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Extended Harnack inequalities with exceptional sets and a boundary Harnack
principle

Hiroaki Aikawa (Hokkaido University)

The Harnack inequality is one of the most fundamental inequalities for positive harmonic functions
and, it is extended for positive solutions to general elliptic equations and parabolic equations. This talk
gives a different view point of generalization. We generalize Harnack chains rather than equations.
More precisely, we allow a small exceptional set; and yet we obtain a similar Harnack inequality.
The size of an exceptional set is measured by capacity. Our extended Harnack inequality includes
information for the boundary behavior of positive harmonic functions. It yields a boundary Harnack
principle for a very nasty domain whose boundary is given locally by the graph of a function with
modulus of continuity worse than Ḧolder continuity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Perron method for p-harmonic functions:
Resolutivity and invariance results

Anders Bj̈orn (Linköpings University)

In the Dirichlet problem one looks for ap-harmonic functionu on some domainΩ ⊂ Rn which
takes prescribed boundary valuesf . A p-harmonic functionu is a continuous weak solution of the
equation

div(|∇u|p−2∇u) = 0.

(And thus forp = 2 we obtain the usual harmonic functions.) Here1 < p <∞ is fixed.
If f is not continuous, then there usually is nop-harmonic functionu which takes the boundary

values as limits (i.e. such thatlimy→x u(y) = f(x) for all x ∈ ∂Ω), and even for continuousf this
is not always possible. One therefore needs some other precise definition of what is asolutionto the
Dirichlet problem. Forp-harmonic functions there are at least4 different definitions, of which the
Perron methodis the most general.

For any boundary functionf : ∂Ω → [−∞,∞], the Perron method produces an upper and a lower
Perron solution. When these coincide it gives a reasonable solution to the Dirichlet problem, called
thePerron solutionPf , andf is said to beresolutive.

In 2003 Bj̈orn–Björn–Shanmugalingam showed the following invariance result: Iff ∈ C(∂Ω)
andh = f outside a set ofp-capacity zero, thenh is resolutive andPh = Pf .

We will look at recent improvements of this result. Some of these will be related to the prime
end boundary, in the sense of the recent definition of prime ends introduced by Adamowicz–Björn–
Björn–Shanmugalingam. Note that for our results wecannotuse Carath́eodory’s classical definition,
not even in simply connected planar domain. Prime ends will only be mentioned briefly in this talk,
see however the talk by Nageswari Shanmugalingam on this topic.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Non-linear potential theory and the Rickman-Picard theorem

Mario Bonk (University of California, Los Angeles)

According to the Rickman-Picard theorem a non-constantK-quasiregular map fromRn to the
n-sphere can only omit finitely many values, where the maximal number of omitted values is bounded
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above by a constant only depending onn andK. In my talk I will present a new potential-theoretic
method to establish this result. In contrast to earlier potential-theoretic proofs, notably by Eremenko-
Lewis and Lewis, the approach is rather elementary and works from first principles. For example,
Harnack inequalities for the relevant functions are not needed, but instead the proof relies on Cacciop-
poli inequalities which are much easier to establish.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isoperimetric inequalities for a Sobolev constant

Tom Carroll (University College Cork)

The principal frequency and the torsional rigidity of a bounded region in Euclidean spaceRn may
both be expressed in terms of Rayleigh quotients. The principal frequencyλ(D) of a bounded region
D is the smallest eigenvalue of the Dirichlet Laplacian−∆. It is the lowest tone that a drum with
shapeD can make, in the case of a planar regionD. This eigenvalue is positive and the corresponding
eigenfunctions have constant sign. The torsional rigidityP (D) of a bounded, simply connected region
D in the plane is a measure of the strength under torsion of a beam which hasD as its cross section.
It is computed asP (D) = 2

∫
D φ(x) dx from the Prandtl stress function (or torsion function)φ,

whose partial derivatives give the stresses in the beam under torsion. The torsion function is a solution
of ∆φ = −2 in D with zero Dirichlet data. The solution of this p.d.e. in a regionD in Rn has a
probabilistic interpretation as the expected exit time of Brownian motion from the region.

The Rayleigh quotient expressions for the eigenvalue and the torsional rigidity are

λ(D) = inf

{∫
D |∇u(x)|2 dx∫
D u

2(x) dx
: u ∈ C∞

0 (D)

}
and

P (D) = 4 sup

{ (∫
D u(x) dx

)2∫
D |∇u(x)|2 dx

: u ∈ C∞
0 (D)

}
.

The fundamental frequency and the torsional rigidity can be embedded in a range of parameters
associated with a region by setting, for eachp ≥ 1,

Cp(D) = inf

{ ∫
D |∇u(x)|2 dx(∫
D u(x)

p dx
)2/p : u ∈ Lp(D) ∩W 1,2

0 (D), u ≥ 0, u ̸≡ 0

}
.

Thus
4

P (D)
= C1(D) and λ(D) = C2(D).

From another perspective,Cp(D) gives the sharp constant in the Sobolev embedding: ifn = 2 and
p ≥ 1, or if n ≥ 3 and1 ≤ p ≤ 2n/(n− 2), then

W 1,2
0 (D) ⊂ Lp(D), ∥u∥Lp(D) ≤ Sp∥∇u∥L2(D) ∀u ∈W 1,2

0 (D),

so that

Sp(D) =
1√

Cp(D)
.

There are been interest, of late, in extending classical results for the eigenvalue and the torsional
rigidity to the Sobolev constantCp. In this talk, I will describe some of these results, including joint
work with Jesse Ratzkin, University of Cape Town.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Variation for the metrics induced by Schiffer and harmonic spans

Sachiko Hamano (Fukushima University)

LetD be a domain inCz bounded byCω smooth contoursC1, . . . , Cν . For a fixed pointζ ∈ D,
letP(D) be the set of all univalent functionsP onD such that

P (z, ζ) = (z − ζ)−1 + 0 +

∞∑
n=1

An(z − ζ)n atz = ζ.

Especially, letP1(z, ζ) be the vertical slit mapping andP0(z, ζ) be the horizontal slit mapping for
(D, ζ). TheLi-principal functionpi(z, ζ) := RePi (i = 1, 0) for (D, ζ) is harmonic onD \ {ζ}, has
the poleRe 1

z−ζ atz = ζ, and satisfiesLi-condition on the boundary: forj = 1, . . . , ν,

(L1) p1(z, ζ) = cj (constant) onCj and
∫
Cj

dp1(z, ζ)

dnz
dsz = 0;

(L0)
dp0(z, ζ)

dnz
= 0 onCj .

The Schiffer spans(ζ) for (D, ζ) is the difference ofLi-constantsαi(ζ) := ReAi1 (i = 1, 0), exactly,
s := α0 − α1 (> 0) (see [5]).

Proposition 1. Let s(ζ) be the Schiffer span for(D, ζ). For any holomorphic mappingw = f(z) on
D, it holds thats(f(ζ)) = |f ′(ζ)|−2s(ζ).

Thus the Schiffer spans(ζ) induces the metrics(ζ)|dζ|2 onD.
Under the same condition as the aboveD, we assume thatD ∋ 0. For an arbitrarily fixedζ ∈ D,

letQ(D) be the set of all univalent functionsQ onD such that

Q(z, ζ) =

{
z−1 +

∑∞
n=0 bnz

n atz = 0,∑∞
n=1Bn(z − ζ)n atz = ζ.

