mathbf{e}_1.$

Then P_N^{ε} is an explicit (shear flow) solution to

$$(\mathsf{NS}_N^{\varepsilon}) \qquad \begin{cases} -\Delta u_N^{\varepsilon} + \nabla p_N^{\varepsilon} = -u_N^{\varepsilon} \cdot \nabla u_N^{\varepsilon} & \text{in } \mathbb{R}_+^2 \\ \nabla \cdot u_N^{\varepsilon} = 0 & \text{in } \mathbb{R}_+^2 \\ u_{N,1} = \varepsilon \alpha \partial_2 u_{N,1} \,, \quad u_{N,2} = 0 & \text{on } \partial \mathbb{R}^2 \end{cases}$$

with a trivial pressure $p_N^{\varepsilon} = 0$.

(ii) The second estimate reads as follows: any weak solution u^{ε} to (NS^{ε}) can be approximated, at mesoscopic scales, by the Navier polynomial P_N^{ε} multiplied by a constant depending on u^{ε} (a local Navier wall law).

Strategy

We apply a compactness argument originating from the works by Avellaneda \cdot Lin ('87, '89) on uniform estimates in homogenization.

Compactness

The mesoscopic regularity is inherited from the limit system when $\varepsilon \to 0$ posed in a domain with a flat boundary. Here no regularity is needed for the original boundary, beyond the boundedness of γ and of its gradient.

We use such regularity in order to verify the boundary layer expansion

$$\begin{cases} u^{\varepsilon}(x) = (\overline{\partial_2 u_1^{\varepsilon}})_{B_{r,+}^{\varepsilon}} \left(x_2 \mathbf{e}_1 + \varepsilon v(\frac{x}{\varepsilon}) \right) + o(r) & \text{in } \left(\oint_{B_{r,+}^{\varepsilon}} |\cdot|^2 \right)^{\frac{1}{2}}, \\ p^{\varepsilon}(x) = (\overline{\partial_2 u_1^{\varepsilon}})_{B_{r,+}^{\varepsilon}} q(\frac{x}{\varepsilon}). \end{cases}$$

The strategies are summarized as

- Construction of the boundary layer corrector (v, q)
- Mesoscopic regularity by compactness
- Iteration of the compactness argument

Boundary Layer Corrector

The expansion $u^{\varepsilon}(x) \sim \varepsilon v(x/\varepsilon)$ and $p^{\varepsilon}(x) \sim q(x/\varepsilon)$ leads to

(BL)
$$\begin{cases} -\Delta v + \nabla q = 0, & y \in \Omega^{\mathrm{bl}} \\ \nabla \cdot v = 0, & y \in \Omega^{\mathrm{bl}} \\ v(y', \gamma(y')) = -\gamma(y')\mathbf{e}_{1}, \end{cases}$$

where $\Omega^{\mathrm{bl}} = \{ y \in \mathbb{R}^2 \mid y_2 > \gamma(y_1) \}.$

Proposition 1 $\exists ! v \in H^1_{loc}(\overline{\Omega^{bl}}) \text{ to (BL) satisfying}$ $\sup_{\eta \in \mathbb{Z}} \int_{\eta}^{\eta+1} \int_{\gamma(y')}^{\infty} |\nabla v(y_1, y_2)|^2 \, \mathrm{d}y_2 \, \mathrm{d}y_1 \le C(\|\gamma\|_{W^{1,\infty}}) \,.$

(Outlined Proof) Gérard-Varet · Masmoudi ('10), Kenig · Prange ('18).

