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CONTEXT-FREE SPECIFICATIONS



Enumerative combinatorics and generating functions

Let A be a set of combinatorial objects equipped with an integer size |.| and assume
that for each n the set

={a € Ast. |a| =n}

is finite, and let a,, = |.A,,| denote its cardinality.

The generating function (gf) of the class A w.r.t. the size is

=Y g = 3 o

n>0 acA

Refined enumeration:

Aw) = Al 1) = 3 gt = 37w

n,k>0 acA
for some parameter p: A — Z, and ag,, = |{a € A, | p(a) = k}



Plane trees

Plane trees (aka ordered trees)

Ay = {plane trees with n vertices}

Characterized by their decomposition at root edge
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Plane trees

Plane trees (aka ordered trees)
Ayn = {plane trees with n vertices} ° I ./\. A
n=4

n=1 n=2 n=3

Characterized by their decomposition at root edge A(t) =t +t2 + 2t3 4 5t* + O(t°)

. A/A

lz| =1 |71l + 2] = [7]

A=z+ Ax A a size preserving recursive bijection

aka a symbolic specification of the class of plane trees

The gf translation:

Aty => =t Y ddmlFIml =g N gImE Nl = A(2)?

TEA (Tl,TQ)GAX.A T1EA oA

> | A(t) =t + A(t)?




Plane trees

A symbolic specification

A=z+Ax A with z atom of size 1 and additive size
The gf translation

A(t) =t + A(t)? with unique sol A(t) = Z ant™ in Cl[t]].

n>0



Context free languages and algebraic specifications/decompositions

More generally we like particularly well funded context-free specifications:

( FO = p)(z, ;A FR) |
with each P(¥) a finite combination
of + and X operators

eg A=z+Ax A
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Context free languages and algebraic specifications/decompositions

More generally we like particularly well funded context-free specifications:

p

as their gf translation is an N-algebraic system:

f

\

(1)

(k)

PO (g FO, . FH))

PO (z; FO | Fk)

POt M L F(R)

PR (¢, FQO . FR)

with each P(9) a3 finite combination
of + and X operators

eg A=z+Ax A

with each P(%) a polynomial with
non negative coefficients, and with
a unique power series solution

FO = FD @y = 3" 7V in C[[1]].
n>0
e.g. A(t) =t + A(t)?

Combinatorial structures that admit such a context-free specification are tamed...

= exact formulas or efficient enumeration algorithms

= asymptotic enumeration via singularity analysis

= linear time uniform random generation algorithms
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More generally we like particularly well funded context-free specifications:
( FO = p)(z, ;A FR)

_ with each P(9) a finite combination
< : of + and X operators

eg A=z+Ax A

TR = pR(z; ;) FR)

as their gf translation is an N-algebraic system:

(PO = My O, RO with each P(%) a polynomial with
- ’ S non negative coefficients, and with
a unique power series solution

FR = pRg FO L F(R) FO =FM@)=>" FIemin C[[e]).
n>0
e.g. A(t) =t + A(t)?

Applies in particular to non ambiguous context free grammars.

(Chomsky-Schiitzenberger theorem)

Conversely when the gf of a combinatorial familly A is known to be N-algebraic,
one would like to explain it via an encoding by words of a context-free grammar.

(Schiitzenberger's methodology for algebraic gf)



Context-free specifications and multitype simply generated trees

Context-free decompositions are naturally associated with multitype simply generated trees:

F2 = z4zxFD x F) x 7O

AC
{ F) = z42xF2 x 72
A C

The derivation trees of a context-free specification are multitype simply generated trees,
I.e. trees specified by the allowed node progeny for each color, with independent subtrees.




Context-free specifications and multitype simply generated trees

Context-free decompositions are naturally associated with multitype simply generated trees:

A C
{ F) = z42xF2 x 72
A C

The derivation trees of a context-free specification are multitype simply generated trees,
I.e. trees specified by the allowed node progeny for each color, with independent subtrees.

F2 = z4zxFD x F) x 7O

Conversely when the gf of a combinatorial familly A is known to be N-algebraic,

one would like to explain it via a context-free specification of A
or via a bijection with trees.

(Standard reformulation of Schiitzenberger’'s methodology)



CATALYTIC DECOMPOSITIONS



The example of planar A\-terms

Planar \-terms can be presented as trees with

e applications: binary nodes @

e )\-abstractions: unary nodes O

e variables: leaves, represented as arrows & , each matching an ancestor A,

with condition that each A\ is binded to exactly one variable in a planar way...
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The example of planar A\-terms

Planar \-terms can be presented as trees with

e applications: binary nodes @

e )\-abstractions: unary nodes O

e variables: leaves, represented as arrows & , each matching an ancestor A,

with condition that each A\ is binded to exactly one variable in a planar way...