Especially, letQ1(z, ζ) be the circular slit mapping andQ0(z, ζ) be the radial slit mapping for
(D, 0, ζ). TheLi-principal functionqi(z, ζ) := log |Qi| (i = 1, 0) for (D, 0, ζ) is harmonic on
D \ {0, ζ}, has the logarithmic poles− log |z| at z = 0 and log |z − ζ| at z = ζ, and satisfiesLi-
condition on each boundary componentCj (j = 1, . . . , ν). The harmonic spanh(ζ) for (D, 0, ζ) is
the difference ofLi-constantsβi(ζ) := log |dQidz (ζ, ζ)| (i = 1, 0), exactly,h := β1 − β0.

Proposition 2. Let h(ζ) be the harmonic span for(D, 0, ζ). For any holomorphic mappingw = f(z)
onD, it holds thats(f(ζ)) = s(ζ).

From the geometrical meaning of the harmonic span and from the representation of some repro-
ducing kernel, we see that the harmonic spanh(ζ) induces the metric

h(ζ)|dζ|2 := ∂2h(ζ)

∂ζ∂ζ
|dζ|2 onD.

Theorem 3.Let the notation be as above.

(i) The metrics(ζ)|dζ|2 is identical withh(ζ)|dζ|2 onD.

(ii) The metricss(ζ)|dζ|2 andh(ζ)|dζ|2 are of negative curvature at each point inD.
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WhenD = {|z| < 1}, we computed in [4] the Schiffer spans(ζ) for (D, ζ): s(ζ) = 2
(1−|ζ|2)2 ,

and in [2] the harmonic spanh(ζ) for (D, 0, ζ): h(ζ) = −2 log(1 − |ζ|2). Thus we exactly have

h(ζ) := ∂2h(ζ)

∂ζ∂ζ
= s(ζ).

Here we shall introduce complex parametert ∈ B := {|t| < ρ} ⊂ Ct. We consider a variation
of domainsD : t ∈ B → D(t) ⊂ Cz, and identify the variationD with the subset∪t∈B(t,D(t)) of
B × Cz. When eachD(t), t ∈ B is a domain bounded byCω smooth contoursCj(t) (j = 1, . . . , ν)
in Cz and eachCj(t) variesCω smoothly witht ∈ B. (See [3] for non-smooth variations.) Assume
thatD(t) ∋ 0 for t ∈ B. For any fixedζ ∈ D(t), eachD(t) carries the Schiffer spans(t, ζ) for
(D(t), ζ) and the harmonic spanh(t, ζ) for (D(t), 0, ζ). Applying the variation formulas for spans
([1], [2], [4]) we see the property of variation of the metricss(t, ζ)|dζ|2 andh(t, ζ)|dζ|2 onD(t).

Theorem 4. If the total spaceD = ∪t∈B(t,D(t)) is a 2-dimensional pseudoconvex domain inB×Cz,
thenlog s(t, ζ) andlog h(t, ζ) is plurisubharmonic onD.
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Geodesic distances and intrinsic distances on some fractal sets

Masanori Hino (Kyoto University)

The off-diagonal Gaussian asymptotics of the heat kernel density associated with local Dirichlet
form is often described by using the intrinsic distances (or Carnot–Caratheodory distances; cf. [4, 3]
and the references therein). When the underlying space has a Riemannian structure, the geodesic
distance is defined as well, and it coincides with the intrinsic distance in good situations.

Then, what if the underlying space is a fractal set? In typical examples, the heat kernel asymptotics
is sub-Gaussian; accordingly, the intrinsic distance vanishes identically. However, if we take (a sum
of) energy measures as the underlying measure, we can define the nontrivial intrinsic distance as well
as the geodesic distance, and can pose a problem whether they are identical. For the 2-dimensional
standard Sierpinski gasket, the affirmative answer has been obtained ([1, 2]) by using some detailed
information on the transition density. In this talk, I will discuss this problem in a more general frame-
work and provide some partial answers based on purely analytic arguments.

Setting: Let (K, dK) be a compact metric space, andλ, a finite Borel measure onK. Let (E ,F) be
a strong local regular Dirichlet form onL2(K,λ). Forf ∈ F , µ⟨f⟩ denotes the energy measure off .

Let N ∈ N andh = (h1, . . . , hN ) ∈ FN ∩ C(K → RN ). Denote
∑d

j=1 µ⟨hj⟩ by µ⟨h⟩. Then, the
intrinsic distancebased on(E ,F) andµ⟨h⟩ is defined as

dh(x, y) := sup{f(y)− f(x) | f ∈ F ∩ C(K) andµ⟨f⟩ ≤ µ⟨h⟩}, x, y ∈ K.

10



Figure 1: 2-dimensional levell Sierpinski gaskets (l = 2, 3, 4, 5, 10)

For a continuous curveγ ∈ C([0, 1] → K), its length based onh is defined as

lh(γ) := sup

{
n∑
i=1

|h(γ(ti))− h(γ(ti−1))|RN 0 = t0 < t1 < · · · < tn = 1

}
.

Then, thegeodesic distancebased onh is defined as

ρh(x, y) := inf{lh(γ) | γ ∈ C([0, 1] → K), γ(0) = x, andγ(1) = y}, x, y ∈ K.

Note that ifh : K → RN is injective,ρh(x, y) is equal to the usual geodesic distance betweenh(x)
andh(y) in h(K) ⊂ RN .

Results:
1) Suppose further the following:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets{Vm}∞m=0

of K such that

(i)
∪∞
m=0 Vm is dense inK;

(ii) For eachm,K\Vm is decomposed as a finite number of connected components{Uλ}λ∈Λm ;

(iii) limm→∞maxλ∈Λm diamdK Uλ = 0.

(A2) F ⊂ C(K).

(A3) E(f, f) = 0 if and only if f is a constant function.

Then,ρh(x, y) ≤ dh(x, y) for all x, y ∈ K.

2) Consider a 2-dimensional (generalized) Sierpinski gasket (see Figure 1) asK that is also a nested
fractal, and take a self-similar Dirichlet form(E ,F) associated with the Brownian motion onK.
Suppose also that the harmonic structure associated with it is nondegenerate. Takeh = (h1, . . . , hd)
such that eachhi is a harmonic function. Then,dh(x, y) ≤ ρh(x, y) for all x, y ∈ K. By combining
the result of 1) with this inequlity,dh(x, y) = ρh(x, y) holds.

The nondegeneracy condition is verified for levell Sierpinski gaskets withl ≤ 50 by the numerical
calculation. The assumptions onK and(E ,F) can be relaxed, which may be explained in the talk.
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Heat kernel estimates and growth estimates of solutions of semilinear heat equations

Kentaro Hirata (Akita University)

In bounded Lipschitz domainsΩ ⊂ Rn, we presents a priori estimates near the parabolic boundary
of nonnegative solutions of semilinear heat equations

∂tu−∆u = V up in Ω× (0, T ),

whereV is a nonnegative locally bounded function satisfying a certain growth condition near the
parabolic boundary. This improves an estimate given by Poláčik, Quittner and Souplet [2] whenp is
not greater than some constant determined by the shape of a domainΩ. Our proof is based on the
Riesz decomposition of supertemperatures, two-sided global estimates of heat kernels given in [1] and
an iteration argument.
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Modulus of continuity of p-Dirichlet solutions in a metric measure space

Tsubasa Itoh (Hokkaido University)

LetX = (X, d, µ) be a complete connected metric measure space endowed with a metricd and a
positive complete Borel measureµ such that0 < µ(U) <∞ for all non-empty bounded open setsU .
Let 1 < p <∞. We assume thatµ is doubling measure andX admits a(1, p)-Poincaŕe inequality.

