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Goal

Build a new class of polynomials associated to various objects in
combinatorics.

• Do these polynomials have interesting features?
• When you specialize these polynomials to specific cases do

you recover any known result?

i) Matroids ii) Polytopes iii) Coxeter groups

Joint work with Luis Ferroni (IAS – University of Pisa) and Jacob
Matherne (NCSU).
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Posets
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Hyperplane arrangements

Consider a hyperplane arrangement over some field 𝕂.

This is a geometric lattice (atomistic and semimodular).
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Polytopes

Let P be a polytope. Consider its face lattice

P

This is an Eulerian poset.
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Bruhat order
Let (𝑊, 𝑆) be a Coxeter group and 𝑇 = {𝑤𝑠𝑤−1 | 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆}.
The Bruhat order is defined as

𝑢 ⩽ 𝑣 ⇔ ∃𝑤0, . . . , 𝑤𝑛 such that 𝑤0 = 𝑢, 𝑤𝑛 = 𝑣, 𝑤−1
𝑖 𝑤𝑖+1 ∈ 𝑇.

𝔖3 =
〈
𝑠1, 𝑠2 | 𝑠1

2 = 𝑠2
2 = (𝑠1𝑠2𝑠1)2 = 1

〉
id

𝑠1 𝑠2

𝑠1𝑠2 𝑠2𝑠1

𝑠1𝑠2𝑠1
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Polynomials for posets

id

𝑠1 𝑠2

𝑠1𝑠2 𝑠2𝑠1

𝑠1𝑠2𝑠1

These posets are bounded and graded.

Usually, one associates polynomials to posets using the language
of the incidence algebra.
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Incidence algebra
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Incidence algebra

𝐼 (𝑃) = { 𝑓 : 𝑃 × 𝑃 → ℤ[𝑡], 𝑓 ( [𝑥, 𝑦]) = 𝑓𝑥𝑦 (𝑡)}

• ( 𝑓 + 𝑔)𝑥𝑦 (𝑡) = 𝑓𝑥𝑦 (𝑡) + 𝑔𝑥𝑦 (𝑡)
• ( 𝑓 𝑔)𝑥𝑦 (𝑡) =

∑
𝑥⩽𝑧⩽𝑦 𝑓𝑥𝑧 (𝑡)𝑔𝑧𝑦 (𝑡)

• Identity

𝛿𝑥𝑦 (𝑡) =
{

1 𝑥 = 𝑦

0 otherwise
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Incidence algebra (ctd.)

Restrict to the subalgebra
I(𝑃) = { 𝑓 ∈ 𝐼 (𝑃) | deg 𝑓𝑥𝑦 (𝑡) ⩽ 𝜌(𝑦) − 𝜌(𝑥)}.

rev : I(𝑃) → I(𝑃), 𝑓 rev
𝑥𝑦 (𝑡) = 𝑡𝜌(𝑦)−𝜌(𝑥 ) 𝑓𝑥𝑦 (𝑡−1).

Definition (Kazhdan–Lusztig, Stanley, Brenti)

An element 𝜅 ∈ I(𝑃) is a 𝑃-kernel if and only if

𝜅−1 = 𝜅rev.
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Characteristic polynomial

𝜒𝑥𝑦 (𝑡) =
∑︁

𝑥⩽𝑧⩽𝑦

𝜇𝑥𝑧𝑡
𝜌(𝑦)−𝜌(𝑧) .

𝜒 is a 𝑃-kernel for every poset!
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Characteristic polynomial
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Eulerian 𝑃-kernel

Theorem (Stanley)

A poset 𝑃 is Eulerian if and only if

𝜀 : [𝑥, 𝑦] ↦→ (𝑡 − 1)𝜌(𝑦)−𝜌(𝑥 )

is a 𝑃-kernel.
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Coxeter 𝑃-kernel

For every 𝑥 ⩽ 𝑦 ∈ 𝑊 , if 𝜌(𝑦𝑠) < 𝜌(𝑦) we define

𝑅𝑥𝑦 (𝑡) :=


1 𝑥 = 𝑦

𝑅𝑥𝑠,𝑦𝑠 (𝑡) 𝜌(𝑥𝑠) < 𝜌(𝑥)
𝑡𝑅𝑥𝑠,𝑦𝑠 (𝑡) + (𝑡 − 1)𝑅𝑥,𝑦𝑠 (𝑡) 𝜌(𝑥𝑠) > 𝜌(𝑥)

