From order one catalytic decompositions to context-free specifications, bijectively

GILLES SCHAEFFER
LIX, CNRS, Institut Polytechnique de Paris
join work with ENRICA DUCHI

FPSAC 2025 July 21, 2025, Sapporo

CONTEXT-FREE SPECIFICATIONS

Enumerative combinatorics and generating functions

Let $\mathcal A$ be a set of combinatorial objects equipped with an integer size |.| and assume that for each n the set

$$\mathcal{A}_n = \{ a \in \mathcal{A} \text{ s.t. } |a| = n \}$$

is finite, and let $a_n = |\mathcal{A}_n|$ denote its cardinality.

The generating function (gf) of the class A w.r.t. the size is

$$A \equiv A(t) := \sum_{n>0} a_n t^n = \sum_{\alpha \in \mathcal{A}} t^{|\alpha|}$$

Refined enumeration:

$$A(u) \equiv A(u,t) := \sum_{n,k>0} a_{k,n} u^k t^n = \sum_{\alpha \in \mathcal{A}} u^{p(\alpha)} t^{|\alpha|}$$

for some parameter $p: A \to \mathbb{Z}$, and $a_{k,n} = |\{a \in A_n \mid p(a) = k\}$

Plane trees (aka ordered trees)

 $A_n = \{ \text{plane trees with } n \text{ vertices} \}$

Characterized by their decomposition at root edge

a size preserving recursive bijection

Plane trees (aka ordered trees)

 $A_n = \{ \text{plane trees with } n \text{ vertices} \}$

Characterized by their decomposition at root edge

a size preserving recursive bijection aka a symbolic specification of the class of plane trees

Plane trees (aka ordered trees)

 $A_n = \{ \text{plane trees with } n \text{ vertices} \}$

Characterized by their decomposition at root edge

$$A(t) = t + t^2 + 2t^3 + 5t^4 + O(t^5)$$

$$A \equiv \mathbf{z} + A \times A$$

a size preserving recursive bijection aka a symbolic specification of the class of plane trees

The gf translation:

$$A(t) = \sum_{\tau \in \mathcal{A}} t^{|\tau|} = t^1 + \sum_{(\tau_1, \tau_2) \in \mathcal{A} \times \mathcal{A}} t^{|\tau_1| + |\tau_2|} = t + \sum_{\tau_1 \in \mathcal{A}} t^{|\tau_1|} \sum_{\tau_2 \in \mathcal{A}} t^{|\tau_2|} = t + A(t)^2$$

Plane trees (aka ordered trees)

 $\mathcal{A}_n = \{ \text{plane trees with } n \text{ vertices} \}$

Characterized by their decomposition at root edge

$$A(t) = t + t^2 + 2t^3 + 5t^4 + O(t^5)$$

 $\mathcal{A} \equiv \mathbf{z} + \mathcal{A} imes \mathcal{A}$

a size preserving recursive bijection aka a symbolic specification of the class of plane trees

The gf translation:

$$A(t) = \sum_{\tau \in \mathcal{A}} t^{|\tau|} = t^1 + \sum_{(\tau_1, \tau_2) \in \mathcal{A} \times \mathcal{A}} t^{|\tau_1| + |\tau_2|} = t + \sum_{\tau_1 \in \mathcal{A}} t^{|\tau_1|} \sum_{\tau_2 \in \mathcal{A}} t^{|\tau_2|} = t + A(t)^2$$

$$A(t) = t + A(t)^2$$

A symbolic specification

$$A \equiv \mathbf{z} + A \times A$$

with z atom of size 1 and additive size

The gf translation

$$A(t) = t + A(t)^2$$

$$A(t)=t+A(t)^2$$
 with unique sol $A(t)=\sum_{n\geq 0}a_nt^n$ in $\mathbb{C}[[t]].$

More generally we like particularly well funded **context-free specifications**:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathcal{P}^{(1)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \\ \vdots & \vdots \\ \mathcal{F}^{(k)} & \equiv \mathcal{P}^{(k)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \end{cases}$$

with each $\mathcal{P}^{(i)}$ a finite combination of + and imes operators

e.g.
$$A \equiv \mathbf{z} + A \times A$$

More generally we like particularly well funded **context-free specifications**:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathcal{P}^{(1)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \\ \vdots & \vdots \\ \mathcal{F}^{(k)} & \equiv \mathcal{P}^{(k)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \end{cases}$$

as their gf translation is an \mathbb{N} -algebraic system:

Fir gf translation is an
$$\mathbb{N}$$
-algebraic system:
$$\begin{cases} F^{(1)} &= P^{(1)}(t; F^{(1)}, \dots, F^{(k)}) \\ \vdots \\ F^{(k)} &= P^{(k)}(t; F^{(1)}, \dots, F^{(k)}) \end{cases}$$
 with each $P^{(i)}$ a polynomial with non negative coefficients, and with a unique power series solution
$$F^{(1)} \equiv F^{(1)}(t) = \sum_{n \geq 0} F^{(1)}_n t^n \text{ in } \mathbb{C}[[t]].$$
 e.g. $A(t) = t + A(t)^2$

with each $\mathcal{P}^{(i)}$ a finite combination of + and \times operators

e.g.
$$A \equiv \mathbf{z} + A \times A$$

$$F^{(1)} \equiv F^{(1)}(t) = \sum_{n \ge 0} F_n^{(1)} t^n \text{ in } \mathbb{C}[[t]]$$