For a functionf on ∂Ω we denote byPΩf thep-Perron solution off overΩ. A point ξ ∈ ∂Ω is
said to be ap-regular point(with respect to thep-Dirichlet problem) if

lim
Ω∋x→ξ

PΩf(x) = f(ξ)

for everyf ∈ C(∂Ω). If every boundary point is ap-regular point, thenΩ is calledp-regular. It is
well known that ifΩ is p-regular andf ∈ C(∂Ω), thenPΩf is p-harmonic inΩ and continuous inΩ.
It is natural to raise the following question:

Question. Does improved continuity of a boundary functionf guarantee improved continuity of
PΩf?

Aikawa and Shanmugalingam [2] studied this question in the context of Hölder continuity. Aikawa
[1] investigated this question in the context of general modulus of continuity for the classical setting,
i.e., for harmonic functions in a Euclidean domain. The purpose of this talk is to study this question
in the context of general modulus of continuity in a metric measure space.

We considerψαβ defined by

ψαβ(t) =

{
tα(− log t)−β for 0 < t < t0,

tα0 (− log t0)
−β for t ≥ t0.
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where either0 < α < 1 andβ ∈ R or α = 0 andβ > 0; andt0 is so small thatψαβ is concave. We
say thatf isψαβ-Hölder continuousif |f(x)− f(y)| ≤ Cψαβ(d(x, y)).

Let E ⊂ X. We consider the familyΛψαβ (E) of all bounded continuous functionsf onE with
norm

∥f∥ψαβ ,E = sup
x∈E

|f(x)|+ sup
x,y∈E
x ̸=y

|f(x)− f(y)|
ψαβ(d(x, y))

<∞.

We define the operator norm

∥PΩ∥ψαβ = sup
f∈Λψαβ (∂Ω)

∥f∥ψαβ,∂Ω ̸=0

∥PΩf∥ψαβ ,Ω
∥f∥ψαβ ,∂Ω

.

Observe thatψαβ-Hölder continuity of a boundary functionf ensuresψαβ-Hölder continuity ofPΩf if
and only if∥PΩ∥ψαβ <∞. Hence we characterize the family of domainsΩ such that∥PΩ∥ψαβ <∞.

Definition. We say thatE ⊂ X is uniformlyp-fat or satisfies thep-capacity density conditionif there
are constantsC > 0 andr0 > 0 such that

Capp(E ∩B(a, r), B(a, 2r))

Capp(B(a, r), B(a, 2r))
≥ C, (1)

whenevera ∈ E and0 < r < r0.

The uniformp-fatness of the complement of a domainΩ is closely related to the condition∥PΩ∥ψαβ <
∞. Forα > 0 we obtain the following theorem.

Theorem 1.LetΩ be a boundedp-regular domain. IfX \Ω is uniformlyp-fat, then there is a constant
0 < α1 ≤ α0 such that∥PΩ∥ψαβ <∞ for 0 < α < α1 andβ ∈ R. Conversely, if∥PΩ∥ψαβ <∞ for
some0 < α < α0 andβ ∈ R, thenX \ Ω is uniformlyp-fat, provided that there is a constantQ ≥ p
such thatX is AhlforsQ-regular, i.e.,

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

for everyx ∈ X andr > 0.

Forα = 0 we obtain the following theorem.

Theorem 2. If X \ Ω is uniformlyp-fat, then∥PΩ∥ψαβ <∞ for everyβ > 0.
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Electrical network reduction and the finite Dirichlet problem

Vadim Kaimanovich (University of Ottawa)

Electrical networks are studied because of their practical applications, but they are also useful
mathematical tools with a wide range of applications. In this talk I will discuss a basic fact con-
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cerning the reduction of electrical networks with multiple external nodes that has apparently escaped
the attention of both mathematicians and electrical engineers. As a consequence, it leads to a new
interpretation of the classical Dirichlet problem for finite networks.

Joint work with A. Georgakopoulos.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weyl’s Laplacian eigenvalue asymptotics for the measurable Riemannian structure
on the Sierpiński gasket

Naotaka Kajino (University of Bielefeld)

On the Sierpínski gasketK, Kigami [3] introduced the notion of the measurable Riemannian struc-
ture, with which the “gradient vector field”̃∇u of a functionu, the “Riemannian volume measure”µ
and the “geodesic metric”ρH are naturally associated. Kigami also proved in [3] the two-sided Gaus-
sian bound for the corresponding heat kernelpHt (x, y), and I showed in [1] further several detailed
heat kernel asymptotics, such as Varadhan’s asymptotic relation

lim
t↓0

4t log pHt (x, y) = −ρH(x, y).

Furthermore Koskela and Zhou proved in [4] that for any Lipschitz functionu on (K, ρH),

|∇̃u(x)| = lim sup
y→x

|u(y)− u(x)|
ρH(x, y)

=: (LipρH u)(x) for µ-a.e.x ∈ K,

which means that the canonical Dirichlet formE(u, u) :=
∫
K |∇̃u|2dµ associated with the measurable

Riemannian structure onK coincides with Cheeger typeH1,2-seminorm in(K, ρH, µ).
In the talk, Weyl’s Laplacian eigenvalue asymptotics is presented for this case. Specifically, let

d be the Hausdorff dimension ofK andHd thed-dimensional Hausdorff measure onK, both with
respect to the “geodesic metric”ρH. Then for somecN > 0 and for any non-empty open subsetU of
K with Hd(∂U) = 0,

lim
λ→∞

NU (λ)

λd/2
= cNHd(U),

whereNU (λ) is the number of the eigenvalues, less than or equal toλ, of the Dirichlet Laplacian on
U . Moreover, we will also see that the Hausdorff measureHd is Ahlfors regular with respect toρH
but that it is singular to the “Riemannian volume measure”µ. A renewal theorem for functionals of
Markov chains due to Kesten [2] plays a crucial role in the proof of the above asymptotic behavior of
NU (λ).
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Quasi-monomorphisms andp-harmonic functons with finite Dirichlet sum

Atsushi Kasue (Kanazawa University)

In this talk, infinite, nonlinear resistive networks are considered and Rayleigh’s monotonicity law
is described. We also discuss a problem on the existence ofp-harmonic functions with finite Dirichlet
sum.

We consider a connected, locally finite graphG = (V,E) with the set of verticesV and the
set of oriented edgesE, and assume that a positive weightr on E is endowed. Given exponents
p > 1, q > 1 with 1/p + 1/q = 1, we introduce a norm on the spaceC1(G) of finite 1-chains
onG by ∥I∥q = (12

∑
e∈E r(e)|I(e)|q)1/q, I ∈ C1(G), and denote byℓqrC1(G) the completion of

C1(G) relative to the norm. Similarly we define a norm on the spaceC1(G) of 1-cochains onG
by ∥ω∥p = (12

∑
e∈E |ω(e)|p/r(e)p−1)1/p, ω ∈ C1(G), and denote byℓprC1(G) the space of1-

cochains whose norms are finite. Then we have a bijection betweenℓqrC1(G) andℓpqC1(G), called the
resistance operatorR, which send a1-chainI in ℓqrC1(G) to a1-cochainR(I) defined byR(I)(e) =
r(e)I(e)|I(e)|q−2, e ∈ E. The resistance operatorR keeps the norms in such a way that∥R(I)∥pp =
∥I∥qq.

