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Knot Theory Basics

We ordinarily present links in two dimensions via their diagrams. Link
diagrams are incredibly non-unique.

The primary focus of study for us is an isotopy invariant; namely, it
is a polynomial ∆L(t) defined for a link L such that if L and L′ are
isotopic, then ∆L(t) and ∆L′(t) are “equivalent.”
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Knot Theory Basics

Theorem (Reidemeister, 1927)

Fix links L and L′, as well as diagrams for each. L and L′ are isotopic if
and only if their diagrams can be related by sequential application of the
following three Reidemeister moves.
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Alternating Links

Definition

A link diagram is alternating if, when tracing each component of the link,
crossings alternate under and over.
A link is alternating if it admits an alternating diagram.

Examples:
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Alexander Polynomial

The Alexander polynomial is an isotopy invariant, originally computed as a
determinant, introduced by James Alexander II in a 1928 paper.

Proposition

If L and L′ are isotopic links, then ∆L(t) ∼ ∆L′(t), where ∼ indicates
equality up to multiplication by ±tk , k ∈ Z.

Many combinatorial methods exist for computing the Alexander
polynomial. Let’s work on an example.
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A Combinatorial Formula (Crowell, 1959)

Let L be an alternating link. Let
−−→
G (L) be the edge-weighted digraph

obtained by the following convention:

becomes
1

−t

Example:

11

11

11

−t
−t

−t

−t

−t−t

1

−t

Definition

Given a directed planar graph G and a vertex r of G , an arborescence
rooted at r is a connected subgraph A such that, for each vertex v , there
is a unique directed path from r to v in A.
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A Combinatorial Formula (Crowell, 1959)

Example: Hopf Link
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∏
e∈E(T1)

var(e) = −t

∏
e∈E(T3)

var(e) = t2

∏
e∈E(T2)

var(e) = −t

∏
e∈E(T4)

var(e) = t2

∆L(t) ∼ 2t2 − 2t
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Special Alternating Links - Checkerboard Graph

Example:
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Special Alternating Links - Checkerboard Graph

Polytopes in the literature: Sutured Floer homology and hypergraphs
(Juhász-Kálmán-Rasmussen, 2011)

Definition

A special alternating link admits an alternating diagram such that one of
its checkerboard graphs is bipartite.

Convention: The bipartite graph is the one without the exterior.
Example:
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Trapezoidal and Log-Concave Sequences

a0 a1 · · · ai · · · an−1 anan

Trapezoidal: a0 < a1 < ak = · · · = am > am+1 > . . . an for some k and m.

Example: 1, 2, 3, 6, 6, 6, 4, 1

Log-concave: a2i ≥ ai−1ai+1 for all i .

Positive and log-concave implies trapezoidal.
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Part 1: Fox’s Conjecture and Generalized Permutahedra

Conjecture (Fox, 1962)

Let L be an alternating link. Then the absolute values of the coefficients
of ∆L(−t) form a trapezoidal sequence.

Theorem (Hafner–Mészáros–V., 2023)

The coefficients of the Alexander polynomial ∆L(−t) of a special
alternating link L form a log-concave sequence with no internal zeros. In
particular, they are trapezoidal.

Polytopal Perspective, in Brief:

Crowell’s method for computing the Alexander polynomial →
multivariate “M-polynomial”

This “M-polynomial” is supported on a generalized permutahedron
→ Lorentzian polynomial
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Part 2: Eulerian Directed Graphs and Root Polytopes

Murasugi and Stoimenow define the Alexander polynomial PH(t) for any
Eulerian digraph H.

