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Goal

Build a new class of polynomials associated to various objects in
combinatorics.

® Do these polynomials have interesting features?

® When you specialize these polynomials to specific cases do
you recover any known result?
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Goal

Build a new class of polynomials associated to various objects in
combinatorics.

® Do these polynomials have interesting features?

® When you specialize these polynomials to specific cases do
you recover any known result?

i) Matroids ii) Polytopes iii) Coxeter groups

Joint work with Luis Ferroni (IAS - University of Pisa) and Jacob
Matherne (NCSU).
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Posets



Hyperplane arrangements

Consider a hyperplane arrangement over some field K.

Y

This is a geometric lattice (atomistic and semimodular).
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Polytopes

Let # be a polytope. Consider its face lattice

This is an Eulerian poset.
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Bruhat order

Let (W, S) be a Coxeter groupand T = {wsw™! | w e W,s € S}.
The Bruhat order is defined as

u<v<:>Ewo,...,wnsuchthatwo=u,wn=v,wi_lwi“GT.
515251
5152 5251
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Polynomials for posets

These posets are bounded and graded.
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Polynomials for posets

These posets are bounded and graded.
Usually, one associates polynomials to posets using the language
of the incidence algebra.
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Incidence algebra



Incidence algebra

I(P)={f:PxP = Z[t], f([x,y]) = fay(D)}

° (f+g)xy(t) = fxy(t) +gxy(t)
° (fg)xy(t) = szzsy fxz(t)gzy(t)
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Incidence algebra

I(P)={f:PxP = Z[t], f([x,y]) = fay(D)}

° (f+g)xy(t) = fxy(t) +gxy(t)
° (fg)xy(t) = szzsy fxz(t)gzy(t)

® |dentity
1 x=y
Oxy(t) =
xy (1) {0 otherwise
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Incidence algebra (ctd.)

Restrict to the subalgebra
I(P)=A{f € I(P) | deg fxy(1) < p(y) = p(x)}.

rev:I(P)— I(P), f@) ='W g ).

9/32



Incidence algebra (ctd.)

Restrict to the subalgebra
I (P)=A{f €I(P) | deg fxy(t) < p(y) = p(x)}.

rev:I(P)— I(P), f@) ='W g ).

Definition (Kazhdan-Lusztig, Stanley, Brenti)

An element « € 7 (P) is a P-kernel if and only if
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Characteristic polynomial

Xxy (1) = Z sztp(y)—p(z).

XSZKY
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Characteristic polynomial

Xxy (1) = Z sztp(y)—p(z).

XSZKY

x is a P-kernel for every poset!
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Eulerian P-kernel

Theorem (Stanley)

A poset P is Eulerian if and only if

e: [x,y] > (£ = 1)PP)=PX)

is a P-kernel.
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Coxeter P-kernel

Foreveryx <y e W, if p(ys) < p(y) we define

1 x=y
ny(t) = Rxs,ys(t) ,O(XS) < P(x)
tRxs,ys(t) + (t - 1)Rx,ys (t) p(xs) > p(x)

Theorem (Bjorner-Brenti)

The function R : [x,y] — Ry, (t) is a P-kernel for every Coxeter group.
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The new stuff



What we have so far

xp(t) = (t=1)(=3t43)  ep(t) = (1=1)°  Rp(t) = (1=1)(*~1+1)
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Reduced P-kernels

Lemma

If k is a P-kernel, then (t — 1) | kxy(t) for every x < y.

Definition (Ferroni-Matherne-V.)

By = Aoy
Kxy (1) "= kuy (1)
—Kly_l x<y
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Chow functions

Definition (Ferroni-Matherne-V.)

H:=(-x)~".
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Chow functions

Definition (Ferroni-Matherne-V.)

H:=(-x)~".

He(1) = D) Ree(OHzy (1)

x<z<y

Hp (1) := Hg; (7).
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Examples

xp(t) = (t=D)(=3t43)  &p(t) = (t=1)>  Rp(1) = (1=1)(t*=1+1)

Hp()=t>+7t+1 Hp(t)=r>+61+1 Hp()=t>+3t+1

17732



Palindromicity...

Theorem (Ferroni-Matherne-V.)

For every P and k,
® Hp(¢) is a palindromic polynomial of degree at most p(P) — 1.
® |f k is monic then so is H.
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... and more

A condition on the Kazhdan-Lusztig-Stanley functions of the poset
gives us much more.

Theorem (Ferroni-Matherne-V.)

If f or g is non-negative, then H is non-negative and unimodal.

19732



... and more

A condition on the Kazhdan-Lusztig-Stanley functions of the poset
gives us much more.

Theorem (Ferroni-Matherne-V.)

If f or g is non-negative, then H is non-negative and unimodal.

Theorem (Ferroni-Matherne-V.)

For matroids, polytopes and Bruhat intervals, H is non-negative and
unimodal.

19732



Characteristic Chow functions
Feichtner-Yuzvinsky define

Qlxp | F € P\ O]
I+J

CH(M) =
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Characteristic Chow functions
Feichtner-Yuzvinsky define

—

Qlxp | F € P\ O]
I+J

When M is realizable, this is the Chow ring of the De
Concini-Procesi wonderful model.

Theorem (Adiprasito-Huh-Katz)

CH(M) =

The Chow ring of a matroid satisfies the Kéhler package, i.e. (PD), (HL),
(HR).
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Characteristic Chow functions
Feichtner-Yuzvinsky define

Qlxp | F € P\ O]
I+J

When M is realizable, this is the Chow ring of the De
Concini-Procesi wonderful model.