We are concerned with Kirchhoff’s equations. Given a0-chainj onG, Kirchhoff’s laws are ex-
pressed by the following equations in the unknown1-chain I in ℓqrC1(G): [I] (Kirchhoff’s nodes
law) ∂I(x)(=

∑
y∼x I([x, y])) = j(x), x ∈ V ; [II] (Kirchhoff’s loop law) < R(I), z > (=∑

e∈E R(I)(e)z(e)) = 0, ∀z ∈ Z1(G), whereZ1(G) stands for the set of finite cycles. A1-
chain I in ℓqrC1(G) satisfies [II] if and only ifI = R−1(df) for some0-cochain (function)f in
L1,p(G, r) = {f ∈ C0(G)|df ∈ ℓprC1(G)}. For j ∈ ∂ℓqrC1(G), we have a unique solutionIMj
of equations [I] and [II] satisfying∥IMj ∥q = inf{∥I∥q|I ∈ ℓqrC1(G), ∂I = j}, which is called the
minimal current generated byj. Then it is proved thatIMj = R−1(dgj), wheregj belongs to the

closure of the space of finitely supported functions inL1,p(G, r), denoted byL1,p
0 (G, r). Any other

solution I of [I] and [II] is expressed uniquely asI = IMj + R−1(dh) + z, whereh belongs to
HL1,p(G, r) = {h ∈ L1,p(G, r)|∆ph := ∂R−1(dh) = 0}, andzj is an element of the closure
of Z1(G). We can writeI = R−1(df), wheref is a solution of Poisson equation∆pf = j in
L1,p(G, r). If

∑
x∈V |j(x)| is finite, then we are interested in a solution of [I] and [II] satisfying

< du, I >=< u, j > for any bounded functionu in L1,p(G, r). Such a solution is unique if it exists,
and obviously it is necessary for the existence to assume that

∑
x∈V j(x) = 0. A network(G, r) is

calledp-nonparabolic ifδa belongs to∂ℓqrC1(G) for some (any)a ∈ V .
When we have a graph morphism from an infinite network(G, r) to another one(G′, r′) satisfying

certain conditions, we are able to describe Rayleigh’s monotonicity law.
Now we turn to a problem on the existence of non-constantp-harmonic functions with finite

Dirichlet sum.
Let G = (V,E) be a connected, infinite graph of bounded degrees (with weight= 1). The

graphG is endowed with the graph distancedG. We say that a mapϕ from G to a metric space
(X, dX) is a quasi-monomorphism if there exist positive constantsα > 0 and β ≥ 0 such that
dX(ϕ(a), ϕ(b)) ≤ αdG(a, b) + β for all a, b ∈ V , and there is a constantγ > 0 such that for any
x ∈ X, the cardinality of the set of pointsa ∈ V with dX(x, ϕ(a)) ≤ 1 is bounded byγ. Then the
following result is proved in [1]:

Suppose thatG admits a quasi-monomorphismϕ : G → Hn to the hyperbolic spaceHn of
dimensionn. Then forp > n − 1, if G is p-nonparabolic, then it possesses a lot ofp-harmonic
functions with finite Dirichlet sum; in fact, there exists a perfect subspaceΣ of the limit setϕ(G) ∩
∂∞Hn and, for any Lipschitz functionη onΣ, there is uniquely a functionh in HL1,p(G) such that
limϕ(a)→ξ h(a) = η(ξ) for all ξ ∈ Σ.

We remark that a quasi-monomorphismϕ fromG to Hn induces a graph morphism fromG to a
graph that is quasi-isometric toHn.
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Asymptotic geometry, harmonic functions, and finite generation of isometry groups

Bruce Kleiner (Courant Institute of Mathematics Sciences)

The lecture will discuss spaces (e.g. graphs or Riemannian manifolds) with polynomial-type
growth conditions. The emphasis will be on polynomial growth harmonic functions and related topics,
such as the finite generation of discrete groups of isometries.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Applications of Hopf-Lax formulae to analysis of heat distributions

Kazumasa Kuwada (Ochanomizu University)

Let (X, d) be a metric space. Letp ∈ (1,∞). Forf ∈ Cb(X), we defineQtf ∈ Cb(X) by

Qtf(x) := inf
y∈X

[
f(y) +

t

p

(
d(x, y)

t

)p]
.

We call it Hopf-Lax semigroup (also called Hamilton-Jacobi semigroup). When(X, d) is an Euclidean
space,Qtf is nothing but the Hopf-Lax formula, which gives a solution to the Hamilton-Jacobi equa-
tion

∂tQtf(x) = −1

q
|∇Qtf |(x)q

in an appropriate sense, whereq is the Ḧolder conjugate ofp. This property is still valid even on more
abstract metric spaces. It has been revealed that the notion of Hopf-Lax semigroup is strongly related
with many functional inequalities including logarithmic Sobolev inequalities and transport-entropy
inequalities. The purpose of this talk is to explain recent developments in this direction in connection
with the heat semigroup.

For probability measuresµ0, µ1 ∈ P(X), we denote theLp-Wasserstein distance betweenµ0 and
µ1 byWp(µ0, µ1). That is,

Wp(µ0, µ1) := inf
{
∥d∥Lp(π)

∣∣ π ∈ P(X ×X): coupling ofµ0 andµ1
}
,

where we callπ a coupling ofµ0 andµ1 when the marginal distribution ofπ isµ0 andµ1 respectively.
The dual representation ofWp is called the Kantorovich duality. By usingQtf , it can be stated as
follows:

Wp(µ0, µ1) = sup
f∈Cb(X)

[∫
X
Q1f dµ1 −

∫
X
f dµ0

]
.

The Hopf-Lax semigroup appears here and this fact connects the study of Hopf-Lax formula with the
theory of optimal transportation.

The first application of Hopf-Lax formula in this talk is a relation between a Lipschitz estimate of
Wasserstein distance and a Bakry-Émery type gradient estimate for Markov kernels which in particular
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we can apply to the (Feller) heat semigroup. Forf : X → R, we define the local Lipschitz constant
|∇df |(x) with respect tod by

|∇df |(x) = lim sup
y→x

|f(x)− f(y)|
d(x, y)

.

Theorem 1 (cf. [4]). Let (X, d) be a Polish length space and̃d be another length metric onX. We
denote theLp-Wasserstein distance defined by usingd̃ instead ofd by W̃p. Let P (x, ·) ∈ P(X)
be a Markov kernel onX which depends continuously inx ∈ X. Then, forp, q ∈ [1,∞] with
p−1 + q−1 = 1, the following are equivalent:

(i) Forµ0, µ1 ∈ P(X),Wp(P
∗µ0, P

∗µ1) ≤ W̃p(µ0, µ1).

(ii) Forf ∈ CLip
b (X), |∇d̃Pf |(x) ≤ P (|∇df |q)(x)1/q (Whenq = ∞, ∥|∇d̃Pf |∥∞ ≤ ∥|∇df |∥∞).

The second application is on the estimate of the speed of heat distributions with respect toW2.
For simplicity, we state it whenX is a Riemannian manifold.

Theorem 2. Let X is a complete and stochastically complete Riemannian manifold andPt the heat
semigroup onX. Takef : X → [0,∞) with ∥f∥L1 = 1 and setµt := Ptfvol. Then

|µ̇t|2W2
:= lim sup

s↓0

W2(µt+s, µt)
2

s2
=

∫
X

|∇Ptf |2

Ptf
dvol.