- $\bullet\,$ Equivalent problem on a strip with the Dirichlet-to-Neumann op. $\rm DN$
- Estimates for DN in $H^{\frac{1}{2}}_{uloc}$ (Note that $W^{1,\infty} \hookrightarrow H^{\frac{1}{2}}_{uloc}$)
- The Saint-Venant energy estimate controlling the nonlocality

Compactness Argument

$$(\mathsf{MNS}^{\varepsilon}) \qquad \begin{cases} -\Delta U^{\varepsilon} + \nabla P^{\varepsilon} = -\nabla \cdot (U^{\varepsilon} \otimes b^{\varepsilon} + b^{\varepsilon} \otimes U^{\varepsilon}) \\ & -\lambda^{\varepsilon} U^{\varepsilon} \cdot \nabla U^{\varepsilon} + \nabla \cdot F^{\varepsilon} \text{ in } B_{1,+}^{\varepsilon} \\ \nabla \cdot U^{\varepsilon} = 0 \text{ in } B_{1,+}^{\varepsilon}, \qquad U^{\varepsilon} = 0 \text{ on } \Gamma_{1}^{\varepsilon}, \end{cases}$$

$$b^{\varepsilon}(x) = C^{\varepsilon}\left(x_2\mathbf{e}_1 + \varepsilon v(\frac{x}{\varepsilon})\right), \quad x \in B_{1,+}^{\varepsilon}.$$

Note that $\nabla \cdot b^{\varepsilon} = 0$ in $B_{1,+}^{\varepsilon}$ and $b^{\varepsilon} = 0$ on Γ_1^{ε} .

The Caccioppoli inequality

 $\exists K_0 \in (0,\infty)$ depending only on $\|\gamma\|_{W^{1,\infty}}$ s.t. $\forall \theta \in (0,1)$, we have

$$\begin{split} \|\nabla U^{\varepsilon}\|_{L^{2}(B^{\varepsilon}_{\theta,+})}^{2} &\leq K_{0} \Big((1-\theta)^{-2} \|U^{\varepsilon}\|_{L^{2}(B^{\varepsilon}_{1,+})}^{2} \\ &+ \big(|C^{\varepsilon}|^{4} + (1-\theta)^{-\frac{4}{3}} |C^{\varepsilon}|^{\frac{4}{3}} \big) \|U^{\varepsilon}\|_{L^{2}(B^{\varepsilon}_{1,+})}^{2} \\ &+ (\lambda^{\varepsilon})^{4} (1-\theta)^{-4} \|U^{\varepsilon}\|_{L^{2}(B^{\varepsilon}_{1,+})}^{6} + \|F^{\varepsilon}\|_{L^{2}(B^{\varepsilon}_{1,+})}^{2} \Big) \,. \end{split}$$

Lemma 1

$$\begin{split} &\forall \beta \in (0,\infty), \,\forall M \in (0,\infty), \,\forall \mu \in (0,1), \,\exists \theta_0 = \theta_0(M,\mu) \in (0,\frac{1}{8}) \quad \text{s.t.} \\ &\forall \gamma \text{ with } \|\gamma\|_{W^{1,\infty}} \leq \beta, \,\forall \theta \in (0,\theta_0], \,\exists \varepsilon_\mu = \varepsilon_\mu(\beta,M,\mu,\theta) \in (0,1) \quad \text{s.t.} \\ &\forall \varepsilon \in (0,\varepsilon_\mu], \,\forall \, (\lambda^\varepsilon, C^\varepsilon) \in [-1,1]^2, \,\forall F^\varepsilon \in L^2(B^\varepsilon_{1,+})^{3\times 3} \text{ with} \end{split}$$

 $\|F^{\varepsilon}\|_{L^2(B^{\varepsilon}_{1,+})} \le M\varepsilon_{\mu}\,,$

any weak solution U^{ε} to (MNS^{ε}) with

(**)
$$\int_{B_{1,+}^{\varepsilon}} |U^{\varepsilon}|^2 \le M^2$$

satisfies

$$\int_{B^{\varepsilon}_{\theta,+}} \left| U^{\varepsilon}(x) - (\overline{\partial_2 U^{\varepsilon}_1})_{B^{\varepsilon}_{\theta,+}} \left(x_2 \mathbf{e}_1 + \varepsilon v(\frac{x}{\varepsilon}) \right) \right|^2 \mathrm{d}x \le M^2 \theta^{2+2\mu}$$

Remark

We can choose the scale parameter θ freely as long as $\theta \in (0, \theta_0]$.

