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Extended Harnack inequalities with exceptional sets and a boundary Harnack
principle

Hiroaki Aikawa (Hokkaido University)

The Harnack inequality is one of the most fundamental inequalities for positive harmonic functions
and, it is extended for positive solutions to general elliptic equations and parabolic equations. This talk
gives a different view point of generalization. We generalize Harnack chains rather than equations.
More precisely, we allow a small exceptional set; and yet we obtain a similar Harnack inequality.
The size of an exceptional set is measured by capacity. Our extended Harnack inequality includes
information for the boundary behavior of positive harmonic functions. It yields a boundary Harnack
principle for a very nasty domain whose boundary is given locally by the graph of a function with
modulus of continuity worse thandttder continuity.

The Perron method for p-harmonic functions:
Resolutivity and invariance results

Anders Bprn (Linkdpings University)

In the Dirichlet problem one looks for@harmonic functiorn, on some domaif2 C R"™ which
takes prescribed boundary valugs A p-harmonic functioru is a continuous weak solution of the
equation

div(|Vu[P~2Vu) = 0.

(And thus forp = 2 we obtain the usual harmonic functions.) Hére p < ~c is fixed.

If fis not continuous, then there usually is pdharmonic functioru which takes the boundary
values as limits (i.e. such th#in,_,, u(y) = f(z) for all z € 9€), and even for continuoug this
is not always possible. One therefore needs some other precise definition of wikatusi@nto the
Dirichlet problem. Fomp-harmonic functions there are at ledstifferent definitions, of which the
Perron methods the most general.

For any boundary functioffi : 992 — [—o0, 00|, the Perron method produces an upper and a lower
Perron solution. When these coincide it gives a reasonable solution to the Dirichlet problem, called
thePerron solutionP f, andf is said to beesolutive

In 2003 Bprn—Bjorn—Shanmugalingam showed the following invariance resulf. § C(0Q)
andh = f outside a set gf-capacity zero, then is resolutive and®h = Pf.

We will look at recent improvements of this result. Some of these will be related to the prime
end boundary, in the sense of the recent definition of prime ends introduced by Adamowwice—B;|
Bjorn—Shanmugalingam. Note that for our resultscaanotuse Caratbodory’s classical definition,
not even in simply connected planar domain. Prime ends will only be mentioned briefly in this talk,
see however the talk by Nageswari Shanmugalingam on this topic.

Non-linear potential theory and the Rickman-Picard theorem
Mario Bonk (University of California, Los Angeles)

According to the Rickman-Picard theorem a non-constarquasiregular map fronR”™ to the
n-sphere can only omit finitely many values, where the maximal number of omitted values is bounded



above by a constant only dependingm@and K. In my talk | will present a new potential-theoretic
method to establish this result. In contrast to earlier potential-theoretic proofs, notably by Eremenko-
Lewis and Lewis, the approach is rather elementary and works from first principles. For example,
Harnack inequalities for the relevant functions are not needed, but instead the proof relies on Cacciop-
poli inequalities which are much easier to establish.

Isoperimetric inequalities for a Sobolev constant
Tom Carroll (University College Cork)

The principal frequency and the torsional rigidity of a bounded region in Euclidean Bavay
both be expressed in terms of Rayleigh quotients. The principal frequeizyof a bounded region
D is the smallest eigenvalue of the Dirichlet Laplaciah. It is the lowest tone that a drum with
shapeD can make, in the case of a planar regionThis eigenvalue is positive and the corresponding
eigenfunctions have constant sign. The torsional rigifity?) of a bounded, simply connected region
D in the plane is a measure of the strength under torsion of a beam whidh &agts cross section.
It is computed asP(D) = 2 [, ¢(x) dz from the Prandtl stress function (or torsion functign)
whose partial derivatives give the stresses in the beam under torsion. The torsion function is a solution
of Ap = —2in D with zero Dirichlet data. The solution of this p.d.e. in a regiorin R" has a
probabilistic interpretation as the expected exit time of Brownian motion from the region.

The Rayleigh quotient expressions for the eigenvalue and the torsional rigidity are

u(z)|? dz
A(D) :inf{W Tu € C’SO(D)}
and )
P(D)=14 sup{m fu € CSO(D)}.

The fundamental frequency and the torsional rigidity can be embedded in a range of parameters
associated with a region by setting, for each 1,

\Y 2d
C,(D) = inf Jp IVu(@)| ; tue LP(D)NWEA(D),u>0,uz0y.
(fD u(x)P dx) .
Thus 1
From another perspectivé, (D) gives the sharp constant in the Sobolev embedding: 4 2 and
p>1,orifn>3andl <p <2n/(n—2),then
Wo (D) C LP(D),  Nullza(oy < SpllVuull2py V€ Wy*(D),

so that .

Sp(D) = ————.

Cp(D)

There are been interest, of late, in extending classical results for the eigenvalue and the torsional
rigidity to the Sobolev constait,. In this talk, | will describe some of these results, including joint
work with Jesse Ratzkin, University of Cape Town.



Variation for the metrics induced by Schiffer and harmonic spans
Sachiko Hamano (Fukushima University)

Let D be a domain irC, bounded byC“ smooth contour€’y, ..., C,. For a fixed poin{ € D,
let P(D) be the set of all univalent functiorf? on D such that

P(z,0) == "+0+ ) Au(z=Q" atz=(.

n=1

Especially, letP; (z,¢) be the vertical slit mapping anBy(z, () be the horizontal slit mapping for
(D,¢). TheL principal functionp;(z, () := Re P; (i = 1,0) for (D, ¢) is harmonic onD\{(}, has
the poleRe - = (, and satisfied.;-condition on the boundary: fgr=1, ..., v,

dpy(z C)

dnz Sz 3

(L1) pi1(z,¢) = ¢j (constant) orC;  and /

de(Z’C) _ .
(Lo) dn. =0 onCj.

The Schiffer spar(¢) for (D, ¢) is the difference of.;-constantsy;(¢) := Re A} (i = 1,0), exactly,
s:=ap— ap (> 0) (see [9]).

Proposition 1. Let s(¢) be the Schiffer span fdiD, ¢). For any holomorphic mapping = f(z) on
D, it holds thats(f(¢)) = [ f'(C)]~?s(C).

Thus the Schiffer spas(¢) induces the metrig(¢)|d¢|? on D.
Under the same condition as the abdyewe assume thad > 0. For an arbitrarily fixed € D,
let (D) be the set of all univalent functiorgg on D such that

27437 b2 atz =0,
oo Bu(z = Q)" atz = .

