

Chow functions for partially ordered sets

Lorenzo Vecchi - lvecchi@kth.se

KTH Royal Institute of Technology FPSAC25 - July 25 2025

Goal

Build a new class of polynomials associated to various objects in combinatorics.

- Do these polynomials have interesting features?
- When you specialize these polynomials to specific cases do you recover any known result?

Goal

Build a new class of polynomials associated to various objects in combinatorics.

- Do these polynomials have interesting features?
- When you specialize these polynomials to specific cases do you recover any known result?

i) Matroids ii) Polytopes iii) Coxeter groups

Goal

Build a new class of polynomials associated to various objects in combinatorics.

- Do these polynomials have interesting features?
- When you specialize these polynomials to specific cases do you recover any known result?

i) Matroids ii) Polytopes iii) Coxeter groups

Joint work with Luis Ferroni (IAS – University of Pisa) and Jacob Matherne (NCSU).

Posets

Hyperplane arrangements

Consider a hyperplane arrangement over some field \mathbb{K} .

This is a geometric lattice (atomistic and semimodular).

Polytopes

Let $\mathcal P$ be a polytope. Consider its face lattice

This is an Eulerian poset.

Bruhat order

Let (W, S) be a Coxeter group and $T = \{wsw^{-1} \mid w \in W, s \in S\}$. The *Bruhat order* is defined as

$$u \le v \Leftrightarrow \exists w_0, \dots, w_n \text{ such that } w_0 = u, w_n = v, w_i^{-1} w_{i+1} \in T.$$

 \bullet $s_1 s_2 s_1$

Polynomials for posets

These posets are bounded and graded.

Polynomials for posets

These posets are bounded and graded.

Usually, one associates polynomials to posets using the language of the incidence algebra.

Incidence algebra

Incidence algebra

$$I(P) = \{ f: P \times P \to \mathbb{Z}[t], \, f([x,y]) = f_{xy}(t) \}$$

- $(f+g)_{xy}(t) = f_{xy}(t) + g_{xy}(t)$
- $(fg)_{xy}(t) = \sum_{x \le z \le y} f_{xz}(t)g_{zy}(t)$

Incidence algebra

$$I(P) = \{f: P \times P \to \mathbb{Z}[t], \, f([x,y]) = f_{xy}(t)\}$$

- $\bullet (f+g)_{xy}(t) = f_{xy}(t) + g_{xy}(t)$
- $(fg)_{xy}(t) = \sum_{x \le z \le y} f_{xz}(t)g_{zy}(t)$
- Identity

$$\delta_{xy}(t) = \begin{cases} 1 & x = y \\ 0 & \text{otherwise} \end{cases}$$

Incidence algebra (ctd.)

Restrict to the subalgebra

$$I(P) = \{ f \in I(P) \mid \deg f_{xy}(t) \leq \rho(y) - \rho(x) \}.$$

rev :
$$I(P) \rightarrow I(P)$$
, $f_{xy}^{\text{rev}}(t) = t^{\rho(y) - \rho(x)} f_{xy}(t^{-1})$.

Incidence algebra (ctd.)

Restrict to the subalgebra

$$I(P) = \{ f \in I(P) \mid \deg f_{xy}(t) \leqslant \rho(y) - \rho(x) \}.$$

rev :
$$I(P) \rightarrow I(P)$$
, $f_{xy}^{\text{rev}}(t) = t^{\rho(y) - \rho(x)} f_{xy}(t^{-1})$.

Definition (Kazhdan-Lusztig, Stanley, Brenti)

An element $\kappa \in \mathcal{I}(P)$ is a P-kernel if and only if

$$\kappa^{-1} = \kappa^{\text{rev}}.$$

Characteristic polynomial

$$\chi_{xy}(t) = \sum_{x \leq z \leq y} \mu_{xz} t^{\rho(y) - \rho(z)}.$$

Characteristic polynomial

$$\chi_{xy}(t) = \sum_{x \leq z \leq y} \mu_{xz} t^{\rho(y) - \rho(z)}.$$

 χ is a P-kernel for every poset!