13/17

Iteration

Lemma 2

Fix $\beta \in (0,\infty)$, $M \in (0,\infty)$, and $\mu \in (0,1)$. Let $\theta_0 \in (0,\frac{1}{8})$ be the constant in Lemma 1. Choose $\theta = \theta(M,\mu) \in (0,\theta_0]$ small to satisfy

$$4(1-\theta)^{\frac{3}{2}} \left(C_1(1-\theta^{\mu})^{-1}(6+2^8M^4)^{\frac{1}{2}}M\theta^{\frac{1}{2}} \right)^4 \le 1$$

and $C_1(1-\theta^{\mu})^{-2}(6+2^8M^4)M\theta \le 1$,

where C_1 is a numerical constant. Moreover, let $\varepsilon_{\mu} = \varepsilon_{\mu}(\theta) \in (0,1)$ be the corresponding constant for θ in Lemma 1. Then, $\forall k \in \mathbb{N}$, $\forall \varepsilon \in (0, \theta^{k-1}(\theta^{2(2+\mu)}\varepsilon_{\mu}^2)]$, any weak sol. u^{ε} to $(\mathsf{NS}^{\varepsilon})$ with (*) satisfies

$$\begin{aligned} &\int_{B^{\varepsilon}_{\theta^{k},+}} \left| u^{\varepsilon}(x) - a^{\varepsilon}_{k} \left(x_{2} \mathbf{e}_{1} + \varepsilon v \left(\frac{x}{\varepsilon} \right) \right) \right|^{2} \mathrm{d}x \leq M^{2} \theta^{(2+2\mu)k} \,, \\ &|a^{\varepsilon}_{k}| \leq C_{2} \theta^{-\frac{3}{2}} (1-\theta)^{-1} \left(6 + 2^{6} (1-\theta)^{-2} M^{4} \right)^{\frac{1}{2}} M \sum_{l=1}^{k} \theta^{\mu(l-1)} \,. \end{aligned}$$

Basic idea

Induction on $k \in \mathbb{N}$ using compactness (Lemma 1) at each step.

Difficulty

Nonlinearity and lack of smallness.

Let the estimates hold for $k \in \mathbb{N}$ and let $\varepsilon \in (0, \theta^{k+2(2+\mu)}\varepsilon_{\mu}^2]$. We define $U^{\varepsilon/\theta^k} = U^{\varepsilon/\theta^k}(y)$ and $P^{\varepsilon/\theta^k} = P^{\varepsilon/\theta^k}(y)$ by

$$U^{\varepsilon/\theta^{k}}(y) = \frac{1}{\theta^{(1+\mu)k}} \left(u^{\varepsilon}(\theta^{k}y) - \theta^{k}a_{k}^{\varepsilon}\left(y_{2}\mathbf{e}_{1} + \frac{\varepsilon}{\theta^{k}}v(\frac{\theta^{k}y}{\varepsilon})\right) \right),$$
$$P^{\varepsilon/\theta^{k}}(y) = \frac{1}{\theta^{\mu k}} \left(p^{\varepsilon}(\theta^{k}y) - a_{k}^{\varepsilon}q(\frac{\theta^{k}y}{\varepsilon}) \right).$$

Then we see that, by the induction assumption,

$$\int_{B_{1,+}^{\varepsilon/\theta^k}} |U^{\varepsilon/\theta^k}|^2 \le M^2$$

and that $(U^{\varepsilon/\theta^k},P^{\varepsilon/\theta^k})$ is a weak solution to \ldots

