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CONTEXT-FREE SPECIFICATIONS



Enumerative combinatorics and generating functions

Let A be a set of combinatorial objects equipped with an integer size |.| and assume
that for each n the set

An = {a ∈ A s.t. |a| = n}
is finite, and let an = |An| denote its cardinality.

The generating function (gf) of the class A w.r.t. the size is

A ≡ A(t) :=
∑
n≥0

ant
n =

∑
α∈A

t|α|

Refined enumeration:

A(u) ≡ A(u, t) :=
∑

n,k≥0

ak,nu
ktn =

∑
α∈A

up(α)t|α|

for some parameter p : A → Z, and ak,n = |{a ∈ An | p(a) = k}



Plane trees
Plane trees (aka ordered trees)

Characterized by their decomposition at root edge

= +

a size preserving recursive bijection

An = {plane trees with n vertices}

n=1 n=2 n=3 n=4

τ
τ2

τ1 |τ1| + |τ2| = |τ|

z

|z| = 1
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∑
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Plane trees

A ≡ z+A×A
A symbolic specification

A(t) = t+A(t)2
The gf translation

with z atom of size 1 and additive size

with unique sol A(t) =
∑
n≥0

ant
n in C[[t]].



Context free languages and algebraic specifications/decompositions


F(1) ≡ P(1)(z;F(1), . . . ,F(k))

...

F(k) ≡ P(k)(z;F(1), . . . ,F(k))

More generally we like particularly well funded context-free specifications:

with each P(i) a finite combination
of + and × operators

e.g. A ≡ z+A×A
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Combinatorial structures that admit such a context-free specification are tamed...

e.g. A ≡ z+A×A
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⇒ exact formulas or efficient enumeration algorithms

⇒ asymptotic enumeration via singularity analysis

⇒ linear time uniform random generation algorithms
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Context-free specifications and multitype simply generated trees

 F(1) ≡ z+ z×F(2) ×F(2)

F(2) ≡ z+ z×F(1) ×F(1) ×F(1)

Context-free decompositions are naturally associated with multitype simply generated trees:

1 = 1 +
1

2 2

2 = 2 +
2

1 1 1

The derivation trees of a context-free specification are multitype simply generated trees,
i.e. trees specified by the allowed node progeny for each color, with independent subtrees.

⇔
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 F(1) ≡ z+ z×F(2) ×F(2)

F(2) ≡ z+ z×F(1) ×F(1) ×F(1)
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1 = 1 +
1

2 2

2 = 2 +
2

1 1 1

The derivation trees of a context-free specification are multitype simply generated trees,
i.e. trees specified by the allowed node progeny for each color, with independent subtrees.

⇔

Conversely when the gf of a combinatorial familly A is known to be N-algebraic,
one would like to explain it via a context-free specification of A
or via a bijection with trees.

(Standard reformulation of Schützenberger’s methodology)



CATALYTIC DECOMPOSITIONS



The example of planar λ-terms

Planar λ-terms can be presented as trees with

• applications: binary nodes

• λ-abstractions: unary nodes

• variables: leaves, represented as arrows , each matching an ancestor λ,

1

with condition that each λ is binded to exactly one variable in a planar way...
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This equation is not algebraic, the decomposition is not context free.



1-variable catalytic equations

Q (F (u), f1, f2, . . . , fk, u, t) = 0

The equation P (u) = t(u+ P (u)2 + 1
u
(P (u)− P (0)) is a special case of 1-variable catalytic equation,

where Q is a polynomial with coefficients in some field F
and we seek the unknown formal power series F (u) ≡ F (t, u) ∈ F[[t, u]] and fi ≡ fi(t) ∈ F[[t]].

• Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)

• Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)

• Families of Planar (normal) λ-terms (Zeilberger and Giorgietti, 2015)

• Fighting fish and variants (Duchi et al, 2016)

• Fully parked trees (Chen 2021, Contat et al 2023)

• . . .

These equations also surface in various other enumeration problems, for instance for



1-variable catalytic equations

Q (F (u), f1, f2, . . . , fk, u, t) = 0

where F0(u) and Q(v, w1, . . . , wk, u) are polynomials with coefficients in F, and

∆kF (u) =
F (u)− f1 − uf2 − . . .− uk−1fk

uk
,

have unique solutions, and it provides a non degenerated system of algebraic equations
that they satisfy.

The equation P (u) = t(u+ P (u)2 + 1
u
(P (u)− P (0)) is a special case of 1-variable catalytic equation,

where Q is a polynomial with coefficients in some field F
and we seek the unknown formal power series F (u) ≡ F (t, u) ∈ F[[t, u]] and fi ≡ fi(t) ∈ F[[t]].