Polytopal Perspective, in Brief:

Any Eulerian directed graph H has a dual co-Eulerian oriented matroid
Each regular oriented matroid has an associated root polyope

Theorem (Hafner–Mészáros–V., 2024)

Let H be an Eulerian digraph, and let M be the oriented graphic matroid
associated to H. Let AH be a totally unimodular matrix representing M∗,
the oriented dual of M, and let m be the size of a basis of M∗. Then,

PH(t) =
∑

A′ has property *

Vol(QA′)(t − 1)#col(A′)−m, (1)

where a matrix A′ has property * if it is obtained by deleting a set of
columns from AH without decreasing the rank of the matrix, and QA′

denotes the root polytope of A′.
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Part 1: Fox’s Conjecture and
Generalized Permutahedra
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Fox’s Conjecture

Conjecture (Fox, 1962)

Let L be an alternating link. Then the coefficients of the Alexander
polynomial ∆L(−t) form a trapezoidal sequence.

Example: 1, 5, 11, 11, 5, 1

Conjecture (Stoimenow, 2014)

Let L be an alternating link. Then the coefficients of the Alexander
polynomial ∆L(−t) form a log-concave sequence with no internal zeros.

Coefficients of ∆L(t) alternate in sign for alternating links L (Crowell,
Murasugi).
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Fox’s Conjecture - Some Previous Results

Fox’s conjecture is known to hold for some special cases, including:

Two-bridge knots (Hartley, 1979)

A family of alternating algebraic links, which includes two-bridge
knots (Murasugi, 1985)

Genus 2 alternating knots (Ozsváth–Szabó, 2003; Jong, 2009)

Today: Special alternating links (Hafner–Mészáros–V., 2023)

Certain diagrammatic Murasugi sums of special alternating links
(Azarpendar–Juhász–Kálmán, 2024)

Special alternating links, using different methods
(Kálmán–Mészáros–Postnikov, 2025)
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The Idea

Theorem (Hafner–Mészáros–V., 2023)

The coefficients of the Alexander polynomial ∆L(−t) of a special
alternating link L form a log-concave sequence with no internal zeros. In
particular, they are trapezoidal.

Define a multivariate Alexander polynomial that we can show is
supported on the lattice points of a generalized permutahedron and
has 0, 1 coefficients → this polynomial is (denormalized) Lorentzian

Define it so that after specializing it back to the (homogenized)
Alexander polynomial we preserve the denormalized Lorentzian
property

Thus conclude log-concavity of the Alexander polynomial
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From Alexander to M-Polynomial

r

r

r

r

1

11

1

−t

−t

−t

−t

1

11

1

−t

−t

−t

−t

1

11

1

−t

−t

−t

−t

1

11

1

−t

−t

−t

−t

∏
e∈E(T1)

var(e) = −t

∏
e∈E(T3)

var(e) = t2

∏
e∈E(T2)

var(e) = −t

∏
e∈E(T4)

var(e) = t2

∆L(t) ∼ 2t2 − 2t
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From Alexander to M-Polynomial

r

r

r

r

x1

x1

x2

x2

x3

x3

x4

x4 x1

x1

x2

x2

x3

x3

x4

x4

x1

x1

x2

x2

x3

x3

x4

x4x1

x1

x2

x2

x3

x3

x4

x4
M−−−→

G(L),r
(x1, x2, x3, x4) = x1x2x3 + x2x3x4

+x3x4x1 + x4x1x2
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The M-Polynomial of a Special Alternating Link

Definition (Hafner–Mészáros–V., 2023)

Let L be a special alternating link, and let r ∈ V(
−−→
G (L)). Let C1, . . .Ck

denote the set of clockwise oriented cycles bounding planar regions of the

alternating dimap
−−→
G (L). Each edge e ∈ E (

−−→
G (L)) belongs to exactly one of

the Ci . Assign a variable var(e) = xi to each edge e ∈ Ci , i ∈ [k]. Define

M−−→
G(L),r

(x1, . . . , xk) =
∑

A∈A(
−−→
G(L),r)

∏
e∈E(A)

var(e). (2)

This polynomial is

independent of the choice of root

has support the lattice points of a generalized permutahedron

0, 1 coefficients
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Specialization

(1, 1, 0, 1) (1, 0, 1, 1)

(0, 1, 1, 1)
(1, 1, 1, 0)