Equivalently, in each subterm there are more variables than abstractions,

or the catalytic parameter, excess(1) = #{variables} — #{abstractions}, is non negative everywhere.

Then a catalytic decomposition is
p— p— >
P===]l= = +

and the catalytic equation for the gf P(u) = > _p tlTlyercess(t) is

P(u) — tu  +  tP(u)? +  L(P(u) — P(0))

This equation is not algebraic, the decomposition is not context free.



1-variable catalytic equations

The equation P(u) = t(u + P(u)? + %(P(u) — P(0)) is a special case of 1-variable catalytic equation,

Q(F(u)7f17f27°"7fk7u7t) =0

where @ is a polynomial with coefficients in some field F
and we seek the unknown formal power series F'(u) = F(t,u) € F[[t,u]] and f; = f;(t) € F|[[t]].

These equations also surface in various other enumeration problems, for instance for
e Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)
e Families of Tamari intervals (Chapoton, 2000's, Bousquet-Mélou-Chapoton 2022)
e Families of Planar (normal) A-terms (Zeilberger and Giorgietti, 2015)
e Fighting fish and variants (Duchi et al, 2016)
e Fully parked trees (Chen 2021, Contat et al 2023)



1-variable catalytic equations

The equation P(u) = t(u + P(u)? + %(P(u) — P(0)) is a special case of 1-variable catalytic equation,

Q(F(u)7f17f27°"7fk7u7t) =0

where @ is a polynomial with coefficients in some field F
and we seek the unknown formal power series F'(u) = F(t,u) € F[[t,u]] and f; = f;(t) € F|[[t]].

The celebrated Bousquet-Mélou — Jehanne theorem states that 1-variable catalytic equations of
the form

F(u) = Fy(u) + tQ(F(u), AF(u), ..., A*F(u),u,t)

where Fy(u) and Q(v, w1, ..., wy,u) are polynomials with coefficients in I, and
F — f1 — — . —uk
AFF(u) = (u) — f1 ufgk U fk’
U

have unique solutions, and it provides a non degenerated system of algebraic equations
that they satisfy.



Explicit BMJ theorem for order one 1-catalytic equations

Let Q(v,w,u) be a polynomial with Q(0,0,u) # 0
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u
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Explicit BMJ theorem for order one 1-catalytic equations

Let Q(v,w,u) be a polynomial with Q(0,0,u) # 0

and F'(u) = F(t,u) the unique fps solution of the catalytic equation

Fu)=tQ (F(u), %(F(u) — f),u), where f = f(t) = F(t,0).

Let U, V, W and R be the unique fps satisfying the system

(V=
R
U =
W =

\

Then f is given by

P(u) = t(u + P(u)? + ; (P(u) — P(0))

(V= t- (U+V24+W)
t-Q(V,W,U) ] B = t-(1+R)-2V
t-(1+ R) - Q,(V,W,U) U = t(L+R)
t-(1+R)- Q. (V,W,U) CWs e
t-(14+R)-Q.,(V.W,U) P0)=V - UW

f=V-UW or tft’:(l—i—R)-V

= The particularly simple form of this parametrization calls for a combinatorial lifting.

= When () is a polynomial with integer coefficients, the system is N-algebraic !

= explain it via a bijection with some simply generated trees.



A MODEL FOR CATALYTIC EQUATIONS



Decorated trees and non negative trees

non-negative O-tree = necklace tree s.t. o {0 } o ° ©areall matched.
the excess at each pearl is non negative. ) e . ﬁi;ij jjé;}ees
Observe:
slightly stronger condition than excess = #{o} — #{o}

just asking non negative excess on vertices
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Non negative O-trees and catalytic equations

e, o are all matched.
Let / = { non-negative O-trees }, Q= {(:}} &——10] H{o} > #{e}

in planted subtrees
Q(v,w,u) = Z gsv* D w* ) the vertex type gf, where g, are weights
seQ
and F(u) = F(t,u) = Z gt Tuexees (M) where ¢ = T
TEF

SET s

Proposition. The gf F'(u) of non negative Q-trees satisfies a catalytic equation of order one:

F(u) = 1Q(F(u), L(F(u) - F(0)),u)
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e, o are all matched.
Let / = { non-negative O-trees }, Q= {(:}} &——10] H{o} > #{e}

in planted subtrees
Q(v,w,u) = Z gsv* D w* ) the vertex type gf, where g, are weights
s€Q

and F(u) = F(t,u) = Z gt TIueeess()where ¢, = [, 4s
TeF

Proposition. The gf F'(u) of non negative Q-trees satisfies a catalytic equation of order one:
F(u) = 1Q(F(w), L (F(u) - F(0),u)