Especially, letQ,(z,¢) be the circular slit mapping an@(z,¢) be the radial slit mapping for
(D,0,¢). The L;-principal functiong;(z,¢) = log|Q;| (¢ = 1,0) for (D,0,¢) is harmonic on
D\ {0,(}, has the logarithmic poles log |z| at = = 0 andlog |z — (| atz = ¢, and satisfied;-
condition on each boundary componént(j = 1,...,v). The harmonic span(() for (D,0,¢) is
the difference of_;-constants3;(¢) := log|d£i (¢, Q)] (i =1,0), exactly,h := 51 — Bo.

Q(z,¢) = {

Proposition 2. Let h({) be the harmonic span f¢D, 0, (). For any holomorphic mapping = f(z)
on D, it holds thats(f(¢)) = s(().

From the geometrical meaning of the harmonic span and from the representation of some repro-
ducing kernel, we see that the harmonic sp&) induces the metric

9%h(¢)

2
oo |d¢|* onD.

(Old¢|* =

Theorem 3. Let the notation be as above.

(i) The metrics(¢)|d¢|? is identical withh (¢)|d¢|? on D.
(i) The metricss(¢)|d¢|? andh(()|d¢|? are of negative curvature at each poinfin



WhenD = {|z| < 1}, we computed in [4] the Schiffer spa() for (D, (): s(¢) = ﬁ
and in [2] the harmonic spah(¢) for (D,0,¢): h(¢) = —2log(1 — [¢|?). Thus we exactly have
. PhQ) _
h(C) T aCaZ _S(C)

Here we shall introduce complex parametet B := {|t| < p} C C;. We consider a variation
of domainsD : t € B — D(t) C C,, and identify the variatiorD with the subset);c 5 (¢, D(t)) of
B x C,. When eactD(t), t € B is a domain bounded by smooth contour§’;(t) (j = 1,...,v)
in C, and eactC(t) variesC* smoothly witht € B. (See [3] for non-smooth variations.) Assume
that D(t) > 0 for ¢t € B. For any fixed( € D(t), eachD(t) carries the Schiffer spas(t, ) for
(D(t),¢) and the harmonic spai(t, ¢) for (D(t),0,¢). Applying the variation formulas for spans
([11, [2], [4]) we see the property of variation of the metrig$, ¢)|d¢|? andh(t, ¢)|d¢|? on D(t).

Theorem 4. If the total spac® = U;cp(t, D(t)) is a 2-dimensional pseudoconvex domaitBin C,
thenlog s(t, ¢) andlog h(t, ) is plurisubharmonic of.
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Geodesic distances and intrinsic distances on some fractal sets
Masanori Hino (Kyoto University)

The off-diagonal Gaussian asymptotics of the heat kernel density associated with local Dirichlet
form is often described by using the intrinsic distances (or Carnot—Caratheodory distances; cf. [4, 3]
and the references therein). When the underlying space has a Riemannian structure, the geodesic
distance is defined as well, and it coincides with the intrinsic distance in good situations.

Then, what if the underlying space is a fractal set? In typical examples, the heat kernel asymptotics
is sub-Gaussian; accordingly, the intrinsic distance vanishes identically. However, if we take (a sum
of) energy measures as the underlying measure, we can define the nontrivial intrinsic distance as well
as the geodesic distance, and can pose a problem whether they are identical. For the 2-dimensional
standard Sierpinski gasket, the affirmative answer has been obtained ([1, 2]) by using some detailed
information on the transition density. In this talk, | will discuss this problem in a more general frame-
work and provide some partial answers based on purely analytic arguments.

Setting: Let (K, dx) be a compact metric space, akhda finite Borel measure oR. Let (€, F) be
a strong local regular Dirichlet form ob?(K, )\). For f € F, p(py denotes the energy measurefof

Let N € Nandh = (hy,...,hy) € F¥ N C(K — RY). DenoteY7_, 11, by pupy. Then, the
intrinsic distancebased o€, F) and .y, is defined as

dn(z,y) :=sup{f(y) — f(2) | f € FNC(K) anduipy < py}, z,y € K.
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Figure 1: 2-dimensional levélSierpinski gasketd (= 2, 3,4, 5, 10)
For a continuous curve € C([0, 1] — K), its length based oh is defined as

In(7) = sup {Z |h(y(t:)) = h(y(ti-1))|ry |0=to <ty < -+ <ty = 1} .

Then, thegeodesic distancleased orh is defined as

pn(z,y) == inf{lp(y) | v € C([0,1] —» K), v(0) =z, andy(1) =y}, =z,y€ K.

Note that ifh: K — R is injective, p, (z,y) is equal to the usual geodesic distance betwegn
andh(y) in h(K) c R,

Results:

1) Suppose further the following:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite SgbsSgty_,
of K such that

(i) Upi—o Vim is dense ink;
(i) Foreachn, K'\V,, is decomposed as a finite number of connected compofEnis.ca,,,;

(ii)) limy,— 00 maxyep,, diamg, Uy = 0.
(A2) F C C(K).
(A3) E(f, f) =0ifand only if f is a constant function.
Then,pp(z,y) < dp(z,y) forall z,y € K.

2) Consider a 2-dimensional (generalized) Sierpinski gasket (see Figurd<ljle is also a nested
fractal, and take a self-similar Dirichlet forf€, 7) associated with the Brownian motion dx.
Suppose also that the harmonic structure associated with it is nondegeneratk. Fdka, . . ., hy)
such that each; is a harmonic function. Thenry,(z,y) < pn(z,y) for all z,y € K. By combining
the result of 1) with this inequlityly (z, y) = pr(z,y) holds.

The nondegeneracy condition is verified for lel/8ierpinski gaskets with< 50 by the numerical
calculation. The assumptions éhand (&, F) can be relaxed, which may be explained in the talk.

References
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Heat kernel estimates and growth estimates of solutions of semilinear heat equations
Kentaro Hirata (Akita University)

In bounded Lipschitz domairi$ C R™, we presents a priori estimates near the parabolic boundary
of nonnegative solutions of semilinear heat equations

Ou — Au=VuP inQx(0,7),

whereV is a nonnegative locally bounded function satisfying a certain growth condition near the
parabolic boundary. This improves an estimate given bgadfgl Quittner and Souplet [2] whemis

not greater than some constant determined by the shape of a dom&ur proof is based on the

Riesz decomposition of supertemperatures, two-sided global estimates of heat kernels given in [1] and
an iteration argument.