More generally we like particularly well funded **context-free specifications**:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathcal{P}^{(1)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \\ \vdots & \vdots \\ \mathcal{F}^{(k)} & \equiv \mathcal{P}^{(k)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \end{cases}$$

as their gf translation is an \mathbb{N} -algebraic system:

r gf translation is an
$$\mathbb{N}$$
-algebraic system:
$$\begin{cases} F^{(1)} &= P^{(1)}(t;F^{(1)},\ldots,F^{(k)}) \\ \vdots \\ F^{(k)} &= P^{(k)}(t;F^{(1)},\ldots,F^{(k)}) \end{cases} \qquad \text{with each } P^{(i)} \text{ a polynomial with non negative coefficients, and with a unique power series solution} \\ F^{(k)} &= F^{(k)}(t;F^{(1)},\ldots,F^{(k)}) \end{cases} \qquad F^{(1)} \equiv F^{(1)}(t) = \sum_{n\geq 0} F^{(1)}_n t^n \text{ in } \mathbb{C}[[t]].$$

with each $\mathcal{P}^{(i)}$ a finite combination of + and \times operators

e.g.
$$A \equiv \mathbf{z} + A \times A$$

$$F^{(1)} \equiv F^{(1)}(t) = \sum_{n \ge 0} F_n^{(1)} t^n \text{ in } \mathbb{C}[[t]]$$

e.g. $A(t) = t + A(t)^2$

Combinatorial structures that admit such a context-free specification are **tamed**...

- ⇒ exact formulas or efficient enumeration algorithms
- ⇒ asymptotic enumeration via singularity analysis
- ⇒ linear time uniform random generation algorithms

More generally we like particularly well funded **context-free specifications**:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathcal{P}^{(1)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \\ \vdots & \vdots \\ \mathcal{F}^{(k)} & \equiv \mathcal{P}^{(k)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \end{cases}$$

as their gf translation is an \mathbb{N} -algebraic system:

r gf translation is an
$$\mathbb{N}$$
-algebraic system:
$$\begin{cases} F^{(1)} &= P^{(1)}(t;F^{(1)},\ldots,F^{(k)}) \\ \vdots \\ F^{(k)} &= P^{(k)}(t;F^{(1)},\ldots,F^{(k)}) \end{cases} \qquad \text{with each } P^{(i)} \text{ a polynomial with non negative coefficients, and with a unique power series solution} \\ F^{(k)} &= F^{(k)}(t;F^{(1)},\ldots,F^{(k)}) \end{cases} \qquad F^{(k)} = F^{(k)}(t;F^{(k)},\ldots,F^{(k)}) \qquad F^{(k)} = F^{(k)}(t;F^{(k)},\ldots,F^{(k)}) \end{cases}$$

with each $\mathcal{P}^{(i)}$ a finite combination of + and \times operators

e.g.
$$A \equiv \mathbf{z} + A \times A$$

$$F^{(1)} \equiv F^{(1)}(t) = \sum_{n \ge 0} F_n^{(1)} t^n \text{ in } \mathbb{C}[[t]]$$
e.g. $A(t) = t + A(t)^2$

Applies in particular to non ambiguous context free grammars.

(Chomsky-Schützenberger theorem)

More generally we like particularly well funded **context-free specifications**:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathcal{P}^{(1)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \\ \vdots & \vdots \\ \mathcal{F}^{(k)} & \equiv \mathcal{P}^{(k)}(\mathbf{z}; \mathcal{F}^{(1)}, \dots, \mathcal{F}^{(k)}) \end{cases}$$

with each $\mathcal{P}^{(i)}$ a finite combination of + and \times operators

e.g.
$$A \equiv \mathbf{z} + A \times A$$

as their gf translation is an \mathbb{N} -algebraic system:

r gf translation is an
$$\mathbb{N}$$
-algebraic system:
$$\begin{cases} F^{(1)} &= P^{(1)}(t;F^{(1)},\ldots,F^{(k)}) \\ \vdots \\ F^{(k)} &= P^{(k)}(t;F^{(1)},\ldots,F^{(k)}) \end{cases} \qquad \text{with each } P^{(i)} \text{ a polynomial with non negative coefficients, and with a unique power series solution} \\ F^{(k)} &= P^{(k)}(t;F^{(1)},\ldots,F^{(k)}) \end{cases} \qquad F^{(1)} \equiv F^{(1)}(t) = \sum_{n\geq 0} F^{(1)}_n t^n \text{ in } \mathbb{C}[[t]].$$

$$F^{(1)} \equiv F^{(1)}(t) = \sum_{n \ge 0} F_n^{(1)} t^n \text{ in } \mathbb{C}[[t]]$$
e.g. $A(t) = t + A(t)^2$

Applies in particular to non ambiguous context free grammars.