Indeed the equation
Fu) =t Y qsF(u)*®) (L(F(u) - F(0))*Vus
s€Q

follows from a decomposition at the root: F = Z s
s€Q

where Ft = F\ f
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Non negative O-trees and catalytic equations

e, o are all matched.
Let / = { non-negative O-trees }, Q= {[(:}} &——10] H{o} > #{e}

in planted subtrees
Q(v,w,u) = Z gsv* D w* ) the vertex type gf, where g, are weights
s€Q

and F(u) = F(t,u) = Z gt TIueeess()where ¢, = [, 4s
TeF

Proposition. The gf F'(u) of non negative Q-trees satisfies a catalytic equation of order one:

F(u) = 1Q(F(u), L(F(u) - F(0)),u)

= non-negative O-trees give a generic combinatorial interpretation
for catalytic equations of order one with non negative coefficients.

Non-negative O-trees are generic derivation trees for catalytic decompositions.



FROM CATALYTIC DECOMPOSITIONS
TO CONTEXT FREE SPECIFICATIONS



Non negative O-trees and companion Q-trees
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THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection
between non negative O-trees and balanced companion Q-trees
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Balanced companion O-trees VS rooted companion O-trees




Balanced companion O-trees VS rooted companion O-trees

C = CDX(E"‘CQ)




Context-free specifications for companion O-trees

Co = ZxQ(Cq,C,,C,) ﬁ-}% Q:{-O,...}
Qv,w,u) = Z IO IO MIC)

seQ



Context-free specifications for companion O-trees

ZxQ(Ch,C,,C,) ﬁ% Q:{-O,...}
Q,w,w) = 3 gsv* @)y ()

s€Q
Zx(1+C,) xQ,(Ch,C,,C,) A = Eg +D—§g Q. = {G,Q‘,' .. }



Context-free specifications for companion O-trees

Cn = ZxQ(Co,C.,Cs) | = _% o
Q(v,w,u) = Z MRLIOMICMIC)

seQ

Co = Zx(14C,) xQL(CH,C,,C,) A% +D—§g Q

Co = ZX (1 ‘|‘Co) X Q,Q(CEhCOaCO) k

I
_|_
QL



Context-free specifications for companion O-trees

7l C L= '}&% -
Qv, w,u) = Z q3v°(8)w'(8)u‘(5)

SEQ

Zx (14 C.) x QL(Ch,Cy,CL) A% +D—§g Q. =

Zx (1+C.) x Qy(Cr,C,,Ch) k%ﬁ;-% Qe
Z x (14C,) x Q,(Cx,C,, Cy) kg%JrD—E% Qe

{QQ}



The combinatorial lifting of BMJ theorem

THEOREM (Duchi-S. 23)
Let F = Z X Q(]—", %(]—"\ f), u) be a catalytic decomposition of order one

where Q(v,w,u) = Z gsv°* D w* )y *%) is the node gf of the associated

s€Q non negative derivation O-trees

then = o = Ch — Cu x C,
fTET c0 = (140, x Q(Ch,C., Cl)

where the companion trees satisfy:

( Co = ZxQ(Ch,C.C,)

< Ce = Zx(14+C,) xQ,(Co,C,,C,)

Cle Zx (14+C,) xQL(Ch,C,,C)
- Ce = Zx((1+C0,) xQ,(Ch,C,,C,)




Planar A-terms and O ,-trees

Open planar A-term are to plane trees with /

e applications: binary nodes ® 0 ®
e abstractions: unary nodes C ®

e variables: leaves, represented as arrow. e

with condition that in each subterm there are more variables than abstractions.
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Planar A-terms and O ,-trees

Open planar A-term are to plane trees with /

e applications: binary nodes \ o O
e abstractions: unary nodes h\e O O
e variables: leaves, represented as arrow. e o
with condition that in each subterm there are more variables than abstractions. A
O
A

Mark variables with e and abstractions A with e,
then the set of vertex types is

Q/\:{@’@’@} ) .‘ﬁﬁ 8

Then non negative O),-trees = i ¥y { o
open planar \-terms < 'S b‘
non negative O,-trees with excess 0 = PN
closed planar \-terms i Y3

The closure corresponds to the rightmost depth first search abstraction-variable binding.