References
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Modulus of continuity of p-Dirichlet solutions in a metric measure space
Tsubasa Itoh (Hokkaido University)

Let X = (X, d, u) be a complete connected metric measure space endowed with a drestda
positive complete Borel measugesuch that < u(U) < oo for all non-empty bounded open séfs
Let1 < p < oo. We assume that is doubling measure andl admits a(1, p)-Poincaé inequality.

For a functionf on 92 we denote byPg, f the p-Perron solution off over(). A pointé € 99 is
said to be a-regular point(with respect to the-Dirichlet problem) if

Jim Pof(x) = f(€)
for every f € C(092). If every boundary point is @a-regular point, ther is calledp-regular. It is

well known that if(2 is p-regular andf € C(99), thenPq, f is p-harmonic inQ2 and continuous if.
It is natural to raise the following question:

Question. Does improved continuity of a boundary functignguarantee improved continuity of
Paf?

Aikawa and Shanmugalingam [2] studied this question in the contexblafdf continuity. Aikawa
[1] investigated this question in the context of general modulus of continuity for the classical setting,
i.e., for harmonic functions in a Euclidean domain. The purpose of this talk is to study this question
in the context of general modulus of continuity in a metric measure space.

We consider), s defined by

bus(t) = t*(—logt)™® for0 <t < tg,
o B tg(—logto)_ﬁ fort > to.
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where eithed < o < 1andj € Rora = 0 andj > 0; andt, is so small that),s is concave. We
say thatf is 1, 3-Holder continuousf | f(x) — f(y)| < Cap(d(z,y)).
Let £ C X. We consider the famil\\y,_, (E) of all bounded continuous functiorfson £ with

o /@)~ £w)]
r)—J\Y
[fllpas.2 = sup | f(z)] + sup <0
Vas z€EFE z,yeR waﬁ(d(xay))
7Y
We define the operator norm
1Paf llpns.0
HPQdeaﬁ = sup o
reng,,00) [ fllvas00
11144 5.0070

Observe that),3-Holder continuity of a boundary functiohensures),z-Holder continuity ofPg, f if
and only if[| Pq |y, , < co. Hence we characterize the family of domahsuch that|Pq|| ., < oc.

Definition. We say thaty’ C X is uniformly p-fat or satisfies the-capacity density conditioif there
are constant€’ > 0 andry > 0 such that
Cap,(E N B(a,r), B(a,2r))
Capp(B<a7 T)7 B(aa 27’)) -

1)
whenever € E and0 < r < r.

The uniformp-fatness of the complement of a dom&liis closely related to the conditidfPq |, , <
oo. Fora > 0 we obtain the following theorem.

Theorem 1. Let(2 be a boundeg-regular domain. IX \ 2 is uniformlyp-fat, then there is a constant
0 < a1 < ap such that| Pl , < oo for0 < a < ay andp € R. Conversely, if| Po ||y, , < oo for
somel < a < o andp € R, thenX \ Q is uniformly p-fat, provided that there is a consta&pt> p
such thatX is Ahlfors Q-regular, i.e.,

C~ 49 < pu(B(x,r)) < Cr¥
for everyr € X andr > 0.
For a = 0 we obtain the following theorem.
Theorem 2. If X \ Q is uniformlyp-fat, then||Pq|,, < oo for everys > 0.
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Electrical network reduction and the finite Dirichlet problem
Vadim Kaimanovich (University of Ottawa)

Electrical networks are studied because of their practical applications, but they are also useful
mathematical tools with a wide range of applications. In this talk | will discuss a basic fact con-
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cerning the reduction of electrical networks with multiple external nodes that has apparently escaped
the attention of both mathematicians and electrical engineers. As a consequence, it leads to a new
interpretation of the classical Dirichlet problem for finite networks.

Joint work with A. Georgakopoulos.

Weyl's Laplacian eigenvalue asymptotics for the measurable Riemannian structure
on the Sierpinski gasket

Naotaka Kajino (University of Bielefeld)

On the Sierpiski gaskef’, Kigami [3] introduced the notion of the measurable Riemannian struc-
ture, with which the “gradient vector field&V« of a functionu, the “Riemannian volume measurg”
and the “geodesic metrigyy, are naturally associated. Kigami also proved in [3] the two-sided Gaus-
sian bound for the corresponding heat keré(z, y), and | showed in [1] further several detailed
heat kernel asymptotics, such as Varadhan's asymptotic relation

lim 4¢ log pl*(z,y) = —pu(z,y).
Furthermore Koskela and Zhou proved in [4] that for any Lipschitz function (K, py),

|Vu(x)| = hI;lj;lp W =: (Lip,,, u)(x) forp-aex € K,
which means that the canonical Dirichlet fofitu, u) := [ |Vu|2dy. associated with the measurable
Riemannian structure ol coincides with Cheeger typ, o-seminorm in(K, py, ).
In the talk, Weyl's Laplacian eigenvalue asymptotics is presented for this case. Specifically, let

d be the Hausdorff dimension df and? the d-dimensional Hausdorff measure @, both with
respect to the “geodesic metrip7,. Then for somey > 0 and for any non-empty open subgéof
K with H4(0U) = 0,

i o)

1m

A—00 )\d/2

whereNy () is the number of the eigenvalues, less than or equal tf the Dirichlet Laplacian on

U. Moreover, we will also see that the Hausdorff measifeis Ahlfors regular with respect tpy,

but that it is singular to the “Riemannian volume measure’A renewal theorem for functionals of
Markov chains due to Kesten [2] plays a crucial role in the proof of the above asymptotic behavior of
Ny (A).

= exHY(U),
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Quasi-monomorphisms andp-harmonic functons with finite Dirichlet sum
Atsushi Kasue (Kanazawa University)

In this talk, infinite, nonlinear resistive networks are considered and Rayleigh’s monotonicity law
is described. We also discuss a problem on the existenedafmonic functions with finite Dirichlet
sum.

