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An algebraic formulation of quasisymmetric polynomials

QSymy, = {f(x1,...,2,) : [x{* - -2k f = [0 - 2i*]f for all increasing i1 < --- < iy,
1 k i1 ik

Define the Bergeron-Sotille map R;(f) = f(x1,...,2i-1,0,24, ..., Tp_1).

Theorem

f € QSymn < Ri(f) = Ra(f) = -+ = Ru(f).

In particular QQsym,, is closed under multiplication.

For example f = zjxy + zixs + 283 — x12323 = My (21, 22, 23) — My o1 (w1, 72, 73).
Ri(f) = 0% + 0'zg + ziwg — 023me = xia9
Ro(f) = 210 + xlzo + 0'z9 — 210°29 = 219

R3(f) = $§1$2 + 0%y + 50310 - 331@0 = x%zz.
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Define the trimming operation

Tz(f) = RH_l(f?r_ Rl(f) - Ri—‘rlai = RZ& for 81 = xul__xs_:l

Clearly f € Qsymy, ¢ Ti(f) = - = Tu1(f) = 0.
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Forests as a quasisymmetric analogue of Schuberts

Schubert polynomials are the unique family of homogenous polynomials
{Sw(z1,22,...) : w € S} such that S;4 =1 and

0,5, — Sws; w(i) >w(i+1)
0 otherwise.

Theorem
(NST'24) The Forest polynomials pr are the unique family of homogenous polynomials
indexed by plane binary indexed forests such that Fy =1 and

T — {pF/l- F' has a node with children the leaves 7,7 + 1
iDF =

0 otherwise.



An example of trimming forest polynomials

1 2 3 4 1 2
riz, + 273 I
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1 2 3 4
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Future Directions

Goal: Develop a Quasisymmetric analogue of Schubert calculus with an appropriate
analogue of Schubert cycles and the flag variety

e (NST'24) Quasisymmetric divided differences
® (NST'24) Geometry of quasisymmetric coinvariants
e (BGNST'25) Equivariant quasisymmetry and noncrossing partitions
e (BGNST'25+) The quasisymmetric flag variety: a Toric complex on noncrossing
partitions
Success!

Most details worked out for Grassmannians, arbitrary types, connection to cluster
varieties, ...
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