This estimate is first studied in [3] on Alexandrov spaces in the context of identification problem
of heat flows. On Riemannian manifolds, there are two different ways to formulate a “heat flow”.
The one is a gradient flow of the Dirichlet energy inL2-space of functions and the other is a gradient
flow of the relative entropy onP(X) endowed with a metric structure byW2. Thus Theorem 2 is an
estimate related with the second formulation in the sense that it is a bound of the speed of curves in
P(X) with respect toW2 while the objectµt is given by the first formulation. It plays a fundamental
role for identifying those two formulation on non-smooth metric measure spaces as Alexandrov spaces
(see [1, 3]). As a result of the identification, we can obtain the Bakry-Émery gradient estimate for the
heat semigroup under a generalized notion of lower Ricci curvature bound (see [2, 3]).

The third application is a sort of extension of Theorem 1. Inequalities of the form (i) or (ii) are
first introduced in connection with the notion of lower Ricci curvature bound. Recently, F.-Y. Wang
introduced an extension of the Bakry-Émery gradient estimate involving an upper bound ofdimX
(property (v) below; see [5]). We obtain the condition corresponding to (i):

Theorem 3.LetX be a complete and stochastically complete Riemannian manifold withdimX ≥ 2.
Then, forN ∈ [2,∞] andK ∈ R, the following are equivalent:

(iii) dimX ≤ N andRic ≥ K.

(iv) W2(Pt0µ0, Pt1µ1)
2 ≤ e−2Kt1 − e−2Kt0

2K(t0 − t1)
W2(µ0, µ1)

2 + (t1 − t0)

∫ t1

t0

NK

e2Ku − 1
du for t1 >

t0 > 0 andµ0, µ1 ∈ P(X).

(v) |∇Ptf |(x)2 ≤ e−2KtPt(|∇f |2)−
1− e−2Kt

NK
(∆Ptf)

2 for t > 0 andf ∈ CLip
b (X).
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p harmonic measure in simply connected domains revisited

John L. Lewis (University of Kentucky)

LetΩ be a bounded simply connected domain in the complex plane,C. LetN be a neighborhood
of ∂Ω, let p be fixed,1 < p < ∞, and letu be a positive weak solution to thep Laplace equation in
Ω ∩N . Assume thatu has zero boundary values on∂Ω in the Sobolev sense and extendu toN \ Ω
by puttingu ≡ 0 onN \ Ω. Then there exists a positive finite Borel measureµ on C with support
contained in∂Ω and such that∫

|∇u|p−2⟨∇u,∇ϕ⟩ dA = −
∫
ϕdµ

wheneverϕ ∈ C∞
0 (N). Define the Hausdorff dimension ofµ by

H-dim µ = inf {α : there existsE Borel⊂ ∂Ω with Hα(E) = 0 andµ(E) = µ(∂Ω)} ,

whereHα(E), for α ∈ R+, is theα-dimensional Hausdorff measure ofE. In this talk we first discuss
results concerning H-dimµ whenµ is harmonic measure (the casep = 2). After that we outline
work of coauthors and myself concerning the dimension ofp harmonic measure when1 < p < ∞.
Time permitting we will discuss a recent paper with the same title as our talk, dealing with results
for p harmonic measure, similar to the well known result of Makarov for harmonic measure in simply
connected domains.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The quasisymmetric geometry of boundaries of relatively hyperbolic groups

John Mackay (University of Oxford)

The boundary of a Gromov hyperbolic group is a metric space canonically defined up to qua-
sisymmetry, and analysis on such spaces has been of much interest in the past twenty years. In this
talk I will describe the analogous boundaries for relatively hyperbolic groups, and some of their ana-
lytic properties. I will also describe a result constructing quasi-arcs in metric spaces avoiding certain
obstacles. (Based on joint work with Alessandro Sisto.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean continuity for potentials of functions in Musielak-Orlicz spaces

Fumi-Yuki Maeda

The classical results on mean continuity of Riesz potentials of funcrionsf in Lp have been ex-
tended to the case whenf belongs to the variable exponentLp(·) (e.g., [1]) and further toLp(·)(logL)q(·)

([3]). Here we further extends those results to potentials of functions in Musielak-Orlicz spaces.
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LetΦ(x, t) = tϕ(x, t) : RN × [0,∞) → [0,∞) satisfy the following conditions:

(Φ1) Carath́eodory condition;

(Φ2) Φ(x, 1) and1/Φ(x, 1) are bounded;

(Φ3) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on(0,∞) for someε0 > 0;

(Φ4) Φ(x, ·) saitisfies uniform doubling condition;

(Φ5) for everyγ > 0, there exists a constantBγ ≥ 1 such thatΦ(x, t) ≤ BγΦ(y, t) whenever
|x− y| ≤ γt−1/N andt ≥ 1.

Let Φ(x, t) =
∫ t
0 sup0≤s≤r ϕ(x, s) dr. For an open setG in RN , the Musielak-Orlicz space

LΦ(G) is defined by (cf. [4])

LΦ(G) =

{
f ∈ L1

loc(G) ;

∫
G
Φ
(
y, |f(y)|

)
dy <∞

}
,

which is a Banach space with respect to the norm

∥f∥LΦ(G) = inf

{
λ > 0 ;

∫
G
Φ
(
y, |f(y)|/λ

)
dy ≤ 1

}
.

As a kernel function onRN , we considerk(x) = k(|x|) (with the abuse of notation) with a
functionk(r) : (0,∞) → (0,∞) satisfying the following conditions:

(k1) k(r) is non-increasing lower semicontinuous on(0,∞);

(k2)
∫ 1
0 k(r)r

N−1 dr <∞;

(k3) there exists a constantK1 ≥ 1 such thatk(r) ≤ K1k(r + 1) for all r ≥ 1.

Forf ∈ L1
loc(R

N ) satisfying ∫
RN

k(1 + |y|)|f(y)| dy <∞, (∗)

we consider itsk-potentialk ∗ f .
Let k̄(r) = N

rN

∫ r
0 k(ρ)ρ

N−1 dρ for r > 0 and set

Γ(x, s) = s−1k̄(s−1/N )Φ−1(x, s) (x ∈ RN , s > 0),

whereΦ−1(x, s) = sup{t > 0;Φ(x, t) < s}.
Consider a functionΨ(x, t) : RN × [0,∞) → [0,∞) satisfying the following conditions:

(Ψ1) Carath́eodory condition;

(Ψ2) there is a constantA1 ≥ 1 such thatΨ(x, at) ≤ A1aΨ(x, t) for all x ∈ RN , t > 0 and
0 ≤ a ≤ 1;

(ΨΦk) there exists a constantA2 ≥ 1 such that

Ψ
(
x, Γ(x, s)

)
≤ A2s for all x ∈ RN ands > 0.

Theorem 1.Let f ∈ L1
loc(R

N ) satisfy(∗) and set

E1 = {x ∈ RN : k ∗ |f |(x) = ∞},

E2 =
{
x ∈ RN : lim sup

r→0+
−
∫
B(x,r)

Φ
(
z, rN k̄(r)|f(z)|

)
dz > 0

}
.