We consider a connected, locally finite gragh= (V, E) with the set of verticed” and the
set of oriented edgeg, and assume that a positive weighbn E is endowed. Given exponents
p > 1,q > 1with 1/p+ 1/¢q = 1, we introduce a norm on the spa€g(G) of finite 1-chains
onG by |Illy = 3.k r(e)|I(e)|)/1, T € C1(G), and denote by!C,(G) the completion of
C1(Q) relative to the norm. Similarly we define a norm on the sp@¢éG) of 1-cochains on¥
by [wllp = (3 X eerlw(e)P/r(e))1)1/P, w € CHG), and denote by?C!(G) the space oft-
cochains whose norms are finite. Then we have a bijection bet#f€g0G) and/,C*(G), called the
resistance operat@®, which send d-chain! in ¢}C1(G) to al-cochainR (I) defined byR(I)(e) =
r(e)I(e)|I(e)]972, e € E. The resistance operat® keeps the norms in such a way thR (I)||, =
11,

We are concerned with Kirchhoff’'s equations. Givefi-ahainj on G, Kirchhoff's laws are ex-
pressed by the following equations in the unknownohain I in ¢Cy(G): [I] (Kirchhoff's nodes
law) 0I(z)(= >, I([z,y])) = j(x), = € V; [ll] (Kirchhoff's loop law) < R(I),z > (=
Y cen R(I)(e)z(e)) = 0, Vz € Z1(G), where Z;(G) stands for the set of finite cycles. &
chain I in ¢}C1(G) satisfies [lI] if and only ifI = R~!(df) for some0-cochain (function)f in
LYP(G,r) = {f € CUG)|df € £C*(G)}. Forj e 0(}C1(G), we have a unique solutiof
of equations [I] and [I1] satisfyingd| /||, = inf{||I[|4|I € ¢}C1(G),dI = j}, which is called the
minimal current generated by Then it is proved thaf]M = R~1(dg;), whereg; belongs to the

closure of the space of finitely supported functiond.irP (G, ), denoted byL(l)’p(G, r). Any other
solution I of [I] and [l] is expressed uniquely as = IJM + R~Y(dh) + z, whereh belongs to
HLY?(G,r) = {h € LY(G,r)|A,h :== OR"(dh) = 0}, andz; is an element of the closure
of Z1(G). We can writel = R~!(df), where f is a solution of Poisson equatiah,f = j in
LY (G,r). If 3, oy |i(x)] is finite, then we are interested in a solution of [I] and [II] satisfying
< du,I >=< u,j > for any bounded function in L'*(G,r). Such a solution is unique if it exists,
and obviously it is necessary for the existence to assumeythat, j(z) = 0. A network (G, r) is
calledp-nonparabolic 5, belongs ta)¢:C, (G) for some (anyy € V.

When we have a graph morphism from an infinite netw(@rkr) to another onéG’, ) satisfying
certain conditions, we are able to describe Rayleigh’s monotonicity law.

Now we turn to a problem on the existence of non-constah&rmonic functions with finite
Dirichlet sum.

Let G = (V, E) be a connected, infinite graph of bounded degrees (with weigh). The
graphG is endowed with the graph distande.. We say that a map from G to a metric space
(X,dx) is a quasi-monomorphism if there exist positive constants 0 and 3 > 0 such that
dx(¢(a), (b)) < adg(a,b) + 5 for all a,b € V, and there is a constant > 0 such that for any
x € X, the cardinality of the set of points € V with dx (z, ¢(a)) < 1 is bounded byy. Then the
following result is proved in [1]:

Suppose thafs admits a quasi-monomorphism: G — H" to the hyperbolic spacé&l™ of
dimensionn. Then forp > n — 1, if G is p-nonparabolic, then it possesses a lopdiarmonic
functions with finite Dirichlet sum; in fact, there exists a perfect subspaoéthe limit setd(G) N
JsoH™ and, for any Lipschitz function on %, there is uniquely a functioh in HL'?(G) such that
limg(q)¢ M(a) = n(§) forall € € .

We remark that a quasi-monomorphignirom G to H" induces a graph morphism fro@ito a
graph that is quasi-isometric #H".
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Asymptotic geometry, harmonic functions, and finite generation of isometry groups
Bruce Kleiner (Courant Institute of Mathematics Sciences)
The lecture will discuss spaces (e.g. graphs or Riemannian manifolds) with polynomial-type

growth conditions. The emphasis will be on polynomial growth harmonic functions and related topics,
such as the finite generation of discrete groups of isometries.

Applications of Hopf-Lax formulae to analysis of heat distributions
Kazumasa Kuwada (Ochanomizu University)

Let (X, d) be a metric space. Lete (1,00). For f € Cy(X), we defineQ, f € Cp(X) by

Qef (@) = inf [ﬂy) +; (d(i’y)ﬂ '

We call it Hopf-Lax semigroup (also called Hamilton-Jacobi semigroup). Whke®) is an Euclidean
spacef): f is nothing but the Hopf-Lax formula, which gives a solution to the Hamilton-Jacobi equa-
tion

0 Quf (x) = ;Wcztﬂ(w)q

in an appropriate sense, wheres the Hlder conjugate op. This property is still valid even on more
abstract metric spaces. It has been revealed that the notion of Hopf-Lax semigroup is strongly related
with many functional inequalities including logarithmic Sobolev inequalities and transport-entropy
inequalities. The purpose of this talk is to explain recent developments in this direction in connection
with the heat semigroup.

For probability measures, 1 € P(X), we denote thé.P-Wasserstein distance betweeapand
M1 by Wp(M07 ,U,l). That iS,

Wy (po, 1) == inf { ||d]| zo(x) | @ € P(X x X): coupling ofug andp }

where we callr a coupling ofug andy; when the marginal distribution af is ;.o andp; respectively.
The dual representation &V, is called the Kantorovich duality. By using, f, it can be stated as
follows:
Wy(po, p1) = sup U Q1f dur — / f dﬂo}
fECb(X)
The Hopf-Lax semigroup appears here and this fact connects the study of Hopf-Lax formula with the
theory of optimal transportation.
The first application of Hopf-Lax formula in this talk is a relation between a Lipschitz estimate of
Wasserstein distance and a Balamery type gradient estimate for Markov kernels which in particular
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we can apply to the (Feller) heat semigroup. FarX — R, we define the local Lipschitz constant
|Vaf|(x) with respect tal by

i flz
Vaf|(z) = hI;lj;lp W

Theorem 1(cf. [4]). Let(X,d) be a Polish length space adde another length metric oki. We
denote thel.P-Wasserstein distance defined by usihénstead ofd by W,. Let P(x,-) € P(X)
be a Markov kernel orX which depends continuously in € X. Then, forp,q € [1,00] with
p~ !+ ¢~ =1, the following are equivalent:

(i) Forug, p1 € P(X), Wy(P* o, P*111) < Wy(po, 11)-

(i) Forfe Cy®(X),|V;Pf|(z) < P(|Vaf|9)(z)"/ (Wheng = oo,

VP fllloe < Vaflllso)-

The second application is on the estimate of the speed of heat distributions with respéct to
For simplicity, we state it wheX is a Riemannian manifold.