Eulerian P-kernel

Theorem (Stanley)

A poset P is Eulerian if and only if

$$\varepsilon: [x, y] \mapsto (t-1)^{\rho(y)-\rho(x)}$$

is a P-kernel.

Coxeter P-kernel

For every $x \le y \in W$, if $\rho(ys) < \rho(y)$ we define

$$R_{xy}(t) := \begin{cases} 1 & x = y \\ R_{xs,ys}(t) & \rho(xs) < \rho(x) \\ tR_{xs,ys}(t) + (t-1)R_{x,ys}(t) & \rho(xs) > \rho(x) \end{cases}$$

Theorem (Björner-Brenti)

The function $R:[x,y]\mapsto R_{xy}(t)$ is a P-kernel for every Coxeter group.

The new stuff

What we have so far

$$\chi_P(t) = (t-1)(t^2-3t+3)$$
 $\varepsilon_P(t) = (t-1)^3$ $R_P(t) = (t-1)(t^2-t+1)$

$$\varepsilon_P(t) = (t-1)^3$$

$$R_P(t) = (t-1)(t^2-t+1)$$

Reduced P-kernels

Lemma

If κ is a P-kernel, then $(t-1) \mid \kappa_{xy}(t)$ for every x < y.

Definition (Ferroni–Matherne–V.)

$$\overline{\kappa}_{xy}(t) := \begin{cases} -1 & x = y\\ \frac{\kappa_{xy}(t)}{t-1} & x < y \end{cases}$$

Chow functions

Definition (Ferroni–Matherne–V.)

$$\mathsf{H} := (-\overline{\kappa})^{-1}.$$

Chow functions

Definition (Ferroni–Matherne–V.)

$$H := (-\overline{\kappa})^{-1}$$
.

$$\begin{aligned} \mathbf{H}_{xy}(t) &= \sum_{x < z \leq y} \overline{\kappa}_{xz}(t) \mathbf{H}_{zy}(t) \\ \mathbf{H}_{P}(t) &:= \mathbf{H}_{\widetilde{01}}(t). \end{aligned}$$

Examples

$$\chi_P(t) = (t-1)(t^2 - 3t + 3)$$
 $\varepsilon_P(t) = (t-1)^3$ $R_P(t) = (t-1)(t^2 - t + 1)$

$$H_P(t) = t^2 + 7t + 1$$
 $H_P(t) = t^2 + 6t + 1$ $H_P(t) = t^2 + 3t + 1$

Palindromicity...

Theorem (Ferroni-Matherne-V.)

For every P and κ ,

- $H_P(t)$ is a palindromic polynomial of degree at most $\rho(P) 1$.
- If κ is monic then so is H.

... and more

A condition on the Kazhdan–Lusztig–Stanley functions of the poset gives us much more.

Theorem (Ferroni-Matherne-V.)

If f or g is non-negative, then H is non-negative and unimodal.

... and more

A condition on the Kazhdan–Lusztig–Stanley functions of the poset gives us much more.

Theorem (Ferroni–Matherne–V.)

If f or g is non-negative, then H is non-negative and unimodal.

Theorem (Ferroni–Matherne–V.)

For matroids, polytopes and Bruhat intervals, H is non-negative and unimodal.

Feichtner-Yuzvinsky define

$$\underline{\operatorname{CH}}(M) = \frac{\mathbb{Q}[x_F \mid F \in P \setminus \widehat{0}]}{I + J}$$

Feichtner-Yuzvinsky define

$$\underline{\mathrm{CH}}(M) = \frac{\mathbb{Q}[x_F \mid F \in P \setminus \widehat{0}]}{I + J}$$

When M is realizable, this is the Chow ring of the De Concini–Procesi wonderful model.

Theorem (Adiprasito-Huh-Katz)

The Chow ring of a matroid satisfies the Kähler package, i.e. (PD), (HL), (HR).

Feichtner-Yuzvinsky define

$$\underline{\mathrm{CH}}(M) = \frac{\mathbb{Q}[x_F \mid F \in P \setminus \widehat{0}]}{I + J}$$

When M is realizable, this is the Chow ring of the De Concini–Procesi wonderful model.