(Chomsky-Schützenberger theorem)

Conversely when the gf of a combinatorial family \mathcal{A} is known to be N-algebraic, one would like to explain it via an encoding by words of a context-free grammar.

(Schützenberger's methodology for algebraic gf)

Context-free specifications and multitype simply generated trees

Context-free decompositions are naturally associated with multitype simply generated trees:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(2)} \times \mathcal{F}^{(2)} \\ \mathcal{F}^{(2)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \end{cases} \Leftrightarrow \begin{cases} \mathcal{F}^{(1)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(2)} \times \mathcal{F}^{(2)} \\ \mathcal{F}^{(2)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \end{cases} \Leftrightarrow \begin{pmatrix} \mathcal{F}^{(1)} & \mathcal{F}^{(2)} & \mathcal{F}^{(1)} & \mathcal{F}^{($$

The *derivation trees of a context-free specification* are multitype simply generated trees, *i.e.* trees specified by the allowed node progeny for each color, with independent subtrees.

Context-free specifications and multitype simply generated trees

Context-free decompositions are naturally associated with multitype simply generated trees:

$$\begin{cases} \mathcal{F}^{(1)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(2)} \times \mathcal{F}^{(2)} \\ \mathcal{F}^{(2)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \end{cases} \Leftrightarrow \begin{cases} \mathcal{F}^{(1)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(2)} \times \mathcal{F}^{(2)} \\ \mathcal{F}^{(2)} & \equiv \mathbf{z} + \mathbf{z} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \times \mathcal{F}^{(1)} \end{cases} \Leftrightarrow \begin{pmatrix} \mathcal{O} & + \mathbf{0} & \mathbf{0} \\ \mathcal{O} & + \mathbf{0} & \mathbf{0} \\ \mathcal{O} & + \mathbf{0} & \mathbf{0} \end{pmatrix}$$

The derivation trees of a context-free specification are multitype simply generated trees, i.e. trees specified by the allowed node progeny for each color, with independent subtrees.

Conversely when the gf of a combinatorial family A is known to be \mathbb{N} -algebraic, one would like to explain it via a **context-free specification** of A or via a **bijection with trees**.

(Standard reformulation of Schützenberger's methodology)

CATALYTIC DECOMPOSITIONS

Planar λ -terms can be presented as trees with

- applications: binary nodes
- λ -abstractions: unary nodes **O**
- ullet variables: leaves, represented as arrows ${\it z}$, each matching an ancestor λ ,

with condition that each λ is binded to exactly one variable in a planar way...

Planar λ -terms can be presented as trees with

- applications: binary nodes
- λ -abstractions: unary nodes **O**

with condition that each λ is binded to exactly one variable in a planar way...

Equivalently, in each subterm there are more variables than abstractions,

or the catalytic parameter, $excess(\tau) = \#\{variables\} - \#\{abstractions\}$, is non negative everywhere.

Planar λ -terms can be presented as trees with

- applications: binary nodes
- λ -abstractions: unary nodes **O**

with condition that each λ is binded to exactly one variable in a planar way...

Equivalently, in each subterm there are more variables than abstractions, or the catalytic parameter, $excess(\tau) = \#\{variables\} - \#\{abstractions\}$, is non negative everywhere.

Then a catalytic decomposition is

Planar λ -terms can be presented as trees with

- applications: binary nodes
- λ -abstractions: unary nodes **O**

with condition that each λ is binded to exactly one variable in a planar way...

Equivalently, in each subterm there are more variables than abstractions, or the catalytic parameter, $excess(\tau) = \#\{variables\} - \#\{abstractions\}$, is non negative everywhere.

Then a catalytic decomposition is

$$\mathcal{P} = \frac{1}{k} + \frac{1}{\ell + m} + \frac{1}{\ell} + \frac{1}{\ell} \mathcal{P} + \frac{1}{\ell} \mathcal{P} \setminus \mathcal{P}_0$$

and the catalytic equation for the gf $P(u) = \sum_{\tau \in \mathcal{P}} t^{|\tau|} u^{excess(\tau)}$ is

$$P(u) = tu + tP(u)^2 + \frac{t}{u}(P(u) - P(0))$$

Planar λ -terms can be presented as trees with

- applications: binary nodes
- λ -abstractions: unary nodes **O**

with condition that each λ is binded to exactly one variable in a planar way...

Equivalently, in each subterm there are more variables than abstractions, or the catalytic parameter, $excess(\tau) = \#\{variables\} - \#\{abstractions\}$, is non negative everywhere.