Theorem 2. Let X is a complete and stochastically complete Riemannian manifoldPattfte heat
semigroup orX . Takef : X — [0,00) with || f||;1 = 1 and sef; := P, fvol. Then
Wa(pit+s, Mt)2 |VPtf‘2

) .
[t := lim sup = dvol.
el 510 52 x Bf

This estimate is first studied in [3] on Alexandrov spaces in the context of identification problem
of heat flows. On Riemannian manifolds, there are two different ways to formulate a “heat flow”.
The one is a gradient flow of the Dirichlet energylif-space of functions and the other is a gradient
flow of the relative entropy of?(X') endowed with a metric structure BY>. Thus Theorem 2 is an
estimate related with the second formulation in the sense that it is a bound of the speed of curves in
P(X) with respect tdV, while the objectu, is given by the first formulation. It plays a fundamental
role for identifying those two formulation on non-smooth metric measure spaces as Alexandrov spaces
(see [1, 3]). As a result of the identification, we can obtain the Bﬁmery gradient estimate for the
heat semigroup under a generalized notion of lower Ricci curvature bound (see [2, 3]).

The third application is a sort of extension of Theorem 1. Inequalities of the form (i) or (ii) are
first introduced in connection with the notion of lower Ricci curvature bound. Recently, F.-Y. Wang
introduced an extension of the Bal@nery gradient estimate involving an upper boundiah X
(property (v) below; see [5]). We obtain the condition corresponding to (i):

Theorem 3. Let X be a complete and stochastically complete Riemannian manifoldlimittX > 2.
Then, forN € [2,00] andK € R, the following are equivalent:

(i) dim X < N andRic > K.

9 e—QKtl _ e—QKtO
iv) Wo(P, P, <

( ) 2( to MO, t1:ul) = QK(t() - tl)

to > 0 andug, 11 € P(X).

W NK
WQ(MO,MI)Q + (tl — to)/ Wdu fOI’ tl >
to -

1— e—QKt

W) [VPf|(@)* < e P(IVIP) = —5 77—

(AP.f)? fort > 0 andf € C;'™(X).
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p harmonic measure in simply connected domains revisited
John L. Lewis (University of Kentucky)

Let Q2 be a bounded simply connected domain in the complex planket N be a neighborhood
of 992, let p be fixed,1 < p < oo, and letu be a positive weak solution to thelLaplace equation in
2N N. Assume that, has zero boundary values 6 in the Sobolev sense and extemtb N \
by puttingu = 0 on NV \ 2. Then there exists a positive finite Borel measuren C with support
contained 2 and such that

[ 1vur 2 uvopaa=- [odn
whenevew € C§°(N). Define the Hausdorff dimension pfby
H-dim p = inf {a : there exists Borel C 92 with H*(E) = 0 andu(E) = u(0Q)},

whereH“(E), for a € Ry, is thea-dimensional Hausdorff measure Bf In this talk we first discuss
results concerning H-dinp when p is harmonic measure (the cage= 2). After that we outline

work of coauthors and myself concerning the dimensiop barmonic measure when< p < oc.

Time permitting we will discuss a recent paper with the same title as our talk, dealing with results
for p harmonic measure, similar to the well known result of Makarov for harmonic measure in simply
connected domains.

The quasisymmetric geometry of boundaries of relatively hyperbolic groups
John Mackay (University of Oxford)
The boundary of a Gromov hyperbolic group is a metric space canonically defined up to qua-
sisymmetry, and analysis on such spaces has been of much interest in the past twenty years. In this
talk | will describe the analogous boundaries for relatively hyperbolic groups, and some of their ana-

Iytic properties. | will also describe a result constructing quasi-arcs in metric spaces avoiding certain
obstacles. (Based on joint work with Alessandro Sisto.)

Mean continuity for potentials of functions in Musielak-Orlicz spaces
Fumi-Yuki Maeda
The classical results on mean continuity of Riesz potentials of funcrionsZL? have been ex-

tended to the case whefrbelongs to the variable exponeiit”) (e.g., [1]) and further td.*() (log L)?()
([3]). Here we further extends those results to potentials of functions in Musielak-Orlicz spaces.

18



Let®(x,t) = to(x,t) : RN x [0,00) — [0, 00) satisfy the following conditions:
(®1) Caratteodory condition;
(®2) &(x,1) and1l/P(z, 1) are bounded;
(®3) t +— t—=0¢(x, t) is uniformly almost increasing oft), co) for somezs( > 0;
(®4) ®(x,-) saitisfies uniform doubling condition;
(®5) for everyy > 0, there exists a constaft, > 1 such that®(z,t) < B,®(y,t) whenever
lz —y| < 4t~V andt > 1.

Let ®(x,t) = fot supg<s<, #(z,s)dr. For an open set/ in R, the Musielak-Orlicz space
L*(G) is defined by (cf. [4])

O 1 . 50
L <G>—{feLloc<G>,/G@(y,|f<y>|)dy< }

which is a Banach space with respect to the norm
Il = int {7 > 0; [ Bl v <1}

As a kernel function oY, we considerk(z) = k(|z|) (with the abuse of notation) with a
functionk(r) : (0,00) — (0, 00) satisfying the following conditions:
(k1) k(r) is non-increasing lower semicontinuous @)oo);
(k2) [o k(r)rN—tdr < oo;
(k3) there exists a constaif; > 1 such that(r) < Kik(r + 1) forall r > 1.

For f ¢ L} (RYN) satisfying

loc

/ KL+ [y £ ()] dy < oo, (+)
RN

we consider itsc-potentialk x f.
Letk(r) = & [y k(p)p™ ' dpforr > 0 and set

[(z,s) =s k(s YN)d (z,s) (xRN, s>0),
where®!(z, s) = sup{t > 0; ®(x,t) < s}.
Consider a function(z,t) : RY x [0,00) — [0, 00) satisfying the following conditions:
(1) Caratleodory condition;
(U2) there is a constanl; > 1 such that¥(z,at) < Aja¥(x,t) forallz € RN, ¢+ > 0 and
0<a<1;
(VOk) there exists a constadt, > 1 such that

U(z, I'(z,s)) < Ags forallz e RY ands > 0.

Theorem 1.Let f € L} (RY) satisfy(x) and set

loc

Ey={z e RN : kx|f|(z) = oo},

Ezz{mERN:limsup][ @(Z,TNE(T)U(Z)D dz>0}.
r—0+ JB(z,r)

Assume
(') s — s—51I'(x, s) is uniformly almost increasing for some > 0;
(k5) k(rs) < Kzk(r)k(s) forall0 <r<1,0<s<1.
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Then

lim U(z, |k f(z) —k=* f(zo)])de =0
r—0+ B(:Eo,’r‘)

for all zo € RV \ (E1 U Ey).