Theorem (Adiprasito-Huh-Katz)

The Chow ring of a matroid satisfies the Kähler package, i.e. (PD), (HL), (HR).

Theorem (Ferroni-Matherne-Stevens-V.)

The characteristic Chow polynomial of a matroid coincides with the Hilbert–Poincaré series of its Chow ring.

Feichtner-Yuzvinsky define

$$\underline{\mathrm{CH}}(M) = \frac{\mathbb{Q}[x_F \mid F \in P \setminus \widehat{0}]}{I + J}$$

When M is realizable, this is the Chow ring of the De Concini–Procesi wonderful model.

Theorem (Adiprasito-Huh-Katz)

The Chow ring of a matroid satisfies the Kähler package, i.e. (PD), (HL), (HR).

Theorem (Ferroni-Matherne-Stevens-V.)

The characteristic Chow polynomial of a matroid coincides with the Hilbert–Poincaré series of its Chow ring.

$$(PD) \Longrightarrow palindromicity \qquad (HL) \Longrightarrow unimodality$$

Real-rootedness

Conjecture (Huh-Stevens, Ferroni-Schröter)

The Chow polynomial of M only has real roots.

Real-rootedness

Conjecture (Huh-Stevens, Ferroni-Schröter)

The Chow polynomial of M only has real roots.

Proved for

- Uniform matroids [Brändén-V.]
- Matroids of rank at most 5 [Ferroni–Matherne–Stevens–V.]

Real-rootedness

Conjecture (Huh-Stevens, Ferroni-Schröter)

The Chow polynomial of M only has real roots.

Proved for

- Uniform matroids [Brändén-V.]
- Matroids of rank at most 5 [Ferroni-Matherne-Stevens-V.]

If H is non-negative and palindromic

real-rooted $\implies \gamma$ -positive.

$$H(t) = \sum_{i} \gamma_{i} t^{i} (1+t)^{d-2i} \qquad \gamma_{H}(t) = \sum_{i} \gamma_{i} t^{i} \qquad \gamma_{i} \geq 0.$$

γ -positivity

Theorem (Ferroni–Matherne–Stevens–V., Stump)

If P is a geometric lattice (R-labelled), then the characteristic Chow polynomial is γ -positive.

Proof: Combinatorial interpretation of γ by working on the *extended ab-index* ex $\Psi(a,b)$.

Theorem (Ferroni–Matherne–Stevens–V., Stump)

If P is a geometric lattice (R-labelled), then the characteristic Chow polynomial is γ -positive.

Proof: Combinatorial interpretation of γ by working on the *extended ab-index* ex $\Psi(a,b)$.

Theorem (Ferroni–Matherne–V.)

If P is a Cohen–Macaulay poset, then the characteristic Chow polynomial is γ -positive.

Theorem (Ferroni–Matherne–Stevens–V., Stump)

If P is a geometric lattice (R-labelled), then the characteristic Chow polynomial is γ -positive.

Proof: Combinatorial interpretation of γ by working on the *extended ab-index* ex $\Psi(a,b)$.

Theorem (Ferroni–Matherne–V.)

If P is a Cohen–Macaulay poset, then the characteristic Chow polynomial is γ -positive.

Conjecture (Ferroni-Matherne-V.)

The characteristic Chow polynomial of a Cohen–Macaulay poset only has real roots.

Eulerian Chow functions

The f-polynomial of a simplicial complex is given by

$$f_{\Delta}(t) = \sum_{F \in \Lambda} t^{\dim F + 1}$$

Eulerian Chow functions

The f-polynomial of a simplicial complex is given by

$$f_{\Delta}(t) = \sum_{F \in \Lambda} t^{\dim F + 1}$$

$$f_{\Delta}(t) = \sum_{i=0}^{d} h_i(\Delta) t^i (1+t)^{d-i}$$
 $h_{\Delta}(t) = \sum_{i} h_i(\Delta) t^i$.