Assume

(Γ) s 7→ s−ε1Γ(x, s) is uniformly almost increasing for someε1 > 0;

(k5) k(rs) ≤ K3k̄(r)k(s) for all 0 < r ≤ 1, 0 < s ≤ 1.
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Then

lim
r→0+

−
∫
B(x0,r)

Ψ(x, |k ∗ f(x)− k ∗ f(x0)|) dx = 0

for all x0 ∈ RN \ (E1 ∪ E2).

For a setE ⊂ RN and an open setG ⊂ RN , we define (cf. [2])

Ck,Φ(E;G) = inf
f∈Sk(E;G)

∫
G
Φ (y, f(y)) dy,

whereSk(E;G) is the family of all nonnegative measurable functionsf onRN such thatf vanishes
outsideG andk ∗ f(x) ≥ 1 for everyx ∈ E. We say thatE is of (k,Φ)-capacity zero, if

Ck,Φ(E ∩G;G) = 0 for every bounded open setG.

Theorem 2. Let f ∈ LΦ(RN ) satisfy(∗). Then,E1 in Theorem 1 has(k,Φ)-capacity zero. IfΦ
satisfies a further condition

(Φ6) Φ(x, s)Φ(x, t) ≤ A3Φ(x, st) for all x ∈ RN , s ≥ 1 andt > 0,

thenE2 in Theorem 1 has(k,Φ)-capacity zero.

Joint work with Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura.
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On harmonic Hardy-Orlicz spaces

Hiroaki Masaoka (Kyoto Sangyo University)

Let (Ω,H) be aP-Brelot harmonic space. Suppose that there exists a countable base for the open
sets ofΩ and that constant functions are harmonic onΩ. Set

N = {Φ | Φ is non-negative, convex and strictly increasing functions on[0,+∞),

Φ(0) = 0 and lim
t→+∞

Φ(αt)

t
= +∞ (for α > 0)}.

LetΦ andΨ be elements ofN . We showed that under the assumption thatlim sup
t→+∞

Φ(αt)

Ψ(t)
= +∞ for

all positiveα the following three conditions are equivalent.

(i) the Hardy Orlicz spacesHΦ(Ω) andHΨ(Ω) coincide;

(ii) dimHΨ(Ω) < +∞;

(iii) dimHΦ(Ω) < +∞.

In our talk we give an example forP-harmonic space with the above condition (i). This is a joint
work with Tero Kilpel̈ainen and Pekka Koskela.
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Sobolev’s inequality for Riesz potentials in Lorentz spaces of variable exponent

Yoshihiro Mizuta (Hiroshima Institute of Technology)

In the present talk we discuss the boundedness of the maximal operator in the Lorentz space of
variable exponent defined by the symmetric decreasing rearrangement in the sense of Almut [1]. As
an application of the boundedness of the maximal operator, we establish the Sobolev inequality by
using Hedberg’s trick in his paper [9].
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Equilibrium measures for uniformly quasiregular dynamics

Yûsuke Okuyama (Kyoto Institute of Technology)

We establish the existence and fundamental properties of the equilibrium measure in uniformly
quasiregular dynamics. We show that a uniformly quasiregular endomorphismf of degree at least
2 on a closed Riemannian manifold of dimensionn admits an equilibrium probability measureµf ,
which is balanced and invariant underf and non-atomic, and whose support agrees with the Julia
set off . Furthermore we show thatf is strongly mixing with respect to the measureµf . We also
characterize the measureµf using an approximation property by iterated pullbacks of points under
f up to a set of exceptional initial points of Hausdorff dimension at mostn − 1. These dynamical
mixing and approximation results are reminiscent of the Mattila-Rickman equidistribution theorem
for quasiregular mappings. This is a joint work with Pekka Pankka (Helsinki).
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Computation of capacities

Thomas Ransford (Laval University)

I shall discuss the problem of computing the value of the capacity of a set for the logarithmic,
Riesz, hyperbolic and analytic capacities.
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A characterization of entire functions and approximation

Ryozi Sakai (Meijo University)

We define the degree of approximation for a continuous functionf on I = [−1, 1] by

En(f) := inf
P∈Pn

∥f − P∥L∞(I),

wherePn denotes the class of all polynomials with degree≤ n. In [1], S.Bernstein proved thatf
has an analytic extension of an entire function if and only iflimn→∞E

1/n
n (f) = 0. R.S.Varga ([5])

considered the rate at whichE1/n
n (f) tends to zero, and he showed thatf ∈ C(I) satisfies

lim sup
n→∞

{
n log n

log(1/En(f))

}
= λ

if and only if f has an analytic extension of an entire function of orderλ. Recall that an entire function
f is of orderλ if

lim sup
r→∞

log logM(r, f)

log r
= λ,

whereM(r, f) := max|z|=r |f(z)|.
In this talk, we discuss the about result for approximations onR. Let f be a real valuedLp-

function (1 ≤ p ≤ ∞) onR, and let

Ep,n(f, w) := inf
P∈Pn

∥w(f − P )∥Lp(R),

wherew = exp(−Q) is an exponential weight which belongs to a relevant classF(C2+) (see, e.g.,
[3]). For example,Q(x) = exp(|x|α)− 1 orQ(x) = (1 + |x|)|x|α − 1 for α > 1.

Then we can prove the following.

Theorem. Let

lim sup
n→∞

n log n

log 1/Ep,n(f ;w,R)
=: ρp(f).

Then the functionf with wf ∈ Lp(R) is the restriction toR of an entire function with finite orderλ
if and only if ρp(f) is finite. Furthermore we see

1

λ
− 1

A
≤ 1

ρp(f)
≤ 1

λ
− 1

B
,

whereT (x) = xQ′(x)/Q(x) and

A := lim inf
|x|→∞

T (x), B := lim sup
|x|→∞

T (x).

Especially, ifT (x) is unbounded thenλ = ρp(f) holds true.

We point out that basic and essential results of the weighted polynomial approximation are ob-
tained by using logarithmic potential theory (cf. [4], see also [2] and [3]).

Joint work with Noriaki Suzuki.
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Rotation of planar quasiconformal maps

Eero Saksman (University of Helsinki)

We introduce interpolation onLp-spaces with complex exponents, and apply it to obtain optimal
estimates for rotation of quasiconformal maps. The talk is based on joint work with K. Astala, T.
Iwaniec and I. Prause.
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Heat kernel estimates on inner uniform domains

Laurent Saloff-Coste (Cornell University)

In this talk, I will discuss two-sided heat kernel estimates for the Neumann and Dirichlet heat
kernels in inner uniform domains. In the case of the Dirichlet heat kernel, one of the key ingredient is
a scale-invariant Harnack boundary principle developed in ealier work of H. Aikawa, A. Ancona and
others. In the case of bounded domains, these estimates sharp intrinsic ultracontractivity bounds.

Joint work with P. Gyrya and J. Lierl (Bonn).
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Morrey spaces and fractional integral operators

Yoshihiro Sawano (Tokyo Metropolitan University)

The well-known Hardy-Littlewood-Sobolev theorem is as follows:

Theorem 1.1.Let 0 < α < n and1 < p < q <∞. If 1
q = 1

p − α, then∥Iαf∥Lq ≤ C∥f∥Lp , where

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

This theorem appears in disguise in many fields of mathematics. Morrey spaces seem appropriate
to view subtly how this smoothing effect occurs.

Let 1 < q < p <∞. Then define

∥f∥Mp
q
= sup

B
|B|

1
p
− 1
q

(∫
B
|f(y)|q dy

)1/q

.