For a set? ¢ R" and an open set c R”, we define (cf. [2])

Cro(E;G) = inf P d
k‘,q)( ) ) fESlkI%E;G)/G (yaf(y)) Y,

whereSy (E; G) is the family of all nonnegative measurable functighen R such thatf vanishes
outsideGG andk * f(x) > 1 for everyx € E. We say thatt is of (k, ®)-capacity zero, if

Cro(ENG;G)=0 for every bounded open sét

Theorem 2. Let f € L*(RY) satisfy(x). Then,E; in Theorem 1 hask, ®)-capacity zero. If®
satisfies a further condition

(®6) ®(x,s)P(x,t) < A3 ®(x,st) forallz € RN, s > 1 andt > 0,
thenEs in Theorem 1 haék, ®)-capacity zero.

Joint work with Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura.
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On harmonic Hardy-Orlicz spaces
Hiroaki Masaoka (Kyoto Sangyo University)

Let (2, H) be aP-Brelot harmonic space. Suppose that there exists a countable base for the open
sets of(2 and that constant functions are harmonicbrSet

N = {® | @ is non-negative, convex and strictly increasing functionfon-co),

®(0) =0and lim (I)<tat) = +oo (fora > 0)}.

t——+00

. O (at
Let ® and¥ be elements alV. We showed that under the assumption thatsup (o)

= +oo0 for
t—+o00 \Il(t)

all positive« the following three conditions are equivalent.

(i) the Hardy Orlicz spaceH 4 (£2) and Hy (2) coincide;
(i) dim Hg(Q) < +o0;
(iii) dim Hy () < +o0.
In our talk we give an example fg?-harmonic space with the above condition (i). This is a joint
work with Tero Kilpekinen and Pekka Koskela.
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Sobolev’s inequality for Riesz potentials in Lorentz spaces of variable exponent
Yoshihiro Mizuta (Hiroshima Institute of Technology)

In the present talk we discuss the boundedness of the maximal operator in the Lorentz space of
variable exponent defined by the symmetric decreasing rearrangement in the sense of Almut [1]. As
an application of the boundedness of the maximal operator, we establish the Sobolev inequality by
using Hedberg’s trick in his paper [9].
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Equilibrium measures for uniformly quasiregular dynamics
Y Usuke Okuyama (Kyoto Institute of Technology)

We establish the existence and fundamental properties of the equilibrium measure in uniformly
quasiregular dynamics. We show that a uniformly quasiregular endomorphwsindegree at least
2 on a closed Riemannian manifold of dimensieradmits an equilibrium probability measug,
which is balanced and invariant undérand non-atomic, and whose support agrees with the Julia
set of f. Furthermore we show thatis strongly mixing with respect to the measurg. We also
characterize the measurg using an approximation property by iterated pullbacks of points under
f up to a set of exceptional initial points of Hausdorff dimension at most1. These dynamical
mixing and approximation results are reminiscent of the Mattila-Rickman equidistribution theorem
for quasiregular mappings. This is a joint work with Pekka Pankka (Helsinki).
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Computation of capacities
Thomas Ransford (Laval University)

I shall discuss the problem of computing the value of the capacity of a set for the logarithmic,
Riesz, hyperbolic and analytic capacities.

A characterization of entire functions and approximation
Ryozi Sakai (Meijo University)

We define the degree of approximation for a continuous fungtion I = [—1, 1] by
n(f) Ak If = Plloo (1)

whereP,, denotes the class of all polynomials with degreer. In [1], S.Bernstein proved that
has an analytic extension of an entire function if and onlynif,, . E,l/n(f) = 0. R.S.Varga ([5])
considered the rate at whidfﬁ/”(f) tends to zero, and he showed tifat C(I) satisfies

lim sup {nlogn} =\
n—oo  (10g(1/En(f))
if and only if f has an analytic extension of an entire function of otdeRecall that an entire function
fis of orderX if
i loglog M(r, f)
limsup ————=
r—00 IOgT
whereM (r, f) := max,—, | f(2)].
In this talk, we discuss the about result for approximationdRonlLet f be a real valued.?-
function (1 < p < o) onR, and let

Epn(f,w) = Piél%n Jw(f — P)HLP(R)a

= A,

wherew = exp(—Q) is an exponential weight which belongs to a relevant cJags?+) (see, e.g.,
[3]). For example(z) = exp(|z|*) — 1 or Q(z) = (1 + |z[)*!* — 1 for o > 1.
Then we can prove the following.

Theorem. Let

. nlogn ()
im su =: .
n—>oop IOg 1/Ep,n(f; w, R) Pr

Then the functiorf withwf € LP(R) is the restriction t®R of an entire function with finite ordex
if and only if p,(f) is finite. Furthermore we see

1 1 1
- <

A AT pp(f)
whereT (z) = Q' (x)/Q(x) and

A:=lim inf T(x), B :=1lim sup T'(z).

1
37

> =

Especially, if'(z) is unbounded theh = p,(f) holds true.

We point out that basic and essential results of the weighted polynomial approximation are ob-
tained by using logarithmic potential theory (cf. [4], see also [2] and [3]).

Joint work with Noriaki Suzuki.
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Rotation of planar quasiconformal maps
Eero Saksman (University of Helsinki)

We introduce interpolation oh?-spaces with complex exponents, and apply it to obtain optimal
estimates for rotation of quasiconformal maps. The talk is based on joint work with K. Astala, T.
Iwaniec and I. Prause.

Heat kernel estimates on inner uniform domains
Laurent Saloff-Coste (Cornell University)

In this talk, | will discuss two-sided heat kernel estimates for the Neumann and Dirichlet heat
kernels in inner uniform domains. In the case of the Dirichlet heat kernel, one of the key ingredient is
a scale-invariant Harnack boundary principle developed in ealier work of H. Aikawa, A. Ancona and
others. In the case of bounded domains, these estimates sharp intrinsic ultracontractivity bounds.

Joint work with P. Gyrya and J. Lierl (Bonn).

Morrey spaces and fractional integral operators

Yoshihiro Sawano (Tokyo Metropolitan University)
The well-known Hardy-Littlewood-Sobolev theorem is as follows:

Theorem 1.1.Let0 < a <nandl < p < ¢ < oo. If ;. = - —a, then||Io f|| e < C||f| L», where

f@) = | v

n |z -yl

This theorem appears in disguise in many fields of mathematics. Morrey spaces seem appropriate
to view subtly how this smoothing effect occurs.
Letl < ¢ < p < . Then define

11 1/q
[fllpe =sup |B|? </ \f(y)\qdy) :
B B

The well-known Adams theorem reads;
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Theorem 1.2.Let0 < o < n. Assume that the parameters;, s, t satisfy
l<qg<<p<oo, 1<t<s<o0, —=-, —=———.
p

ThenlI,, is bounded fron\Y to M.