Then a catalytic decomposition is

$$\mathcal{P} = \frac{1}{k} + \frac{1}{\ell + m} + \frac{1}{\ell} + \frac{1}{\ell} \mathcal{P} + \frac{1}{\ell} \mathcal{P} \setminus \mathcal{P}_0$$

and the catalytic equation for the gf $P(u) = \sum_{\tau \in \mathcal{P}} t^{|\tau|} u^{excess(\tau)}$ is

$$P(u) = tu + tP(u)^2 + \frac{t}{u}(P(u) - P(0))$$

This equation is not algebraic, the decomposition is not context free.

1-variable catalytic equations

The equation $P(u) = t(u + P(u)^2 + \frac{1}{u}(P(u) - P(0))$ is a special case of 1-variable catalytic equation,

$$Q(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$

where Q is a polynomial with coefficients in some field \mathbb{F} and we seek the unknown formal power series $F(u) \equiv F(t, u) \in \mathbb{F}[[t, u]]$ and $f_i \equiv f_i(t) \in \mathbb{F}[[t]]$.

These equations also surface in various other enumeration problems, for instance for

- Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90's)
- Families of Tamari intervals (Chapoton, 2000's, Bousquet-Mélou-Chapoton 2022)
- Families of Planar (normal) λ -terms (Zeilberger and Giorgietti, 2015)
- Fighting fish and variants (Duchi et al, 2016)
- Fully parked trees (Chen 2021, Contat et al 2023)

• . . .

1-variable catalytic equations

The equation $P(u) = t(u + P(u)^2 + \frac{1}{u}(P(u) - P(0))$ is a special case of 1-variable catalytic equation,

$$Q(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$

where Q is a polynomial with coefficients in some field \mathbb{F} and we seek the unknown formal power series $F(u) \equiv F(t, u) \in \mathbb{F}[[t, u]]$ and $f_i \equiv f_i(t) \in \mathbb{F}[[t]]$.

The celebrated **Bousquet-Mélou – Jehanne theorem** states that 1-variable catalytic equations of the form

$$F(u) = F_0(u) + tQ(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$$

where $F_0(u)$ and $Q(v, w_1, \ldots, w_k, u)$ are polynomials with coefficients in \mathbb{F} , and

$$\Delta^{k} F(u) = \frac{F(u) - f_1 - u f_2 - \dots - u^{k-1} f_k}{u^{k}},$$

have unique solutions, and it provides a non degenerated system of algebraic equations that they satisfy.

Let Q(v, w, u) be a polynomial with $Q(0, 0, u) \neq 0$

and $F(u) \equiv F(t,u)$ the unique fps solution of the catalytic equation

$$F(u) = t\,Q\left(F(u), \frac{1}{u}(F(u)-f), u\right), \qquad \text{where } f \equiv f(t) = F(t,0).$$

Let U, V, W and R be the unique fps satisfying the system

$$\begin{cases} V = t \cdot Q(V, W, U) \\ R = t \cdot (1+R) \cdot Q'_v(V, W, U) \\ U = t \cdot (1+R) \cdot Q'_w(V, W, U) \\ W = t \cdot (1+R) \cdot Q'_u(V, W, U) \end{cases}$$

Then f is given by $f = V - UW \quad \text{ or } \quad tf_t' = (1+R) \cdot V$

Let Q(v, w, u) be a polynomial with $Q(0, 0, u) \neq 0$

and $F(u) \equiv F(t,u)$ the unique fps solution of the catalytic equation

$$F(u) = t \, Q\left(F(u), \frac{1}{u}(F(u) - f), u\right), \qquad \text{where } f \equiv f(t) = F(t, 0).$$

Let U, V, W and R be the unique fps satisfying the system

$$\begin{cases} V = t \cdot Q(V, W, U) \\ R = t \cdot (1+R) \cdot Q'_v(V, W, U) \\ U = t \cdot (1+R) \cdot Q'_w(V, W, U) \\ W = t \cdot (1+R) \cdot Q'_u(V, W, U) \end{cases}$$

Then f is given by $f = V - UW \quad \text{ or } \quad tf_t' = (1+R) \cdot V$

$$P(u) = t(u + P(u)^{2} + \frac{1}{u}(P(u) - P(0))$$

$$\begin{cases}
V = t \cdot (U + V^{2} + W) \\
R = t \cdot (1 + R) \cdot 2V \\
U = t \cdot (1 + R) \\
W = t \cdot (1 + R)
\end{cases}$$

$$P(0) = V - UW$$

Let Q(v, w, u) be a polynomial with $Q(0, 0, u) \neq 0$

and $F(u) \equiv F(t, u)$ the unique fps solution of the catalytic equation

$$F(u) = t \, Q\left(F(u), \frac{1}{u}(F(u) - f), u\right), \qquad \text{where } f \equiv f(t) = F(t, 0).$$

Let U, V, W and R be the unique fps satisfying the system

$$\begin{cases} V = t \cdot Q(V, W, U) \\ R = t \cdot (1+R) \cdot Q'_v(V, W, U) \\ U = t \cdot (1+R) \cdot Q'_w(V, W, U) \\ W = t \cdot (1+R) \cdot Q'_u(V, W, U) \end{cases}$$

$$P(u) = t(u + P(u)^{2} + \frac{1}{u}(P(u) - P(0))$$

$$\begin{cases}
V = t \cdot (U + V^{2} + W) \\
R = t \cdot (1 + R) \cdot 2V \\
U = t \cdot (1 + R) \\
W = t \cdot (1 + R)
\end{cases}$$

$$P(0) = V - UW$$

Then f is given by f = V - UW or $tf'_t = (1+R) \cdot V$

 \Rightarrow The particularly simple form of this parametrization calls for a combinatorial lifting.