Planar A-terms, closure and rewiring

Corollary.
Rewiring yields a size-preserving bijection between marked planar A-terms and
companion trees with context-free specification:




What's next?

Catalytic equations also surface in various other enumeration problems, for instance for
e Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90's)
e Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)
e Families of Planar (normal) A-terms (Zeilberger and Giorgietti, 2015)
e Fighting fish and variants (Duchi et al, 2016)
e Fully parked trees (Chen 2021, Contat et al 2023)

Simply generated trees can be generated in linear time (Sportiello'21)

= in principle yields linear time random generators for all these structures

Rewiring gives bijections between their catalytic derivation trees and simply generated multi-trees...

=> but can we also have direct context-free decompositions ? (cf pizza slice decompositions of maps)

Bijections allow to tackle new parameters...

= so what is the equivalent of distances in maps for these structures ?



Thank you for you attention!



What's next? Higher order 1-catalytic equations

For order 1 we started from
F(u) = tQ (F(w), L(F(u) - f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).

(1+R)-Q,(V,W,U)
1+ R)-Q.,(V,W,U)
(1+R) Q,(V,W,U)

),
.
R
U
W

I
t .
\ t-

For order k we need to deal with
P(F(u)7f17f27-°'7fk7uat) =0 or P(u) — Q(F(u),AF(u),AkF(u),u,t)
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For order 1 we started from
F(u) = tQ (F(u), L(F(w) — f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).

),
1% t-Q(V,W,U)

R t-(1+R)-Q,(V,W,U)
U t-(1+R)-Q.,(V,W,U)
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For order k we need to deal with

P(F(u), f1, fos- - fusu,0) =0 or P(u) = Q(F(u), AF(u),... A F(u), u,1)

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1,...,ug of the series u, the F'(u1),..., F(ug) by F and the f1,..., fi.
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For order 1 we started from
F(u) = tQ (F(u), L(F(w) — f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).
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(14 R) - Qy(V,W,U)
(14 R)-Q,(V,W,U)
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R t-
U t-
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BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1,...,ug of the series u, the F'(u1),..., F(ug) by F and the f1,..., fi.

However this system is not immediately N-algebraic

in fact the series u; do not have non negative coefficients in general...



What's next? Higher order 1-catalytic equations

For order 1 we started from
F(u) = tQ (F(u), L(F(w) — f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).

Q(V,W,U)

(14 R) - Q,(V,W,U)
(14 R) - QL (V,W,U)
(14 R)-Q,(V,W,U)

),
1% t-
R t-
U t-
W t-

\
For order k we need to deal with

P(F(u), f1, fos- - fusu,0) =0 or P(u) = Q(F(u), AF(u),... A F(u), u,1)

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1,...,ug of the series u, the F'(u1),..., F(ug) by F and the f1,..., fi.

However this system is not immediately N-algebraic

in fact the series u; do not have non negative coefficients in general...

This is making things harder:

bijections are easier to find if one has a nice (and complicated) formula to interpret!
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So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps
— the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)
— the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)
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— the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

New observation: Rewriting the equations satisfied by the kernel roots u; in terms of the
elementary symmetric functions in the 'finite’ and 'infinite’ root separately directy yields
Duchon’s N-algebraic equations.

—> gives a combinatorial specifications for walks with algebraic series of up-steps.



What's next? Higher order 1-catalytic equations

P (F(u), f1,f2,---, fr,u,t) =0 or P(u) = Q(F(u), AF(u),... AFF(u),u,t)

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:

the analogs u1,...,uy of the series u, the F(u1),..., F(ug) by F and the fi,..., fi.

So here is the plan...
The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

— the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)

— the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

New observation: Rewriting the equations satisfied by the kernel roots u; in terms of the
elementary symmetric functions in the 'finite’ and 'infinite’ root separately directy yields

Duchon’s N-algebraic equations.
—> gives a combinatorial specifications for walks with algebraic series of up-steps.

The non linear case: the resulting heuristic is to rewrite the BMJ systems in terms of the elementary
functions in the u; instead, and to avoid the F'(u;), use the discriminant form of the sytem.

in progress: apply the combinatorial specification of the linear case along a branch
and sort out the ugly details to see what comes out !



Non negative O-trees and companion Q-trees

non-negative O-tree = necklace tree s.t. o _{ } e, o are all matched.
- [{:} o—] #{e} > #{e}

in planted subtrees

necklaces are in Q
the excess at each pearl is non negative.

companion Q- tree = necklace tree s.t. o~
necklaces are in Q - ' o @ ©® ® areall matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection
between non negative O-trees and balanced companion OQ-trees

REWIRING

- —>

REWIRING