In this talk, we consider why this happens ?

1. Do we need any smooth structure of the Euclidean spaces or the nice property of Lebesgue
measures ? [1, 2, 5, 8, 9, 13] We work on a very generic setting proposed in [13].

2. Is I, surjective ? If no, characterize the image. [6, 10, 14] The function space defined in [14]
can be used to view Morrey spaces and fractional integral operators by taking full advantage of
the structure oR"™.

3. What happens in the bilinear case ? [3, 4] Can we consider
f1(y1) f2(y2)
Llf1, fol(z) = / dy?
LRI = fo Tl + o — el

Is a natural extension of the Adams theorem all when we use Morrey spaces ? What can we say
about the operator of the for(xf, g) — g - Io.f ?

4. How about the endpoint cases ? [7, 9, 12] For example, what can we say about the-case
?

In the talk, the speaker will present a typical result for each problem.
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Constructing a prime end boundary for non-simply connected domains
in Euclidean spaces and metric measure spaces

Nageswari Shanmugalingam (University of Cincinnati)

Caratheodory’s definition of prime ends is fruitful in the case that the domain under study is a
simply/finitely connected planar domain. His definition has been extended in various ways to domains
in higher dimensions, but again for a limited number of domains (such as quasiconformally collared
domains). | will talk about a possible alternate construction of prime ends that is useful for more
general domains in all dimensions (and of course, in metric space setting as well). This talk is based
on joint work with Anders Bjorn, Jana Bjorn, and Tomasz Adamowicz.

Hardy averaging operator on generalized Banach function spaces
Tetsu Shimomura (Hiroshima University)

Let Af(z) := m fB(OMD f(t) dt be then-dimensional Hardy averaging operator. It is well
known thatA is bounded orL?(2) with an open sef2 ¢ R™ wheneverl < p < co. In this talk, we
improve this result within the framework of generalized Banach function spaces. We in fact find the
‘source’ space 'y, which is strictly larger thatX', and the ‘target’ spac€y, which is strictly smaller

than X, under the assumption that the Hardy-Littlewood maximal operafdas bounded fromX

into X, and prove thatd is bounded fromSx into T'x. We prove optimality results for the action of

A on such spaces and present applications of our results to variable LebesgueL@bé(@}s as an

extension of [2] in the case when= 1 andf2 is a bounded interval.

Joint work with Yoshihiro Mizuta and AENekvinda.
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Two-phase quadrature domains and harmonic balls
Tomas Spdin (Linkdping University)

This talk is mainly going to be a survey of the recent theory of two-phase quadrature domains
and the related topic of harmonic balls. In particular | will focus on my work together with Stephen
Gardiner (UCD Dublin) regarding two-phase quadrature domains for harmonic and subharmonic func-
tions and my work with Henrik Shahgholian (KTH) about two-phase quadrature domains for analytic
functions and harmonic balls.

Roughly speaking, two-phase quadrature domains consists of a pair of disjoint op&n séis
together with two measures, , . such thaj: andu— has compact support iR and D_ respec-
tively, and such that we for some suitable class of functiohsave an integral equality or inequality
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between the integrals (whehedenotes Lebesgue measure)

/ hd)\—/ hd,
D, _
/hd,uJr /hdu.

Natural choices foh can be analytic, harmonic or such thais subharmonic inD, and superhar-
monic inD_. Unlike the classical (one-phase) case we assume more about the behaviour of the func-
tions at the boundaries @#, andD_, and not just thak is integrable oveD . andD_ (otherwise we
would just have two disjoint one-phase quadrature domains). We will discuss what natural choices are,
and also relate this concept to two-phase modified Schwarz potentials and Schwarz functions which
also has natural definitions.

After this we shall also discuss the concept of harmonic balls, which is closely related to the above.
It is well known that ifad, is a point mass at € R™ and B is an open set such that the Newtonian
potential ofad, and\|p are equal in the complement &%, then B is the ball with center: and total
massa. Harmonic balls are defined relative to a dom&inand we say thaB C K is a harmonic
ball with respect tavd, (x € K) if the Green potentials i for ad,, and \|p agree inK \ B. We
will discuss some known results and also some interesting open questions regarding these.

and

A concept of harmonicity for families of planar curves
Eleutherius Symeonidis (Katholische UniveasiEichsatt-Ingolstadt)

Let2 C R? be a simply connected domain— (zo(t),yo(t)) € £ a smooth curve, parametrized
over an interval. Moreover, let/ be an interval containin@, J x I > (s,t) — (z(s,t),y(s,t)) € Q
a conformal mapping such that0, t) = zo(¢), y(0,t) = yo(t) forall t € I.
Let i be a harmonic function oft, » a harmonic conjugate th. If I > ¢ — h(xo(t), yo(t)) is
integrable, and if
lim h(z(s,t),y(s,t)) = lim h(z(s,t),y(s,t))

t—inf I t—sup [

holds for alls € J, then for all thess,

[ ptats s de = [ nan(e) ) at,
which means that the integral bfover the different curves of the family — (z(s,t), y(s,t)) )ses IS
invariant. Therefore, it is natural to speak dfi@monic deformatiomf the initial curve. We remark
that the condition ork is automatically satisfied in the case in which the curves of the family are
closed and is compact.
We show how a conformal mapping as above can be derived from a specific potential, and we
present examples with bounded and unbounded curves or with such ones with multiple points.
Finally, we discuss the question of invariance of certain weighted intefyrals: (s, t), y(s, t))w(s, t) dt
in the same framework.
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A representation for harmonic Bergman function and its application
Kiyoki Tanaka (Osaka City University)

Let 2 be a bounded smooth domainik¥. Forl < p < oo, we denote by”(2) the harmonic
Bergman space if?, i.e., the set of all real-valued harmonic functioh®n Q such that|| f||, :=

(Jo \f|Pda;)% < oo, Wheredz denotes the usual-dimensional Lebesgue measuref@nit is known
thatb? is the reproducing kernel Hilbert space. The reproducing kernét{6r) is called the harmonic
Bergman kernel.

In this talk, we discuss a representation for the harmonic Bergman function and interpolation
theorem. B. R. Choe and H. Yi [2] studied the representation theorem and interpolation theorem for
harmonic Bergman functions in the upper half space. As a recent result, we introduce the following
representation theorem for the harmonic Bergman function in a bounded smooth domain.