{(p1, p2, p3, p4) ∈ R4 | p1 + p2 + p3 + p4 = 3}

x1x2x4 x1x3x4

x2x3x4

x1x2x3

M−−−→
G(L)

(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4
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Specialization

(1, 1, 0, 1) (1, 0, 1, 1)

(0, 1, 1, 1)
(1, 1, 1, 0)(1, 1, 1, 0)

(1, 1, 0, 1) (1, 0, 1, 1)

(0, 1, 1, 1)

{(p1, p2, p3, p4) ∈ R4 | p1 + p2 + p3 + p4 = 3}

tq2 t2q

t2q

tq2

M−−−→
G(L))

(t, q, t, q) = 2tq2 − 2t2q
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Specialization

(1, 1, 0, 1) (1, 0, 1, 1)

(0, 1, 1, 1)
(1, 1, 1, 0)(1, 1, 1, 0)

(1, 1, 0, 1) (1, 0, 1, 1)

(0, 1, 1, 1)

p1 + p3 = 1

{(p1, p2, p3, p4) ∈ R4 | p1 + p2 + p3 + p4 = 3}

p1 + p3 = 2

tq2 t2q

t2q

tq2

M−−−→
G(L))

(t, q, t, q) = 2tq2 − 2t2q
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Takeaway

The coefficients of ∆L(−t) count the number of lattice points in the
Newton polytope of M−−→

G(L)
(x1, . . . , xk) which intersect the hyperplanes

xi1 + xi2 + . . . xik = d , d ∈ Z.

(1, 1, 0, 1) (1, 0, 1, 1)

(0, 1, 1, 1)
(1, 1, 1, 0)

p1 + p3 = 1

{(p1, p2, p3, p4) ∈ R4 | p1 + p2 + p3 + p4 = 3}

p1 + p3 = 2

∆L(−t) ∼ 2t + 2t2
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Part 2: Eulerian Directed Graphs
and Root Polytopes
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Alexander Polynomial in terms of Volumes

The following theorem follows from work by Li and Postnikov (2013) and
Kálmán–Mészáros–Postnikov (2025). We give a different proof, as well as
a generalization.

Theorem

Let L be a special alternating link diagram with bipartite checkerboard
graph G. The Alexander polynomial of L can be written as:

∆L(−t) ∼
∑
K⊂G

K connected

Vol(QK )(t − 1)|E(K)|−|V (G)|+1,

where QK denotes the root polytope of K.
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Bipartite and Eulerian Graphs

The dual of any planar bipartite graph is Eulerian. It can furthermore be
oriented as an alternating dimap.

Theorem (Postnikov; Kálmán–Tóthmérész; Tóthmérész)

Let G be a planar bipartite graph with dual H, oriented as an alternating
dimap. The normalized volume Vol(QG ) is the number of arborescences of
H.
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Another Combinatorial Formula (Murasugi–Stoimenow,
2003)

Let L be a special alternating link. Orient the (Eulerian) dual of the
bipartite checkerboard graph, H.

Again, fix a root r ∈ V(H). Again, sum over spanning trees. Each
spanning tree incurs weight t#{edges pointing “towards” r}.

weight t2−0 weight t2−1
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Another Combinatorial Formula (Murasugi–Stoimenow,
2003)

Note: A “k-spanning tree” refers to a spanning tree with |V(H)| − 1− k
edges pointing “towards” the chosen root.

Proposition (Murasugi–Stoimenow, 2003)

Let L be a special alternating link and fix a special alternating diagram
with dual checkerboard graph H. For each k ∈ Z, let ck(H, r) denote the
number of k-spanning trees of H. Then,

∆L(−t) ∼
|V(H)|−1∑

k=0

ck(H, r)t |V(H)|−1−k .
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Proof Outline

Let G be a bipartite graph with oriented dual H and associated special
alternating link L.