Let Q(v, w, u) be a polynomial with $Q(0, 0, u) \neq 0$

and $F(u) \equiv F(t, u)$ the unique fps solution of the catalytic equation

$$F(u) = t \, Q\left(F(u), \frac{1}{u}(F(u) - f), u\right), \qquad \text{where } f \equiv f(t) = F(t, 0).$$

Let U, V, W and R be the unique fps satisfying the system

$$\begin{cases} V = t \cdot Q(V, W, U) \\ R = t \cdot (1+R) \cdot Q'_v(V, W, U) \\ U = t \cdot (1+R) \cdot Q'_w(V, W, U) \\ W = t \cdot (1+R) \cdot Q'_u(V, W, U) \end{cases}$$

$$P(u) = t(u + P(u)^{2} + \frac{1}{u}(P(u) - P(0))$$

$$\begin{cases}
V = t \cdot (U + V^{2} + W) \\
R = t \cdot (1 + R) \cdot 2V \\
U = t \cdot (1 + R) \\
W = t \cdot (1 + R)
\end{cases}$$

$$P(0) = V - UW$$

Then f is given by f = V - UW or $tf'_t = (1+R) \cdot V$

- \Rightarrow The particularly simple form of this parametrization calls for a combinatorial lifting.
- \Rightarrow When Q is a polynomial with integer coefficients, the system is \mathbb{N} -algebraic!

Let Q(v, w, u) be a polynomial with $Q(0, 0, u) \neq 0$

and $F(u) \equiv F(t, u)$ the unique fps solution of the catalytic equation

$$F(u) = t\,Q\left(F(u), \frac{1}{u}(F(u)-f), u\right), \qquad \text{where } f \equiv f(t) = F(t,0).$$

Let U, V, W and R be the unique fps satisfying the system

$$\begin{cases} V = t \cdot Q(V, W, U) \\ R = t \cdot (1+R) \cdot Q'_v(V, W, U) \\ U = t \cdot (1+R) \cdot Q'_w(V, W, U) \\ W = t \cdot (1+R) \cdot Q'_u(V, W, U) \end{cases}$$

$$P(u) = t(u + P(u)^{2} + \frac{1}{u}(P(u) - P(0))$$

$$\begin{cases}
V = t \cdot (U + V^{2} + W) \\
R = t \cdot (1 + R) \cdot 2V \\
U = t \cdot (1 + R) \\
W = t \cdot (1 + R)
\end{cases}$$

P(0) = V - UW

Then f is given by f = V - UW or $tf'_t = (1+R) \cdot V$

- \Rightarrow The particularly simple form of this parametrization calls for a combinatorial lifting.
- \Rightarrow When Q is a polynomial with integer coefficients, the system is \mathbb{N} -algebraic!
- ⇒ explain it via a **bijection with some simply generated trees**.

A MODEL FOR CATALYTIC EQUATIONS

Decorated trees and non negative trees

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \\ \text{the excess at each pearl is non negative.} \end{array}$

•, • are all matched. $\#\{\bullet\} \ge \#\{\bullet\}$ in planted subtrees

Observe:

slightly stronger condition than just asking non negative excess on vertices

$$\mathsf{excess} = \#\{\bullet\} - \#\{\bullet\}$$

Let $\mathcal{F} = \{ \text{ non-negative } \mathcal{Q}\text{-trees } \}$,

$$\mathcal{Q} = \left\{ \begin{array}{c} \bullet, \bullet \text{ are all matched.} \\ \#\{\bullet\} \geq \#\{\bullet\} \end{array} \right.$$

- in planted subtrees
- $Q(v,w,u) = \sum_{s=0}^{\infty} q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$ the vertex type gf, where q_s are weights

and
$$F(u)\equiv F(t,u)=\sum_{\tau\in\mathcal{F}}q_{\tau}t^{|\tau|}u^{\mathrm{excess}(\tau)}$$
 , where $q_{\tau}=\prod_{s\in\tau}q_s$

Proposition. The gf F(u) of non negative Q-trees satisfies a catalytic equation of order one:

$$F(u) = tQ\left(F(u), \frac{1}{u}(F(u) - F(0)), u\right)$$

Let
$$\mathcal{F} = \{ \text{ non-negative } \mathcal{Q}\text{-trees } \}$$
,

$$\mathcal{Q} = \left\{ \begin{array}{c} \bullet, \bullet \text{ are all matched.} \\ \#\{\bullet\} \geq \#\{\bullet\} \end{array} \right.$$