Modified Navier-Stokes equations

$$\begin{cases} -\Delta_y U^{\varepsilon/\theta^k} + \nabla_y P^{\varepsilon/\theta^k} = -\nabla_y \cdot \left(U^{\varepsilon/\theta^k} \otimes (\theta^k b^{\varepsilon/\theta^k}) \right. \\ \left. + (\theta^k b^{\varepsilon/\theta^k}) \otimes U^{\varepsilon/\theta^k} \right) \\ \left. - \theta^{(2+\mu)k} U^{\varepsilon/\theta^k} \cdot \nabla_y U^{\varepsilon/\theta^k} \right. \\ \left. + \nabla_y \cdot F^{\varepsilon/\theta^k} \text{ in } B_{1,+}^{\varepsilon/\theta^k} \right. \\ \left. \nabla_y \cdot U^{\varepsilon/\theta^k} = 0 \text{ in } B_{1,+}^{\varepsilon/\theta^k} - U^{\varepsilon/\theta^k} = 0 \text{ on } \Gamma_1^{\varepsilon/\theta^k}, \end{cases}$$

where

$$\begin{split} b^{\varepsilon/\theta^{k}}(y) &= C_{k}^{\varepsilon} \left(y_{2} \mathbf{e}_{1} + \frac{\varepsilon}{\theta^{k}} v(\frac{\theta^{k} y}{\varepsilon}) \right), \qquad C_{k}^{\varepsilon} = \theta^{k} a_{k}^{\varepsilon}, \\ F^{\varepsilon/\theta^{k}}(y) &= -\theta^{-\mu k} \left(b^{\varepsilon/\theta^{k}}(y) \otimes b^{\varepsilon/\theta^{k}}(y) - \left(C_{k}^{\varepsilon} y_{2} \mathbf{e}_{1} \right) \otimes \left(C_{k}^{\varepsilon} y_{2} \mathbf{e}_{1} \right) \right). \end{split}$$

Key ingredient

A suitable choice of the scale parameter $\theta = \theta(M)$ controlling the coefficients of M. This is done in the spirit of the Newton shooting.

Proof of Theorem 2 (i)

Fix $\mu \in (0,1)$ and set $\varepsilon^{(2)} = \theta^{2(2+\mu)} \varepsilon_{\mu}^2$. We take $\varepsilon \in (0, \varepsilon^{(2)}]$. Since every $r \in [\varepsilon/\varepsilon^{(2)}, \theta]$ satisfies $r \in (\theta^k, \theta^{k-1}]$ with some $2 < k \in \mathbb{N}$,

$$\begin{split} &\left(\int_{B_{r,+}^{\varepsilon}} |u^{\varepsilon}(x) - a_{k}^{\varepsilon} x_{2} \mathbf{e}_{1}|^{2} \,\mathrm{d}x\right)^{\frac{1}{2}} \\ &\leq \left(\theta^{-3} \int_{B_{\theta^{k-1},+}^{\varepsilon}} |u^{\varepsilon}(x) - a_{k}^{\varepsilon} x_{2} \mathbf{e}_{1}|^{2} \,\mathrm{d}x\right)^{\frac{1}{2}} \\ &\leq M \theta^{(1+\mu)(k-1)-\frac{3}{2}} + \theta^{-\frac{3}{2}} |a_{k}^{\varepsilon}| \,\varepsilon \left(\int_{B_{\theta^{k-1},+}^{\varepsilon}} |v(\frac{x}{\varepsilon})|^{2} \,\mathrm{d}x\right)^{\frac{1}{2}} \\ &\leq M \theta^{(1+\mu)(k-1)-\frac{3}{2}} + \left(\theta^{-\frac{3}{2}} \sup_{k \in \mathbb{N}} |a_{k}^{\varepsilon}|\right) \varepsilon^{\frac{1}{2}} (\theta^{k-1})^{\frac{1}{2}} \,. \end{split}$$

Then, from $\theta^{k-1} \in (0, \theta^{-1}r)$,

$$\left(\oint_{B_{r,+}^{\varepsilon}} |u^{\varepsilon}(x) - a_k^{\varepsilon} x_2 \mathbf{e}_1|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \le C^{(2)}(M,\mu,\theta)(r^{1+\mu} + \varepsilon^{\frac{1}{2}} r^{\frac{1}{2}}) \,.$$