Goal: ∆L(−t) ∼
∑

K⊂G
K connected

Vol(QK )(t − 1)|E(K)|−|V (G)|+1

1 Recall Vol(QG ) = c0(H, r).

2 By an inclusion-exclusion argument:
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In Order to Generalize

Alternating dimap → Eulerian digraph

Alexander polynomial of an special alternating link ∆L(−t) →
Alexander polynomial of an Eulerian digraph PH(t)
(Murasugi–Stoimenow, 2003)

Root polytope of bipartite dual → Root polytope of the co-Eulerian
dual oriented matroid of the graphic matroid of H (Tóthmérész, 2022)
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Our Generalization

Theorem (Hafner–Mészáros–V., 2024)

Let H be an Eulerian digraph, and let M be the oriented graphic matroid
associated to H. Let AH be a totally unimodular matrix representing M∗,
the oriented dual of M, and let m be the size of a basis of M∗. Then,

PH(t) =
∑

A′ has property *

Vol(QA′)(t − 1)#col(A′)−m, (3)

where a matrix A′ has property * if it is obtained by deleting a set of
columns from AH without decreasing the rank of the matrix, and QA′

denotes the root polytope of A′.
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Thank you!
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Lorentzian Polynomials
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Lorentzian Polynomials

The theory of Lorentzian polynomials was developed by Petter Brändén
and June Huh and, in parallel, by Nima Anari, Kuikui Liu, Shayan Oveis
Gharan, and Cynthia Vinzant. In this talk, we follow Brändén and Huh’s
convention.

Definition (Brändén–Huh 2019)

A homogeneous polynomial f of degree d with nonnegative coefficients is
Lorentzian if

f has M-convex support
∂

∂xi1
· · · ∂

∂xid−2
f has at most one positive eigenvalue.
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M-Convexity

Definition

A subset J ⊆ Zn is M-convex if for any α, β ∈ J and any index i with
αi > βi , there is an index j satisfying

αj < βj , α− ei + ej ∈ J, and β + ei − ej ∈ J.

i

j

β

α

α− ei + ej

β + ei − ej

J f has SNP

Newton(f) is a
generalized

permutahedron

f has M-convex support
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Example and Nonexample

f (x1, x2) = x21 + x1x2 + x22

Matrix:

(
1 1/2

1/2 1

)
Eigenvalues: 1/2 and 3/2
Nonexample!

N(f (x1, x2)) =
x21
2 + x1x2 +

x22
2

Matrix:

(
1/2 1/2
1/2 1/2

)
Eigenvalues: 0 and 1
Example!
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Lorentzian Polynomials and Log-Concavity

Definition

Let N be the normalization operator defined by

N(x1
α1 · · · xnαn) =

x1
α1 · · · xnαn

α1! · · ·αn!
.

Extend linearly.

Theorem (Brändén–Huh 2019)

If f =
∑

α cαx
α is nonzero and N(f ) is Lorentzian, then

(Discrete) For every α and 1 ≤ i , j ≤ n,

c2α ≥ cα+ei−ej cα−ei+ej .

Namely, a single-variable polynomial whose normalized homogenization is
Lorentzian has log-concave coefficients.
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Proof Outline of M-polynomial
Support
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Proof Outline

1 Denote

T (G (L)): (unoriented) spanning trees of G (L)
ei,1, . . . , ei,|Ci |: edges of clockwise oriented cycle Ci .

The integer point enumerator of the spanning tree polytope of G (L) is

σG(L)(x1,1, . . . , xn,|Ck |) =
∑

T∈T (G(L))

∏
ei,j∈E(T )

xi ,j .

Its support is the set of lattice points of a generalized permutahedron.
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Proof Outline

2 Specialize to

fG(L)(x1, . . . , xk) =
∑

T∈T (G(L))

k∏
i=1

x
ai (T )
i ,

where ai (T ) is the number of edges of T in the cycle Ci , i ∈ [k].
This polynomial also has support the set of lattice points of a
generalized permutahedron.
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Proof Outline

3 The polynomials fG(L)(x1, . . . , xk) and M−−→
G(L),r

have the same support.

4 The coefficients of M−−→
G(L),r

(x1, . . . , xk) are all either 0 or 1.
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also satisfies this property.