Theorem (Björner–Brenti)

The function 𝑅 : [𝑥, 𝑦] ↦→ 𝑅𝑥𝑦 (𝑡) is a 𝑃-kernel for every Coxeter group.
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The new stuff
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What we have so far

id

𝑠1 𝑠2

𝑠1𝑠2 𝑠2𝑠1

𝑠1𝑠2𝑠1

𝜒𝑃 (𝑡) = (𝑡−1) (𝑡2−3𝑡+3) 𝜀𝑃 (𝑡) = (𝑡−1)3 𝑅𝑃 (𝑡) = (𝑡−1) (𝑡2−𝑡+1)
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Reduced 𝑃-kernels

Lemma
If 𝜅 is a 𝑃-kernel, then (𝑡 − 1) | 𝜅𝑥𝑦 (𝑡) for every 𝑥 < 𝑦.

Definition (Ferroni–Matherne–V.)

𝜅𝑥𝑦 (𝑡) :=

{
−1 𝑥 = 𝑦
𝜅𝑥𝑦 (𝑡 )
𝑡−1 𝑥 < 𝑦
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Chow functions

Definition (Ferroni–Matherne–V.)

H := (−𝜅)−1.

H𝑥𝑦 (𝑡) =
∑︁

𝑥<𝑧⩽𝑦

𝜅𝑥𝑧 (𝑡)H𝑧𝑦 (𝑡)

H𝑃 (𝑡) := H0̂̂1(𝑡).
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Examples

id

𝑠1 𝑠2

𝑠1𝑠2 𝑠2𝑠1

𝑠1𝑠2𝑠1

𝜒𝑃 (𝑡) = (𝑡−1) (𝑡2−3𝑡+3) 𝜀𝑃 (𝑡) = (𝑡−1)3 𝑅𝑃 (𝑡) = (𝑡−1) (𝑡2−𝑡+1)

H𝑃 (𝑡) = 𝑡2 + 7𝑡 + 1 H𝑃 (𝑡) = 𝑡2 + 6𝑡 + 1 H𝑃 (𝑡) = 𝑡2 + 3𝑡 + 1
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Palindromicity...

Theorem (Ferroni–Matherne–V.)
For every 𝑃 and 𝜅,

• H𝑃 (𝑡) is a palindromic polynomial of degree at most 𝜌(𝑃) − 1.
• If 𝜅 is monic then so is H.
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... and more

A condition on the Kazhdan–Lusztig–Stanley functions of the poset
gives us much more.

Theorem (Ferroni–Matherne–V.)
If 𝑓 or 𝑔 is non-negative, then H is non-negative and unimodal.

Theorem (Ferroni–Matherne–V.)
For matroids, polytopes and Bruhat intervals, H is non-negative and
unimodal.
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Characteristic Chow functions
Feichtner–Yuzvinsky define

CH(𝑀) = ℚ[𝑥𝐹 | 𝐹 ∈ 𝑃 \ 0̂]
𝐼 + 𝐽

When 𝑀 is realizable, this is the Chow ring of the De
Concini–Procesi wonderful model.

Theorem (Adiprasito–Huh–Katz)

The Chow ring of a matroid satisfies the Kähler package, i.e. (PD), (HL),
(HR).

Theorem (Ferroni–Matherne–Stevens–V.)
The characteristic Chow polynomial of a matroid coincides with the
Hilbert–Poincaré series of its Chow ring.

(PD) =⇒ palindromicity (HL) =⇒ unimodality
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Real-rootedness

Conjecture (Huh–Stevens, Ferroni–Schröter)

The Chow polynomial of 𝑀 only has real roots.

Proved for
• Uniform matroids [Brändén–V.]
• Matroids of rank at most 5 [Ferroni–Matherne–Stevens–V.]

If H is non-negative and palindromic

real-rooted =⇒ 𝛾-positive.

H(𝑡) =
∑︁
𝑖

𝛾𝑖𝑡
𝑖 (1 + 𝑡)𝑑−2𝑖 𝛾𝐻 (𝑡) =

∑︁
𝑖

𝛾𝑖𝑡
𝑖 𝛾𝑖 ⩾ 0.
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𝛾-positivity

Theorem (Ferroni–Matherne–Stevens–V., Stump)

If 𝑃 is a geometric lattice (𝑅-labelled), then the characteristic Chow
polynomial is 𝛾-positive.