The celebrated Bousquet-Mélou – Jehanne theorem states that 1-variable catalytic equations of
the form

F (u) = F0(u) + tQ(F (u),∆F (u), . . . ,∆kF (u), u, t)



Explicit BMJ theorem for order one 1-catalytic equations

F (u) = tQ

(
F (u),

1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

Let U , V , W and R be the unique fps satisfying the system
V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

Let Q(v, w, u) be a polynomial with Q(0, 0, u) ̸= 0

and F (u) ≡ F (t, u) the unique fps solution of the catalytic equation

tf ′
t = (1 +R) · VThen f is given by f = V − UW or



Explicit BMJ theorem for order one 1-catalytic equations

F (u) = tQ

(
F (u),

1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

Let U , V , W and R be the unique fps satisfying the system
V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

Let Q(v, w, u) be a polynomial with Q(0, 0, u) ̸= 0

and F (u) ≡ F (t, u) the unique fps solution of the catalytic equation

tf ′
t = (1 +R) · VThen f is given by f = V − UW or

P (u) = t(u+ P (u)2 + 1
u
(P (u)− P (0))

V = t · (U + V 2 +W )
R = t · (1 +R) · 2V
U = t · (1 +R)
W = t · (1 +R)

P (0) = V − UW



Explicit BMJ theorem for order one 1-catalytic equations

F (u) = tQ

(
F (u),

1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

Let U , V , W and R be the unique fps satisfying the system
V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

Let Q(v, w, u) be a polynomial with Q(0, 0, u) ̸= 0

and F (u) ≡ F (t, u) the unique fps solution of the catalytic equation

tf ′
t = (1 +R) · VThen f is given by f = V − UW or

⇒ The particularly simple form of this parametrization calls for a combinatorial lifting.

P (u) = t(u+ P (u)2 + 1
u
(P (u)− P (0))

V = t · (U + V 2 +W )
R = t · (1 +R) · 2V
U = t · (1 +R)
W = t · (1 +R)

P (0) = V − UW



Explicit BMJ theorem for order one 1-catalytic equations

F (u) = tQ

(
F (u),

1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

Let U , V , W and R be the unique fps satisfying the system
V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

Let Q(v, w, u) be a polynomial with Q(0, 0, u) ̸= 0

and F (u) ≡ F (t, u) the unique fps solution of the catalytic equation

tf ′
t = (1 +R) · VThen f is given by f = V − UW or

⇒ The particularly simple form of this parametrization calls for a combinatorial lifting.

⇒ When Q is a polynomial with integer coefficients, the system is N-algebraic !

P (u) = t(u+ P (u)2 + 1
u
(P (u)− P (0))

V = t · (U + V 2 +W )
R = t · (1 +R) · 2V
U = t · (1 +R)
W = t · (1 +R)

P (0) = V − UW



Explicit BMJ theorem for order one 1-catalytic equations

F (u) = tQ

(
F (u),

1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

Let U , V , W and R be the unique fps satisfying the system
V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

Let Q(v, w, u) be a polynomial with Q(0, 0, u) ̸= 0

and F (u) ≡ F (t, u) the unique fps solution of the catalytic equation

tf ′
t = (1 +R) · VThen f is given by f = V − UW or

⇒ The particularly simple form of this parametrization calls for a combinatorial lifting.

⇒ When Q is a polynomial with integer coefficients, the system is N-algebraic !

P (u) = t(u+ P (u)2 + 1
u
(P (u)− P (0))

V = t · (U + V 2 +W )
R = t · (1 +R) · 2V
U = t · (1 +R)
W = t · (1 +R)

P (0) = V − UW
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A MODEL FOR CATALYTIC EQUATIONS



Decorated trees and non negative trees

excess = #{•} −#{•}

non-negative Q-tree = necklace tree s.t.

the excess at each pearl is non negative.

slightly stronger condition than
just asking non negative excess on vertices

Observe:

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =

{
, . . .

}
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Non negative Q-trees and catalytic equations

Let F = { non-negative Q-trees },

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) the vertex type gf, where qs are weights

and F (u) ≡ F (t, u) =
∑
τ∈F

qτ t
|τ |uexcess(τ) , where qτ =

∏
s∈τ qs

Proposition. The gf F (u) of non negative Q-trees satisfies a catalytic equation of order one:

F (u) = tQ
(
F (u), 1

u (F (u)− F (0)), u
)

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =
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, . . .
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Let F = { non-negative Q-trees },

≥ 0

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) the vertex type gf, where qs are weights

and F (u) ≡ F (t, u) =
∑
τ∈F

qτ t
|τ |uexcess(τ) , where qτ =

∏
s∈τ qs

F ≡
∑
s∈Q

qs·

F

F+

F+

where F+ = F \ f

Proposition. The gf F (u) of non negative Q-trees satisfies a catalytic equation of order one:

Indeed the equation

F (u) = t
∑
s∈Q

qsF (u)•(s)
(
1
u
(F (u)− F (0))

)•(s)
u•(s)

F (u) = tQ
(
F (u), 1

u (F (u)− F (0)), u
)

follows from a decomposition at the root:

...