3 The polynomials fG(L)(x1, . . . , xk) and M−−→
G(L),r

have the same support.

4 The coefficients of M−−→
G(L),r

(x1, . . . , xk) are all either 0 or 1. It is

denormalized Lorentzian.

Let {C1, . . . ,Cl} and {Cl+1, . . . ,Ck} be the elements of {C1, . . . ,Ck}
labeled with −t’s and 1’s respectively. So,
Homogq(∆L(−t)) ∼ M−−→

G(L)(t, . . . , t, q, . . . , q) is denormalized Lorentzian,

meaning ∆L(−t) ∼ M−−→
G(L)(t, . . . , t, 1, . . . , 1) has log-concave coefficients.
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More on Murasugi–Stoimenow

Alexander Vidinas Cornell University FPSAC 25 July, 2025 11 / 25



Bipartite and Eulerian Graphs I

The dual of any bipartite graph is Eulerian. It can furthermore be oriented
as an alternating dimap.
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Bipartite and Eulerian Graphs II

Oriented spanning tree:

r

4-spanning tree:

r

Remark

Let H be a digraph. An arborescence of H is a |V(H)| − 1-spanning tree.
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Another Combinatorial Formula (Murasugi–Stoimenow,
2003)

Using a special alternating diagram of a special alternating link L, we can
compute ∆L(−t) exclusively using the checkerboard dual.

Orient the dual checkerboard graph as follows.

This yields an alternating dimap, dual to the bipartite checkerboard graph
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Another Combinatorial Formula (Murasugi–Stoimenow,
2003)

The Alexander polynomial of special alternating links can be written in
terms of its dual checkerboard graph.

Proposition

Let L be a special alternating link and fix a special alternating diagram
with dual checkerboard graph H. For each k ∈ Z, let ck(H, r) denote the
number of k-spanning trees of H. Then,

∆L(−t) ∼
|V(H)|−1∑

k=0

ck(H, r)t |V(H)|−1−k .
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Example

∆L(−t) ∼ 2t + 2

c1(H, r) = 2

c0(H, r) = 2
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More on Oriented Matroids
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Generalization to Eulerian Digraphs

Remark

Every alternating dimap is the dual checkerboard graph of a special
alternating link, oriented in Murasugi and Stoimenow’s convention.

One can generalize to all Eulerian digraphs as follows, for which
alternating dimaps are a special case.

Definition (Murasugi–Stoimenow, 2003)

Let H be an Eulerian digraph. The Alexander polynomial of H is

PH(t) =

|V(H)|−1∑
k=0

ck(H, r)t |V(H)|−1−k
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Oriented Matroid Basics

Let M be a regular matroid represented by the totally unimodular matrix
A, with columns {a1, . . . , am}. For each circuit C = {i1, . . . , ij} with a

corresponding linear dependence relation
∑j

k=1 λkaik = 0, we may
partition the elements into two sets: C+ = {ik | λk > 0} and
C− = {ik | λk < 0}. We orient M with these bipartitions, making it an
oriented matroid.

For this result, we deal only with regular oriented matroids.

Definition

Each oriented matroid M on groundset E admits a unique dual oriented
matroid on groundset E such that, for each pair of signed circuits
C1 = C1

+ ⊔ C1
− and C2 = C2

+ ⊔ C2
− of M and M∗, respectively, either

C1 ∩ C2 = ∅, or (C1
+ ∩ C2

+) ∪ (C1
− ∩ C2

−) and
(C1

+ ∩ C2
−) ∪ (C1

− ∩ C2
+) are both nonempty.
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Example

The following is an example of a graphic oriented matroid. (A is the
incidence matrix of a directed graph.)

CC

1 2

3 4




−1 −1 −1 0 0 0
1 0 0 0 1 1
0 1 1 1 0 0
0 0 0 −1 −1 −1
a1 a2 a3 a4

a1 − a2 + a3 − a4 = 0
C+ = {a1, a3}, C− = {a2, a4}
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Oriented Co-Eulerian Matroids

Definition (Tóthmérész, 2022)

A regular oriented matroid is co-Eulerian if for each circuit C ,
|C+| = |C−|.