Proof: Combinatorial interpretation of 𝛾 by working on the
extended 𝑎𝑏-index exΨ(𝑎, 𝑏).

Theorem (Ferroni–Matherne–V.)
If 𝑃 is a Cohen–Macaulay poset, then the characteristic Chow
polynomial is 𝛾-positive.

Conjecture (Ferroni–Matherne–V.)

The characteristic Chow polynomial of a Cohen–Macaulay poset only
has real roots.
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Eulerian Chow functions

The 𝑓 -polynomial of a simplicial complex is given by

𝑓Δ(𝑡) =
∑︁
𝐹∈Δ

𝑡dim𝐹+1

𝑓Δ(𝑡) =
𝑑∑︁
𝑖=0

ℎ𝑖 (Δ)𝑡𝑖 (1 + 𝑡)𝑑−𝑖 ℎΔ(𝑡) =
∑︁
𝑖

ℎ𝑖 (Δ)𝑡𝑖 .

Theorem (Ferroni–Matherne–V.)
If 𝑃 is an Eulerian poset, the Eulerian Chow polynomial coincides with
the ℎ-polynomial of the order complex of 𝑃.
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Example

In the simpler case of a face lattice of a polytope P, this
corresponds to the baricentric subdivision sd(P).

P
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Real-rootedness

Conjecture (Brenti–Welker)

The Eulerian Chow polynomial of a polytope only has real roots.

Proved when P is a simplicial polytope.

Conjecture (Athanasiadis–Kalampogia-Evangelinou)

The Eulerian Chow polynomial of an Eulerian Cohen–Macaulay poset
only has real roots.
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𝛾-positivity

Theorem
If 𝑃 is an Eulerian Cohen–Macaulay poset, then the Eulerian Chow
polynomial is 𝛾-positive.

Proof
• Gal shows that 𝛾𝑃 (𝑡) = Φ(1, 2𝑡),

where Φ(𝑐, 𝑑) is the cd-index.
• Karu proves that Φ(𝑐, 𝑑) is non-negative when 𝑃 is Eulerian

and Cohen–Macaulay.

Question
Is the Chow polynomial of an Eulerian poset non-negative?
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Coxeter Chow functions
Let 𝐵(𝑥, 𝑦) be the Bruhat graph of [𝑥, 𝑦], where 𝑧1 → 𝑧2 if
𝑧−1

1 𝑧2 ∈ 𝑇 .

Theorem (Ferroni–Matherne–V.)
H enumerates paths in the Bruhat graph,

H𝑥𝑦 (𝑡) =
∑︁

Δ∈𝐵(𝑥,𝑦)
𝑡
𝜌(𝑦)−𝜌(𝑥)−ℓ (Δ)

2 +des(Δ) .
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Real-rootedness

Conjecture (Ferroni–Matherne–V.)

The Coxeter Chow polynomials only have real roots.

Checked on all intervals of 𝔖𝑛 for 𝑛 ⩽ 7.
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𝛾-positivity

• Billera–Brenti define a more general version of the 𝑐𝑑-index
called the complete 𝑐𝑑-index Ψ̃(𝑐, 𝑑).

• They also prove that some of the coefficients are non-negative.

Theorem (Ferroni–Matherne–V.)

𝛾(𝑡2) = 𝑡𝜌(𝑦)−𝜌(𝑥 ) Ψ̃(𝑡−1, 2).

Conjecture (Billera–Brenti, Ferroni–Matherne–V.)

The complete 𝑐𝑑-index (resp. 𝛾) is non-negative.
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• Billera–Brenti define a more general version of the 𝑐𝑑-index
called the complete 𝑐𝑑-index Ψ̃(𝑐, 𝑑).

• They also prove that some of the coefficients are non-negative.
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Upshot

We now have a new way of computing polynomials that are
• non-negative,
• monic,
• palindromic,
• unimodal

at least for every matroid, polytope and Coxeter group.
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Conclusion/Open questions

• What are other nice 𝑃-kernels that provide well-behaved
families of Chow polynomials?

• What does real-rootedness mean for a Hilbert series?
• This new language lets us collect under the same object a

number of real–rootedness conjectures.
• Borrowing tools from one area and applying them to another

seems to be effective (𝑐𝑑-index and complete 𝑐𝑑-index).
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Thank you! ,
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