The well-known Adams theorem reads;
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Theorem 1.2.Let 0 < α < n. Assume that the parametersp, q, s, t satisfy

1 < q ≤ p <∞, 1 < t ≤ s <∞,
q

p
=
t

s
,

1

s
=

1

p
− α

n
.

ThenIα is bounded fromMp
q toMs

t .

In this talk, we consider why this happens ?

1. Do we need any smooth structure of the Euclidean spaces or the nice property of Lebesgue
measures ? [1, 2, 5, 8, 9, 13] We work on a very generic setting proposed in [13].

2. Is Iα surjective ? If no, characterize the image. [6, 10, 14] The function space defined in [14]
can be used to view Morrey spaces and fractional integral operators by taking full advantage of
the structure ofRn.

3. What happens in the bilinear case ? [3, 4] Can we consider

Iα[f1, f2](x) =

∫
Rn

f1(y1)f2(y2)

(|x− y1|+ |x− y2|)2n−α
dy ?

Is a natural extension of the Adams theorem all when we use Morrey spaces ? What can we say
about the operator of the form(f, g) 7→ g · Iαf ?

4. How about the endpoint cases ? [7, 9, 12] For example, what can we say about the cases = ∞
?

In the talk, the speaker will present a typical result for each problem.
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Constructing a prime end boundary for non-simply connected domains
in Euclidean spaces and metric measure spaces

Nageswari Shanmugalingam (University of Cincinnati)

Caratheodory’s definition of prime ends is fruitful in the case that the domain under study is a
simply/finitely connected planar domain. His definition has been extended in various ways to domains
in higher dimensions, but again for a limited number of domains (such as quasiconformally collared
domains). I will talk about a possible alternate construction of prime ends that is useful for more
general domains in all dimensions (and of course, in metric space setting as well). This talk is based
on joint work with Anders Bjorn, Jana Bjorn, and Tomasz Adamowicz.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hardy averaging operator on generalized Banach function spaces

Tetsu Shimomura (Hiroshima University)

LetAf(x) := 1
|B(0,|x|)|

∫
B(0,|x|) f(t) dt be then-dimensional Hardy averaging operator. It is well

known thatA is bounded onLp(Ω) with an open setΩ ⊂ Rn whenever1 < p ≤ ∞. In this talk, we
improve this result within the framework of generalized Banach function spaces. We in fact find the
‘source’ spaceSX , which is strictly larger thanX, and the ‘target’ spaceTX , which is strictly smaller
thanX, under the assumption that the Hardy-Littlewood maximal operatorM is bounded fromX
intoX, and prove thatA is bounded fromSX into TX . We prove optimality results for the action of
A on such spaces and present applications of our results to variable Lebesgue spacesLp(·)(Ω), as an
extension of [2] in the case whenn = 1 andΩ is a bounded interval.

Joint work with Yoshihiro Mizuta and Alěs Nekvinda.
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Two-phase quadrature domains and harmonic balls

Tomas Sj̈odin (Linköping University)

This talk is mainly going to be a survey of the recent theory of two-phase quadrature domains
and the related topic of harmonic balls. In particular I will focus on my work together with Stephen
Gardiner (UCD Dublin) regarding two-phase quadrature domains for harmonic and subharmonic func-
tions and my work with Henrik Shahgholian (KTH) about two-phase quadrature domains for analytic
functions and harmonic balls.

Roughly speaking, two-phase quadrature domains consists of a pair of disjoint open setsD+, D−
together with two measuresµ+, µ− such thatµ+ andµ− has compact support inD+ andD− respec-
tively, and such that we for some suitable class of functionsh have an integral equality or inequality
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between the integrals (whereλ denotes Lebesgue measure)∫
D+

hdλ−
∫
D−

hdλ,

and ∫
hdµ+ −

∫
hdµ−.

Natural choices forh can be analytic, harmonic or such thath is subharmonic inD+ and superhar-
monic inD−. Unlike the classical (one-phase) case we assume more about the behaviour of the func-
tions at the boundaries ofD+ andD−, and not just thath is integrable overD+ andD− (otherwise we
would just have two disjoint one-phase quadrature domains). We will discuss what natural choices are,
and also relate this concept to two-phase modified Schwarz potentials and Schwarz functions which
also has natural definitions.

After this we shall also discuss the concept of harmonic balls, which is closely related to the above.
It is well known that ifαδx is a point mass atx ∈ Rn andB is an open set such that the Newtonian
potential ofαδx andλ|B are equal in the complement ofB, thenB is the ball with centerx and total
massα. Harmonic balls are defined relative to a domainK, and we say thatB ⊂ K is a harmonic
ball with respect toαδx (x ∈ K) if the Green potentials inK for αδx andλ|B agree inK \ B. We
will discuss some known results and also some interesting open questions regarding these.
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A concept of harmonicity for families of planar curves

Eleutherius Symeonidis (Katholische Universität Eichsẗatt-Ingolstadt)

LetΩ ⊆ R2 be a simply connected domain,t 7→ (x0(t), y0(t)) ∈ Ω a smooth curve, parametrized
over an intervalI. Moreover, letJ be an interval containing0, J × I ∋ (s, t) 7→ (x(s, t), y(s, t)) ∈ Ω
a conformal mapping such thatx(0, t) = x0(t), y(0, t) = y0(t) for all t ∈ I.

Let h be a harmonic function onΩ, h̃ a harmonic conjugate toh. If I ∋ t 7→ h(x0(t), y0(t)) is
integrable, and if

lim
t→inf I

h̃(x(s, t), y(s, t)) = lim
t→sup I

h̃(x(s, t), y(s, t))

holds for alls ∈ J , then for all theses,∫
I
h(x(s, t), y(s, t)) dt =

∫
I
h(x0(t), y0(t)) dt ,

which means that the integral ofh over the different curves of the family(t 7→ (x(s, t), y(s, t)) )s∈J is
invariant. Therefore, it is natural to speak of aharmonic deformationof the initial curve. We remark
that the condition oñh is automatically satisfied in the case in which the curves of the family are
closed andI is compact.

We show how a conformal mapping as above can be derived from a specific potential, and we
present examples with bounded and unbounded curves or with such ones with multiple points.

Finally, we discuss the question of invariance of certain weighted integrals
∫
I h(x(s, t), y(s, t))w(s, t) dt

in the same framework.
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A representation for harmonic Bergman function and its application

Kiyoki Tanaka (Osaka City University)

Let Ω be a bounded smooth domain inRn. For 1 ≤ p < ∞, we denote bybp(Ω) the harmonic
Bergman space inΩ, i.e., the set of all real-valued harmonic functionsf on Ω such that∥f∥p :=(∫

Ω |f |pdx
) 1
p < ∞, wheredx denotes the usualn-dimensional Lebesgue measure onΩ. It is known

thatb2 is the reproducing kernel Hilbert space. The reproducing kernel forb2(Ω) is called the harmonic
Bergman kernel.

In this talk, we discuss a representation for the harmonic Bergman function and interpolation
theorem. B. R. Choe and H. Yi [2] studied the representation theorem and interpolation theorem for
harmonic Bergman functions in the upper half space. As a recent result, we introduce the following
representation theorem for the harmonic Bergman function in a bounded smooth domain.

Theorem 1 (cf. Theorem 1 in [5]).Let 1 < p < ∞ andΩ be a bounded smooth domain. Then, we
can choose a sequence{λi} in Ω such thatA : ℓp → bp is a bounded onto map, where the operatorA
is defined by

A{ai}(x) :=
∞∑
i=1

aiR(x, λi)r(λi)
(1− 1

p
)n
,

whereR(x, y) denotes the harmonic Bergman kernel andr(x) denotes the distance betweenx and
∂Ω.