Theorem 1(cf. Theorem 1 in [5]).Let1 < p < oo andf) be a bounded smooth domain. Then, we
can choose a sequengk; } in Q2 such thatA : ¢ — bP is a bounded onto map, where the operator
is defined by

Aaid(@) =3 aR(w, A)r(n) 9",
=1

whereR(x,y) denotes the harmonic Bergman kernel afel) denotes the distance betweerand
on.

Conversely, we consider the map fraito ¢°. The following theorem is called interpolation
theorem.

Theorem 2. Let1 < p < oo ands2) be a bounded smooth domain. There exists a positive congtant
such that ifp(X;, X\j) > po for anyi # j, thenV : b” — (P is bounded onto map, whepgzx,y) is
pseudo-hyperbolic distance ang := {r()\i)% F(\i) i

The previous theorems do not referbfefunctions. A representation féf -functions is achieved
by using the another kernel. The following kernel is defined by B. R. Choe, H. Koo and H. Yi [1].

Definition 1. Let n be a defining function of2 with condition that|Vn|? = 1 + nw for somew €

C> (). We define the modified harmonic Bergman kernel by

1
foranyz,y € ), whereA, is the Laplacian with respect i
By using the modified harmonic Bergman kernel, we can give the representatignftorctions.

Theorem 3(cf. [6]). Letl < p < oo andf2 be a bounded smooth domain. Then, we can choose a
sequencé\;} in Q such thatA; : ¢? — bP is a bounded onto map, where the operatoiis defined

by
Arf{ai}(z) =) aiRi(z, A)r(A) R,
=1
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Distortion of dimension by projections and Sobolev mappings
Jeremy Tyson (University of lllinois at Urbana-Champaign)

We will discuss a series of recent results on the metric and measure-theoretic properties of pro-
jection mappings. These include estimates for the distortion of Hausdorff dimension for images of
fixed subsets under generic projections, and also for images of generic fibers of such projections under
Sobolev and quasiconformal mappings. We will discuss first the case of Euclidean spaces, where the
projection mappings are linear, and then the case of the sub-Riemannian Heisenberg group. In the
latter case the projections onto vertical homogeneous subgroups are neither linear nor Lipschitz.

The first boundary value problem of the biharmonic equation for the half-space
Minoru Yanagishita (Chiba University)

Let T,11 (n > 2) be the half-spacé M = (X,y) € R*™! : y > 0}, and letdT,1 be its
boundary.

Let fy and f1 be two functions defined o#iT,,;;. A solution of the first boundary value problem
of the biharmonic equation foF,,,; with respect tofy and f; is a biharmonic functionv in T,, 1
such that

ow
i M) = N li Em
M%N,lﬁETn-H w( ) fO( ), ZVI%N}ﬁET"H 8y

(M) = f1(N)
for every pointN € 0T 1.

Schot [1] gave a particular solution of the first boundary value problem of the biharmonic equation
for T,,.1. With respect to the Dirichlet problem for the half-spdge, 1, Yoshida [2] constructed the
generalized Poisson integral; ,,+1 f(M) (I > 1) for slowly growing boundary functiorf. From
this, for slowly growing regular boundary functiorfs and f;, we shall give a particular solution
Wint1(fo, f1)(M) (I > 1) by using generalized Poisson integréfs,, . fi(M) (¢ = 1,2) and
generalize the result of Schot. A solution of this boundary value problem for any regular boundary
functions is also given.

The next result concerns a type of uniqueness of solutions of this boundary value problem. We
denote byM(-; r) the mean with respect to the surface element on the upper half sphere ofrradius
centered at the origin &?" 1,

Let/ (I > 3) be an integer. Letv be a solution of the first boundary value problem of the
biharmonic equation fof,,; with respect to slowly growing regular boundary functigfgsand f;.
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If w satisfies

Myw®;r) = 0("™?) (r — ),

M (52) i =06 (),
M(@P(Aw)tsr) =00 ™?) (r — o),
then
[L]+1 (1]
w(X,y) = Wini1(fo, L)X 0) + 42 Y gy A P(X) +4* > By AIPLo(X)
=0 =0

for every(X,y) € T,41, whereP,(X) is a polynomial ofX of degree less thah + 1 (k = {l —
1, [ —2})and

oo | VRS G=0.12 5]+ ),
! 0 (j=[L]+1, liseven,

BlG+1) l

Bj = (_1) <2j+3)! (] =0,1,2,-- 7[5})

Joint work with Naohiro Yaginuma.
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A potential theoretic approach to the curvature equation
Tanran Zhang (Tohoku University)

This presentation is on the estimate of the class of conformal metrics with negative curvature.
This kind of estimate can be taken as the asymptotic behavior near the isolated singularity and this
research is done on the basis of potential theory. The asymptotic behavior of conformal metrics with
negative curvatures was well studied in 2008 in [4]. But only the first and the second order derivatives
were given. That offered us a way to consider the higher order derivatives by means of some potential
theoretic approach. In fact, our results are sharp. We can verify it using the generalized hyperbolic
metric. The explicit formula for the generalized hyperbolic metics , on the thrice-punctured
sphere was given in 2011 in [5]. Since the Gaussian curvature of the generalized hyperbolic metric is
some constant, here we take it to-bé, it makes a persuasive case in our study. For the generalized
hyperbolic metric, we obtain a stronger version of the estimate near its isolated singularity and give
some limits as the asymptotic behaviorof s , in higher order case near the singularity. Our study is
on the basis of potential theory (see [3]), hypergeometric functions (see [2], [1]) and the uniformization
theorem. The following one is our main estimate.

Theorem. Letx : D — R be a locally Holder continuous function with(0) < 0. If u : D* - R is a
C2-solution toAu = —k(z)e** inD*, thenu has the ordet € (—oo, 1] and

u(z) = —alog |z| + v(2), if o < 1,
u(z) = —log|z| —loglog(1/|z|) + w(z),  ifa=1,
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where the remainder function$z) andw(z) are continuous if®. That is, the origin is an isolated
singularity ofu(z). Moreover, ifs(z) € C"~2" for anintegen > 2 and0 < n < 1, thenu(z) € C™"
and forni,ny > 1, ny + ne = n, near the origin the remainder functions), w(z) satisfy

0"v(2), 0™v(z), ™M™ v(z)
0"w(z), 0"w(z)

O(|z>727™),
O(|2[ " log™2(1/2])),

™M™ w(z) = O(|z| " log*(1/|z])),
where - o
P=gm V= om

for a positive natural numbex.
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Our room is in the building No. 59 in this map. You can have lunch at cafeterias in the buildings

No. 2, 3, 59. Also, you can find restaurants outside the campus. The place of a dinner party is in the
building No. 2.
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