For graphic matroids of bipartite graphs, oriented so that all edges point
out of one color class and into the other, their dual oriented matroids are
also graphic, and are the matroids of alternating dimaps.
Example:

1 2

3 4
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Root Polytopes: Bipartite Graphs

Definition (Postnikov, 2005)

Given a bipartite graph G on vertex set [n] ⊔ [m], the root polytope QG

is the convex hull of vectors (ei − ej), {i , j} ∈ E(G ) in Rn+m.

Theorem (Postnikov; Kálmán–Tóthmérész; Tóthmérész)

Let G be a bipartite graph and let H = G ∗, oriented as an alternating
dimap. The (normalized) volume Vol(QG ) is the number of arborescences
of H.
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Root Polytopes: More Generally

Definition (Tóthmérész, 2022)

Let A be a totally unimodular matrix with columns a1, . . . , am. The root
polytope of A is the convex hull QA := conv(a1, . . . , am).

Proposition (Tóthmérész, 2022)

For a co-Eulerian regular oriented matroid M represented by a totally
unimodular matrix A and a basis B = {i1, . . . , ij} of M, the simplex
∆B := conv(ai1 , . . . , aij ) is unimodular. That is, its normalized volume is 1.

Theorem (Tóthmérész, 2022)

Let H be an Eulerian digraph, and let A be any totally unimodular matrix
representing the oriented dual of the oriented graphic matroid of H. Let
r ∈ V (H) and
H = {B ⊂ E (H) | E (H)− B is an arborescence of H rooted at r}.
Then {∆B | B ∈ H} is a triangulation of QA.
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Theorem (Tóthmérész, 2022)

Let H be an Eulerian digraph, and let A be any totally unimodular matrix
representing the oriented dual of the oriented graphic matroid of H. Let
r ∈ V (H) and
H = {B ⊂ E (H) | E (H)− B is an arborescence of H rooted at r}.
Then {∆B | B ∈ H} is a triangulation of QA.

Alexander Vidinas Cornell University FPSAC 25 July, 2025 23 / 25



Check-In

Recall we are aiming to prove the following result.

Theorem (Hafner–Mészáros–V., 2024)

Let H be an Eulerian digraph, and let M be the oriented graphic matroid
associated to H. Let AH be a totally unimodular matrix representing M∗,
the oriented dual of M, and let m be the size of a basis of M∗. Then,

PH(t) =
∑

A′ has property *

Vol(QA′)(t − 1)#col(A′)−m, (4)

where a matrix A′ has property * if it is obtained by deleting a set of
columns from AH without decreasing the rank of the matrix, and QA′

denotes the root polytope of A′.
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Proof Outline

1 Tóthmérész proves, by the aforementioned triangulation, that
Vol(QAH

) = c0(H, r).

2 By an inclusion-exclusion argument:
ck(H, r) =

∑k
i=0(−1)i

∑
acyclic E ′⊂E(H)

|E ′|=k−i

(|V (H)|−1−(k−i)
i

)
c0(H/E ′, r).

3 This and the result by Tóthmérész above prove that
ck(H, r) =

∑k
i=0(−1)i

∑
acyclic E ′⊂E(H)

|E ′|=k−i

(|V (H)|−1−(k−i)
i

)
Vol(QAH/E ′ ).

4 By standard results in matroid theory, deleting elements of M∗ (or
columns of A) is equivalent to contracting the corresponding elements
in M.
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1 Tóthmérész proves, by the aforementioned triangulation, that
Vol(QAH

) = c0(H, r).

2 By an inclusion-exclusion argument:
ck(H, r) =

∑k
i=0(−1)i

∑
acyclic E ′⊂E(H)

|E ′|=k−i

(|V (H)|−1−(k−i)
i

)
c0(H/E ′, r).

3 This and the result by Tóthmérész above prove that
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