- in planted subtrees
- $Q(v,w,u)=\sum_{s=0}^\infty q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$ the vertex type gf, where q_s are weights

and
$$F(u) \equiv F(t,u) = \sum_{\tau \in \mathcal{F}} q_\tau t^{|\tau|} u^{\mathrm{excess}(\tau)}$$
 , where $q_\tau = \prod_{s \in \tau} q_s$

Proposition. The gf F(u) of non negative Q-trees satisfies a catalytic equation of order one:

$$F(u) = tQ\left(F(u), \frac{1}{u}(F(u) - F(0)), u\right)$$

Indeed the equation

$$F(u) = t \sum_{s \in \mathcal{Q}} q_s F(u)^{\bullet(s)} \left(\frac{1}{u} (F(u) - F(0))\right)^{\bullet(s)} u^{\bullet(s)}$$
 follows from a decomposition at the root:
$$\mathcal{F} \equiv \sum_{s \in \mathcal{Q}} q_s \cdot \mathbf{1} \underbrace{\qquad \qquad \qquad \qquad }_{\geq 0}$$

where $\mathcal{F}^+ = \mathcal{F} \setminus f$

Let $\mathcal{F} = \{ \text{ non-negative } \mathcal{Q}\text{-trees } \}$,

$$\mathcal{Q} = \left\{ \begin{array}{c} \bullet, \bullet \text{ are all matched.} \\ \#\{\bullet\} \geq \#\{\bullet\} \end{array} \right.$$

- in planted subtrees
- $Q(v,w,u)=\sum_{s\in C}q_sv^{\bullet(s)}w^{\bullet(s)}u^{\bullet(s)}$ the vertex type gf, where q_s are weights

and
$$F(u) \equiv F(t,u) = \sum_{\tau \in \mathcal{F}} q_\tau t^{|\tau|} u^{\mathrm{excess}(\tau)}$$
 , where $q_\tau = \prod_{s \in \tau} q_s$

Proposition. The gf F(u) of non negative Q-trees satisfies a catalytic equation of order one:

$$F(u) = tQ\left(F(u), \frac{1}{u}(F(u) - F(0)), u\right)$$

 \Rightarrow non-negative Q-trees give a generic combinatorial interpretation for catalytic equations of order one with non negative coefficients.

Let $\mathcal{F} = \{ \text{ non-negative } \mathcal{Q}\text{-trees } \}$,

$$\mathcal{Q} = \left\{ \begin{array}{c} \bullet, \bullet \text{ are all matched.} \\ \#\{\bullet\} \geq \#\{\bullet\} \end{array} \right.$$

- in planted subtrees
- $Q(v,w,u)=\sum_{s\in O}q_sv^{\bullet(s)}w^{\bullet(s)}u^{\bullet(s)}$ the vertex type gf, where q_s are weights

and
$$F(u) \equiv F(t,u) = \sum_{\tau \in \mathcal{F}} q_\tau t^{|\tau|} u^{\mathrm{excess}(\tau)}$$
 , where $q_\tau = \prod_{s \in \tau} q_s$

Proposition. The gf F(u) of non negative Q-trees satisfies a catalytic equation of order one:

$$F(u) = tQ\left(F(u), \frac{1}{u}(F(u) - F(0)), u\right)$$

 \Rightarrow non-negative Q-trees give a generic combinatorial interpretation for catalytic equations of order one with non negative coefficients.

Non-negative Q-trees are generic derivation trees for catalytic decompositions.

FROM CATALYTIC DECOMPOSITIONS TO CONTEXT FREE SPECIFICATIONS

Non negative Q-trees and companion Q-trees

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion \mathcal{Q} - **tree** = necklace tree s.t. necklaces are in \mathcal{Q}

$$Q = \{ 0, \dots \}$$
 •, •, • are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection between non negative Q-trees and balanced companion Q-trees

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

$$Q = \{ 0, \dots \}$$
 •, •, • are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection between non negative Q-trees and balanced companion Q-trees

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

$$Q = \{ \begin{array}{c} \bullet \\ \bullet \end{array}, \dots \}$$
 \bullet , \bullet , \bullet are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection between non negative Q-trees and balanced companion Q-trees

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

$$Q = \{ 0, \dots \}$$
 •, •, • are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection between non negative Q-trees and balanced companion Q-trees

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

 $Q = \{ \begin{array}{c} \bullet \\ \bullet \end{array}, \dots \}$ \bullet , \bullet , \bullet are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

 $Q = \{ \begin{array}{c} \bullet \\ \bullet \end{array}, \dots \}$ \bullet , \bullet , \bullet are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

 $Q = \{ 0, \dots \}$ •, •, • are all matched.

balanced

root unmatched

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

 $Q = \{ 0, \dots \}$ •, •, • are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection

Balanced companion Q-trees VS rooted companion Q-trees

Balanced companion Q-trees VS rooted companion Q-trees

$$C_{\square} = \mathcal{Z} \times Q(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$Q(v, w, u) = \sum_{s \in \mathcal{Q}} q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$$

$$\mathcal{Q} = \{ lacksquare \}$$

$$C_{\square} = \mathcal{Z} \times Q(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$Q(v, w, u) = \sum_{s \in \mathcal{Q}} q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$$

$$Q = \{ - () \}$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet}) \quad \bigg\{ \equiv \{ \begin{array}{c} \\ \\ \\ \end{array} \right\} = \{ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \cdots \\ \\ \end{array} \bigg\}$$

$$Q'_{ullet} = \{ \buildrel \buildrel \buildre \$$

$$C_{\square} = \mathcal{Z} \times Q(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$Q(v, w, u) = \sum_{s \in \mathcal{Q}} q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$$

$$Q = \{ - , \dots \}$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet}) \quad \ \ \, \underbrace{} = \underbrace{} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

$$Q'_{\bullet} = \{ \bigodot, \bigodot, \ldots \}$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet}) \qquad \boxed{} \equiv \begin{array}{c} \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \end{array}$$

$$Q'_{\bullet} = \{ \bigodot, \bigodot, \bigodot, \bigcirc$$

$$C_{\square} = \mathcal{Z} \times Q(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$Q(v, w, u) = \sum_{s \in \mathcal{Q}} q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$= \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$= \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$= \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})$$

$$C_{\bullet} = \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet}) \qquad \qquad = \{ \bigcirc, \bigcirc, \ldots \}$$

The combinatorial lifting of BMJ theorem

THEOREM (Duchi-S. 23)

Let
$$\mathcal{F} \equiv \mathcal{Z} \times Q\Big(\mathcal{F}, \frac{1}{u}(\mathcal{F} \setminus f), u\Big)$$
 be a catalytic decomposition of order one where $Q(v, w, u) = \sum_{s \in \mathcal{Q}} q_s v^{\bullet(s)} w^{\bullet(s)} u^{\bullet(s)}$ is the node gf of the associated non negative derivation \mathcal{Q} -trees

then
$$f \stackrel{\text{rewiring}}{\equiv} C = C_{\square} - C_{\bullet} \times C_{\bullet}$$

$$f'_t \stackrel{\text{rewiring}}{\equiv} C^{\circ} = (1 + C_{\bullet}) \times Q(C_{\square}, C_{\bullet}, C_{\bullet})$$

where the companion trees satisfy:

$$\begin{cases}
C_{\square} &= \mathcal{Z} \times Q(C_{\square}, C_{\bullet}, C_{\bullet}) \\
C_{\bullet} &= \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet}) \\
C_{\bullet} &= \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet}) \\
C_{\bullet} &= \mathcal{Z} \times (1 + C_{\bullet}) \times Q'_{\bullet}(C_{\square}, C_{\bullet}, C_{\bullet})
\end{cases}$$

Planar λ -terms and \mathcal{Q}_{λ} -trees

Open planar λ -term are to plane trees with

- applications: binary nodes
- abstractions: unary nodes
- variables: leaves, represented as arrow.

Planar λ -terms and \mathcal{Q}_{λ} -trees

Open planar λ -term are to plane trees with

- applications: binary nodes
- abstractions: unary nodes

Mark variables with \bullet and abstractions λ with \bullet , then the set of vertex types is

$$Q_{\lambda} = \{ \bigcirc, \bigcirc, \bigcirc \}$$

Then **non negative** Q_{λ} -trees = open planar λ -terms

non negative Q_{λ} -trees with excess 0 =closed planar λ -terms

Planar λ -terms and \mathcal{Q}_{λ} -trees

Open planar λ -term are to plane trees with

- applications: binary nodes
- abstractions: unary nodes
- variables: leaves, represented as arrow.

Mark variables with \bullet and abstractions λ with \bullet , then the set of vertex types is

$$Q_{\lambda} = \{ \bigcirc, \bigcirc, \bigcirc \}$$

open planar λ -terms

non negative Q_{λ} -trees with excess 0 =closed planar λ -terms

The closure corresponds to the rightmost depth first search abstraction-variable binding.

Planar λ -terms, closure and rewiring

Corollary.

Rewiring yields a size-preserving bijection between marked planar λ -terms and companion trees with context-free specification:

What's next?

Catalytic equations also surface in various other enumeration problems, for instance for

- Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90's)
- Families of Tamari intervals (Chapoton, 2000's, Bousquet-Mélou-Chapoton 2022)
- Families of Planar (normal) λ -terms (Zeilberger and Giorgietti, 2015)
- Fighting fish and variants (Duchi et al, 2016)
- Fully parked trees (Chen 2021, Contat et al 2023)
- . . .

Simply generated trees can be generated in linear time (Sportiello'21)

⇒ in principle yields linear time random generators for all these structures

Rewiring gives bijections between their catalytic derivation trees and simply generated multi-trees...