CH(M) =

Theorem (Adiprasito-Huh-Katz)

The Chow ring of a matroid satisfies the Kéhler package, i.e. (PD), (HL),
(HR).

Theorem (Ferroni-Matherne-Stevens-V.)

The characteristic Chow polynomial of a matroid coincides with the
Hilbert-Poincaré series of its Chow ring.

(PD) = palindromicity (HL) = unimodality
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Real-rootedness

Conjecture (Huh-Stevens, Ferroni-Schroter)

The Chow polynomial of M only has real roots.
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Real-rootedness

Conjecture (Huh-Stevens, Ferroni-Schroter)

The Chow polynomial of M only has real roots.

Proved for
e Uniform matroids [Brandén-V.]
® Matroids of rank at most 5 [Ferroni-Matherne-Stevens-V.]

If H is non-negative and palindromic

real-rooted = +y-positive.

Hi) = ) vt (10 yp() =Y yit' 7> 0.
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y-positivity

Theorem (Ferroni-Matherne-Stevens-V., Stump)

If P is a geometric lattice (R-labelled), then the characteristic Chow
polynomial is y-positive.

Proof: Combinatorial interpretation of y by working on the
extended ab-index ex ¥(a, b).
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y-positivity

Theorem (Ferroni-Matherne-Stevens-V., Stump)

If P is a geometric lattice (R-labelled), then the characteristic Chow
polynomial is y-positive.

Proof: Combinatorial interpretation of y by working on the
extended ab-index ex ¥(a, b).

Theorem (Ferroni-Matherne-V.)

If P is a Cohen-Macaulay poset, then the characteristic Chow
polynomial is y-positive.

Conjecture (Ferroni-Matherne-V.)

The characteristic Chow polynomial of a Cohen-Macaulay poset only
has real roots.
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Eulerian Chow functions
The f-polynomial of a simplicial complex is given by

fA(t) — Z tdimF+1

FeA
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Eulerian Chow functions

The f-polynomial of a simplicial complex is given by

fA(t) — Z tdimF+1

FeA

d
A = D WA+ ha() = Y hi(A)E

i=0
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Eulerian Chow functions

The f-polynomial of a simplicial complex is given by

fA(Z) — Z tdimF+1

FeA

d
A = D WA+ ha() = Y hi(A)E

i=0

Theorem (Ferroni-Matherne-V.)

If P is an Eulerian poset, the Eulerian Chow polynomial coincides with
the h-polynomial of the order complex of P.
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Example

In the simpler case of a face lattice of a polytope P, this

corresponds to the baricentric subdivision sd(#).
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Real-rootedness

Conjecture (Brenti-Welker)

The Eulerian Chow polynomial of a polytope only has real roots.

Proved when P is a simplicial polytope.
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Real-rootedness

Conjecture (Brenti-Welker)

The Eulerian Chow polynomial of a polytope only has real roots.

Proved when P is a simplicial polytope.

Conjecture (Athanasiadis-Kalampogia-Evangelinou)

The Eulerian Chow polynomial of an Eulerian Cohen-Macaulay poset
only has real roots.
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y-positivity

Theorem

If P is an Eulerian Cohen-Macaulay poset, then the Eulerian Chow
polynomial is y-positive.
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y-positivity

Theorem

If P is an Eulerian Cohen-Macaulay poset, then the Eulerian Chow
polynomial is y-positive.

Proof

® Gal shows that yp(t) = ®(1, 21),
where ®(c, d) is the cd-index.

® Karu proves that ®(c, d) is non-negative when P is Eulerian
and Cohen-Macaulay.
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y-positivity

Theorem

If P is an Eulerian Cohen-Macaulay poset, then the Eulerian Chow
polynomial is y-positive.

Proof

® Gal shows that yp(t) = ®(1, 21),
where ®(c, d) is the cd-index.

® Karu proves that ®(c, d) is non-negative when P is Eulerian
and Cohen-Macaulay.

Question

Is the Chow polynomial of an Eulerian poset non-negative?
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Coxeter Chow functions

Let B(x,y) be the Bruhat graph of [x, y], where z; — z» if
-1
z; 2 €T.

Theorem (Ferroni-Matherne-V.)

H enumerates paths in the Bruhat graph,

p(y)=p(x)-€(A)
ny(f) — Z ¢ > +des(A) ]
A€B(x,y)
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Real-rootedness

Conjecture (Ferroni-Matherne-V.)

The Coxeter Chow polynomials only have real roots.

Checked on all intervals of G,, forn < 7.
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y-positivity

® Billera-Brenti define a more general version of the cd-index
called the complete cd-index ¥(c, d).
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y-positivity

® Billera-Brenti define a more general version of the cd-index
called the complete cd-index ¥(c, d).

® They also prove that some of the coefficients are non-negative.

Theorem (Ferroni-Matherne-V.)

y(£?) = tp(y)—p(X)\f;([—l’ 2).

Conjecture (Billera-Brenti, Ferroni-Matherne-V.)

The complete cd-index (resp. ) is non-negative.
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Upshot

We now have a new way of computing polynomials that are
® non-negative,
® monic,
¢ palindromic,
® unimodal
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Upshot

We now have a new way of computing polynomials that are
® non-negative,
® monic,
¢ palindromic,
® unimodal

at least for every matroid, polytope and Coxeter group.
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Conclusion/Open questions

® What are other nice P-kernels that provide well-behaved
families of Chow polynomials?

® What does real-rootedness mean for a Hilbert series?

® This new language lets us collect under the same object a
number of real-rootedness conjectures.

® Borrowing tools from one area and applying them to another
seems to be effective (cd-index and complete cd-index).

31/32



Thank you! ®
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