Eulerian Chow functions

The f-polynomial of a simplicial complex is given by

$$f_{\Delta}(t) = \sum_{F \in \Lambda} t^{\dim F + 1}$$

$$f_{\Delta}(t) = \sum_{i=0}^{d} h_i(\Delta)t^i(1+t)^{d-i} \qquad h_{\Delta}(t) = \sum_{i} h_i(\Delta)t^i.$$

Theorem (Ferroni–Matherne–V.)

If P is an Eulerian poset, the Eulerian Chow polynomial coincides with the h-polynomial of the order complex of P.

Example

In the simpler case of a face lattice of a polytope \mathcal{P} , this corresponds to the baricentric subdivision $\mathrm{sd}(\mathcal{P})$.

Real-rootedness

Conjecture (Brenti-Welker)

The Eulerian Chow polynomial of a polytope only has real roots.

Proved when $\mathcal P$ is a simplicial polytope.

Real-rootedness

Conjecture (Brenti-Welker)

The Eulerian Chow polynomial of a polytope only has real roots.

Proved when $\mathcal P$ is a simplicial polytope.

Conjecture (Athanasiadis-Kalampogia-Evangelinou)

The Eulerian Chow polynomial of an Eulerian Cohen–Macaulay poset only has real roots.

Theorem

If P is an Eulerian Cohen–Macaulay poset, then the Eulerian Chow polynomial is γ -positive.

Theorem

If P is an Eulerian Cohen–Macaulay poset, then the Eulerian Chow polynomial is γ -positive.

Proof

- Gal shows that $\gamma_P(t) = \Phi(1, 2t)$, where $\Phi(c, d)$ is the *cd-index*.
- Karu proves that $\Phi(c,d)$ is non-negative when P is Eulerian and Cohen–Macaulay.

Theorem

If P is an Eulerian Cohen–Macaulay poset, then the Eulerian Chow polynomial is γ -positive.

Proof

- Gal shows that $\gamma_P(t) = \Phi(1, 2t)$, where $\Phi(c, d)$ is the *cd-index*.
- Karu proves that $\Phi(c,d)$ is non-negative when P is Eulerian and Cohen–Macaulay.

Question

Is the Chow polynomial of an Eulerian poset non-negative?

Coxeter Chow functions

Let B(x, y) be the Bruhat graph of [x, y], where $z_1 \to z_2$ if $z_1^{-1}z_2 \in T$.

Theorem (Ferroni-Matherne-V.)

H enumerates paths in the Bruhat graph,

$$\mathbf{H}_{xy}(t) = \sum_{\Delta \in B(x,y)} t^{\frac{\rho(y) - \rho(x) - \ell(\Delta)}{2} + \operatorname{des}(\Delta)}.$$

Real-rootedness

Conjecture (Ferroni–Matherne–V.)

The Coxeter Chow polynomials only have real roots.

Checked on all intervals of \mathfrak{S}_n for $n \leq 7$.

• Billera–Brenti define a more general version of the cd-index called the *complete cd-index* $\Psi(c,d)$.

- Billera–Brenti define a more general version of the cd-index called the *complete cd-index* $\Psi(c,d)$.
- They also prove that *some* of the coefficients are non-negative.

- Billera–Brenti define a more general version of the cd-index called the *complete cd-index* $\widetilde{\Psi}(c,d)$.
- They also prove that *some* of the coefficients are non-negative.

Theorem (Ferroni-Matherne-V.)

$$\gamma(t^2) = t^{\rho(y) - \rho(x)} \widetilde{\Psi}(t^{-1}, 2).$$

Conjecture (Billera-Brenti, Ferroni-Matherne-V.)

The complete cd-index (resp. γ) is non-negative.

Upshot

We now have a new way of computing polynomials that are

- non-negative,
- monic,
- palindromic,
- unimodal

Upshot

We now have a new way of computing polynomials that are

- non-negative,
- monic,
- palindromic,
- unimodal

at least for every matroid, polytope and Coxeter group.

Conclusion/Open questions

- What are other nice *P*-kernels that provide well-behaved families of Chow polynomials?
- What does real-rootedness mean for a Hilbert series?
- This new language lets us collect under the same object a number of real-rootedness conjectures.
- Borrowing tools from one area and applying them to another seems to be effective (cd-index and complete cd-index).

Thank you! ⁽²⁾