...

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =

{
, . . .

}

s

≥ 1

≥ 0

≥ 0

≥ 0

≥ 1
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Non-negative Q-trees are generic derivation trees for catalytic decompositions.



FROM CATALYTIC DECOMPOSITIONS
TO CONTEXT FREE SPECIFICATIONS



Non negative Q-trees and companion Q-trees

necklaces are in Q
non-negative Q-tree = necklace tree s.t.

•, •, • are all matched.
companion Q- tree = necklace tree s.t.

•, • are all matched.

#{•} ≥ #{•}
in planted subtrees

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection
between non negative Q-trees and balanced companion Q-trees
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The combinatorial lifting of BMJ theorem


C□ = Z ×Q(C□, C•, C•)
C• = Z × (1 + C•)×Q′

•(C□, C•, C•)
C• = Z × (1 + C•)×Q′

•(C□, C•, C•)
C• = Z × (1 + C•)×Q′

•(C□, C•, C•)

Let F ≡ Z × Q
(
F , 1

u (F \ f), u
)
be a catalytic decomposition of order one

where Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) is the node gf of the associated

then

THEOREM (Duchi-S. 23)

f ′
t ≡ C◦ = (1 + C•)×Q(C□, C•, C•)

f ≡ C = C□ − C• × C•

non negative derivation Q-trees

where the companion trees satisfy:

rewiring

rewiring



Planar λ-terms and Qλ-trees

λ

Open planar λ-term are to plane trees with
• applications: binary nodes
• abstractions: unary nodes

• variables: leaves, represented as arrow.

λ
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λwith condition that in each subterm there are more variables than abstractions.
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• applications: binary nodes
• abstractions: unary nodes

• variables: leaves, represented as arrow.
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λwith condition that in each subterm there are more variables than abstractions.

Mark variables with • and abstractions λ with •,
then the set of vertex types is

Qλ =
{

, ,
}

Then non negative Qλ-trees =
open planar λ-terms

The closure corresponds to the rightmost depth first search abstraction-variable binding.

non negative Qλ-trees with excess 0 =
closed planar λ-terms



Planar λ-terms, closure and rewiring

Corollary.
Rewiring yields a size-preserving bijection between marked planar λ-terms and
companion trees with context-free specification:

+ +C□ = ++

+ + +C• = C□ = 2t2

1−2tC□
+ tC2

□

2
2

1

1

1
0 1 1

2

1
2

1

10

1

1

10

1

C•

C•

C•

C□

C□

C□

C□

C•

C□

C□



What’s next?

Rewiring gives bijections between their catalytic derivation trees and simply generated multi-trees...

• Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)

• Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)

• Families of Planar (normal) λ-terms (Zeilberger and Giorgietti, 2015)

• Fighting fish and variants (Duchi et al, 2016)

• Fully parked trees (Chen 2021, Contat et al 2023)

• . . .

Catalytic equations also surface in various other enumeration problems, for instance for

⇒ but can we also have direct context-free decompositions ? (cf pizza slice decompositions of maps)

⇒ so what is the equivalent of distances in maps for these structures ?

Bijections allow to tackle new parameters...

Simply generated trees can be generated in linear time (Sportiello’21)

⇒ in principle yields linear time random generators for all these structures



Thank you for you attention!



What’s next? Higher order 1-catalytic equations

P (F (u), f1, f2, . . . , fk, u, t) = 0

F (u) = tQ
(
F (u), 1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

For order 1 we started from


V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

and the N-algebraic system

For order k we need to deal with

or P (u) = Q(F (u),∆F (u), . . .∆kF (u), u, t)
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So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

→ the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

→ the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)
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New observation: Rewriting the equations satisfied by the kernel roots ui in terms of the
elementary symmetric functions in the ’finite’ and ’infinite’ root separately directy yields
Duchon’s N-algebraic equations.

⇒ gives a combinatorial specifications for walks with algebraic series of up-steps.
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What’s next? Higher order 1-catalytic equations

So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

→ the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

→ the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)

New observation: Rewriting the equations satisfied by the kernel roots ui in terms of the
elementary symmetric functions in the ’finite’ and ’infinite’ root separately directy yields
Duchon’s N-algebraic equations.

The non linear case: the resulting heuristic is to rewrite the BMJ systems in terms of the elementary
functions in the ui instead, and to avoid the F (ui), use the discriminant form of the sytem.

⇒ gives a combinatorial specifications for walks with algebraic series of up-steps.

P (F (u), f1, f2, . . . , fk, u, t) = 0

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1, . . . , uk of the series u, the F (u1), . . . , F (uk) by F and the f1, . . . , fk.

or P (u) = Q(F (u),∆F (u), . . .∆kF (u), u, t)

in progress: apply the combinatorial specification of the linear case along a branch
and sort out the ugly details to see what comes out !
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