Conversely, we consider the map frombp to ℓp. The following theorem is called interpolation
theorem.

Theorem 2.Let 1 < p < ∞ andΩ be a bounded smooth domain. There exists a positive constantρ0
such that ifρ(λi, λj) > ρ0 for any i ̸= j, thenV : bp → ℓp is bounded onto map, whereρ(x, y) is

pseudo-hyperbolic distance andV f := {r(λi)
n
p f(λi)}i.

The previous theorems do not refer tob1-functions. A representation forb1-functions is achieved
by using the another kernel. The following kernel is defined by B. R. Choe, H. Koo and H. Yi [1].

Definition 1. Let η be a defining function ofΩ with condition that|∇η|2 = 1 + ηω for someω ∈
C∞(Ω̄). We define the modified harmonic Bergman kernel by

R1(x, y) = R(x, y)− 1

2
∆y

(
η2(y)R(x, y)

)
for anyx, y ∈ Ω, where∆y is the Laplacian with respect toy.

By using the modified harmonic Bergman kernel, we can give the representation forb1-functions.

Theorem 3 (cf. [6]). Let 1 ≤ p < ∞ andΩ be a bounded smooth domain. Then, we can choose a
sequence{λi} in Ω such thatA1 : ℓp → bp is a bounded onto map, where the operatorA1 is defined
by

A1{ai}(x) :=
∞∑
i=1

aiR1(x, λi)r(λi)
(1− 1

p
)n
.
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Distortion of dimension by projections and Sobolev mappings

Jeremy Tyson (University of Illinois at Urbana-Champaign)

We will discuss a series of recent results on the metric and measure-theoretic properties of pro-
jection mappings. These include estimates for the distortion of Hausdorff dimension for images of
fixed subsets under generic projections, and also for images of generic fibers of such projections under
Sobolev and quasiconformal mappings. We will discuss first the case of Euclidean spaces, where the
projection mappings are linear, and then the case of the sub-Riemannian Heisenberg group. In the
latter case the projections onto vertical homogeneous subgroups are neither linear nor Lipschitz.
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The first boundary value problem of the biharmonic equation for the half-space

Minoru Yanagishita (Chiba University)

Let Tn+1 (n ≥ 2) be the half-space{M = (X, y) ∈ Rn+1 : y > 0}, and let∂Tn+1 be its
boundary.

Let f0 andf1 be two functions defined on∂Tn+1. A solution of the first boundary value problem
of the biharmonic equation forTn+1 with respect tof0 andf1 is a biharmonic functionw in Tn+1

such that

lim
M→N, M∈Tn+1

w(M) = f0(N), lim
M→N, M∈Tn+1

∂w

∂y
(M) = f1(N)

for every pointN ∈ ∂Tn+1.
Schot [1] gave a particular solution of the first boundary value problem of the biharmonic equation

for Tn+1. With respect to the Dirichlet problem for the half-spaceTn+1, Yoshida [2] constructed the
generalized Poisson integralHl,n+1f(M) (l ≥ 1) for slowly growing boundary functionf . From
this, for slowly growing regular boundary functionsf0 andf1, we shall give a particular solution
Wl,n+1(f0, f1)(M) (l ≥ 1) by using generalized Poisson integralsHl,n+1fi(M) (i = 1, 2) and
generalize the result of Schot. A solution of this boundary value problem for any regular boundary
functions is also given.

The next result concerns a type of uniqueness of solutions of this boundary value problem. We
denote byM(·; r) the mean with respect to the surface element on the upper half sphere of radiusr
centered at the origin ofRn+1.

Let l (l ≥ 3) be an integer. Letw be a solution of the first boundary value problem of the
biharmonic equation forTn+1 with respect to slowly growing regular boundary functionsf0 andf1.
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If w satisfies

M(yw+; r) = O(rl+2) (r → ∞),

M(y2
(
∂w

∂y

)−
; r) = O(rl+2) (r → ∞),

M(y3(∆w)+; r) = O(rl+2) (r → ∞),

then

w(X, y) =Wl,n+1(f0, f1)(X, y) + y2
[ l
2
]+1∑
j=0

αjy
2j∆jPl−1(X) + y3

[ l
2
]∑

j=0

βjy
2j∆jPl−2(X)

for every(X, y) ∈ Tn+1, wherePk(X) is a polynomial ofX of degree less thank + 1 (k = {l −
1, l − 2}) and

αj =

{
(−1)j 2!(j+1)

(2j+2)! (j = 0, 1, 2, · · · , [ l2 ] + 1),

0 (j = [ l2 ] + 1, l is even),
βj = (−1)j

3!(j + 1)

(2j + 3)!
(j = 0, 1, 2, · · · , [ l

2
]).

Joint work with Naohiro Yaginuma.
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A potential theoretic approach to the curvature equation

Tanran Zhang (Tohoku University)

This presentation is on the estimate of the class of conformal metrics with negative curvature.
This kind of estimate can be taken as the asymptotic behavior near the isolated singularity and this
research is done on the basis of potential theory. The asymptotic behavior of conformal metrics with
negative curvatures was well studied in 2008 in [4]. But only the first and the second order derivatives
were given. That offered us a way to consider the higher order derivatives by means of some potential
theoretic approach. In fact, our results are sharp. We can verify it using the generalized hyperbolic
metric. The explicit formula for the generalized hyperbolic metricλα,β,γ on the thrice-punctured
sphere was given in 2011 in [5]. Since the Gaussian curvature of the generalized hyperbolic metric is
some constant, here we take it to be−1, it makes a persuasive case in our study. For the generalized
hyperbolic metric, we obtain a stronger version of the estimate near its isolated singularity and give
some limits as the asymptotic behavior ofλα,β,γ in higher order case near the singularity. Our study is
on the basis of potential theory (see [3]), hypergeometric functions (see [2], [1]) and the uniformization
theorem. The following one is our main estimate.

Theorem. Let κ : D → R be a locally Ḧolder continuous function withκ(0) < 0. If u : D∗ → R is a
C2-solution to∆u = −κ(z)e2u in D∗, thenu has the orderα ∈ (−∞, 1] and

u(z) = −α log |z|+ v(z), if α < 1,

u(z) = − log |z| − log log(1/|z|) + w(z), if α = 1,
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where the remainder functionsv(z) andw(z) are continuous inD. That is, the origin is an isolated
singularity ofu(z). Moreover, ifκ(z) ∈ Cn−2,η for an integern ≥ 2 and0 < η ≤ 1, thenu(z) ∈ Cn,η

and forn1, n2 ≥ 1, n1 + n2 = n, near the origin the remainder functionsv(z), w(z) satisfy

∂nv(z), ∂̄nv(z), ∂̄n1∂n2v(z) = O(|z|2−2α−n),

∂̄nw(z), ∂nw(z) = O(|z|−n log−2(1/|z|)),
∂̄n1∂n2w(z) = O(|z|−n log−3(1/|z|)),

where

∂n =
∂n

∂zn
, ∂̄n =

∂n

∂z̄n

for a positive natural numbern.
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Main Campus Map

Our room is in the building No. 59 in this map. You can have lunch at cafeterias in the buildings
No. 2, 3, 59. Also, you can find restaurants outside the campus. The place of a dinner party is in the
building No. 2.
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