 \Rightarrow but can we also have direct context-free decompositions? (cf *pizza slice* decompositions of maps)

Bijections allow to tackle new parameters...

 \Rightarrow so what is the equivalent of *distances in maps* for these structures ?

Thank you for you attention!

For order 1 we started from

$$F(u) = t\,Q\,\big(F(u), \frac{1}{u}(F(u)-f), u\big), \qquad \text{where } f \equiv f(t) = F(t,0).$$
 and the N-algebraic system
$$\begin{cases} V &= t\cdot Q(V,W,U) \\ R &= t\cdot (1+R)\cdot Q_v'(V,W,U) \\ U &= t\cdot (1+R)\cdot Q_w'(V,W,U) \\ W &= t\cdot (1+R)\cdot Q_u'(V,W,U) \end{cases}$$

For order k we need to deal with

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$
 or $P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$

For order 1 we started from

$$F(u) = t\,Q\,\big(F(u), \frac{1}{u}(F(u)-f), u\big), \qquad \text{where } f \equiv f(t) = F(t,0).$$
 and the N-algebraic system
$$\begin{cases} V &= t\cdot Q(V,W,U) \\ R &= t\cdot (1+R)\cdot Q_v'(V,W,U) \\ U &= t\cdot (1+R)\cdot Q_w'(V,W,U) \\ W &= t\cdot (1+R)\cdot Q_u'(V,W,U) \end{cases}$$

For order k we need to deal with

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$
 or $P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

For order 1 we started from

$$F(u) = t \, Q \left(F(u), \frac{1}{u} (F(u) - f), u \right), \qquad \text{where } f \equiv f(t) = F(t, 0).$$
 and the N-algebraic system
$$\begin{cases} V &= t \cdot Q(V, W, U) \\ R &= t \cdot (1 + R) \cdot Q_v'(V, W, U) \\ U &= t \cdot (1 + R) \cdot Q_w'(V, W, U) \\ W &= t \cdot (1 + R) \cdot Q_u'(V, W, U) \end{cases}$$

For order k we need to deal with

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0 \qquad \text{or } P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

However this system is not immediately \mathbb{N} -algebraic

in fact the series u_i do not have non negative coefficients in general...

For order 1 we started from

$$F(u) = t\,Q\,\big(F(u), \frac{1}{u}(F(u)-f), u\big), \qquad \text{where } f \equiv f(t) = F(t,0).$$
 and the N-algebraic system
$$\begin{cases} V &= t\cdot Q(V,W,U) \\ R &= t\cdot (1+R)\cdot Q_v'(V,W,U) \\ U &= t\cdot (1+R)\cdot Q_w'(V,W,U) \\ W &= t\cdot (1+R)\cdot Q_u'(V,W,U) \end{cases}$$

For order k we need to deal with

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0 \qquad \text{or } P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

However this system is not immediately N-algebraic

in fact the series u_i do not have non negative coefficients in general...

This is making things harder:

bijections are easier to find if one has a nice (and complicated) formula to interpret!

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$
 or $P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$
 or $P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

- \rightarrow the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)
- \rightarrow the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0$$
 or $P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

- \rightarrow the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)
- \rightarrow the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

New observation: Rewriting the equations satisfied by the kernel roots u_i in terms of the elementary symmetric functions in the 'finite' and 'infinite' root separately directly yields Duchon's \mathbb{N} -algebraic equations.

 \Rightarrow gives a combinatorial specifications for walks with algebraic series of up-steps.

$$P(F(u), f_1, f_2, \dots, f_k, u, t) = 0 \qquad \text{or } P(u) = Q(F(u), \Delta F(u), \dots, \Delta^k F(u), u, t)$$

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns: the analogs u_1, \ldots, u_k of the series u, the $F(u_1), \ldots, F(u_k)$ by F and the f_1, \ldots, f_k .

So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

- \rightarrow the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)
- \rightarrow the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

New observation: Rewriting the equations satisfied by the kernel roots u_i in terms of the elementary symmetric functions in the 'finite' and 'infinite' root separately directly yields Duchon's \mathbb{N} -algebraic equations.

 \Rightarrow gives a combinatorial specifications for walks with algebraic series of up-steps.

The non linear case: the resulting heuristic is to rewrite the BMJ systems in terms of the elementary functions in the u_i instead, and to avoid the $F(u_i)$, use the discriminant form of the system.

in progress: apply the combinatorial specification of the linear case along a branch and sort out the ugly details to see what comes out!

 $\begin{array}{l} \textbf{non-negative} \ \mathcal{Q}\textbf{-tree} = \text{necklace tree s.t.} \\ \text{necklaces are in } \mathcal{Q} \\ \text{the excess at each pearl is non negative.} \end{array}$

companion Q- **tree** = necklace tree s.t. necklaces are in Q

 $Q = \{ \begin{array}{c} \bullet \\ \bullet \end{array}, \dots \}$ \bullet , \bullet , \bullet are all matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection

