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This talk is based on a true story.



Linear programs and the simplex algorithm

Linear Program (LP)

max €y X3+ ---+ Cq4 Xq
st. apxi+ -+ agxg < b fori=1,...,n

Dantzig's simplex algorithm is the method of choice for solving LPs
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Linear programs and the simplex algorithm

Linear Program (LP)

max €y X3+ ---+ Cq4 Xq
st. apxi+ -+ agxg < b fori=1,...,n

Dantzig's simplex algorithm is the method of choice for solving LPs

Geometer's view:
P ={x € R?: Ax < b} is a polytope
c=(c,...,¢cq) yields a unique sink orientation of the graph of P

Vopt

A A
v /

simplex algorithm produces a path from any starting node v to the sink vopt




Pivot rules

The pivot rule chooses the path from any starting vertex.
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Pivot rules
The pivot rule chooses the path from any starting vertex.

R4

A 4

Pivot rule is memory-less if choices are made independently and locally.

For fixed LP (P, c¢), memory-less pivot rules are given by arborescences
A:V\Vopr =V A(v) €Nby(v) forall v # vop ,

where Nb_ (v) are the improving neighbors of v.
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Some pivot rules

(P, c) fixed and a generic weight w € RY.

» Greatest improvement

> p-Steepest Edge

» Max-slope

(c,u—v)
(c,u—v)
Ju—vlp
{w,u—v)

(c,u—v)
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Some pivot rules

(P, c) fixed and a generic weight w € RY.
» Greatest improvement

(w,u—v)
> p-Steepest Edge

(w,u—v)

[Ju—vllp
» Max-slope

<w7 u— V>

(c,u—v)

For a weight w and normalization  : RY — R
the associated normalized-weight pivot rule is AY : V' \ vopr — V

A¥(v) = argmax{<;;J(’uu__vv)> RS Nb+(v)} .



A polytope of pivot rules

Polytope P C RY, objective function ¢ € R?, and normalization  : RY — R.
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A polytope of pivot rules

Polytope P C RY, objective function ¢ € R?, and normalization  : RY — R.

For an arborescence A : V' \ vopr — V define

Pivot rule polytope

M(P,c) := conv{W(A): A arborescence of (P,c)}

Theorem (Black, De Loera, Liitjeharms, S.'22)

For generic w € RY and arborescence A the following are equivalent:
1. W(A) is the vertex of 1(P, c) maximizing w.
2. A is the normalized weight arborescence A“.
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A polytope of pivot rules

Polytope P C RY, objective function ¢ € R?, and normalization  : RY — R.

For an arborescence A : V' \ vopr — V define

Pivot rule polytope

M(P,c) := conv{W(A): A arborescence of (P,c)}

Theorem (Black, De Loera, Liitjeharms, S.'22)

For generic w € RY and arborescence A the following are equivalent:
1. W(A) is the vertex of 1(P, c) maximizing w.
2. A is the normalized weight arborescence A“.

(coherent) triangulations? GKZ-vectors? secondary/fiber polytopes?
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Max-slope and monotone path polytopes

¢, w define a projection 7 : RY — R?

w
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Max-slope and monotone path polytopes

¢, w define a projection 7 : RY — R?

w

B

Path from minimizer v_qpt to Vopt is @ c-monotone path.

This is a coherent monotone path in the sense of Billera—Sturmfels.

Theorem (Billera-Sturmfels'92)

The monotone path polytope (P, c) parametrizes coherent c-monotone paths.

Theorem (Black, De Loera, Liitjeharms, S.'22)
Y (P, c) is a weak Minkowski summand of T(P, c).
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An example: max-slope pivot rules on simplices

n-dimensional simplex
A, = conv(ey, e, ..., en41) C R

Objective function c = (¢ < & < - ++ < Cny1).
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An example: max-slope pivot rules on simplices

n-dimensional simplex
A, = conv(ey, e, ..., en41) C R

Objective function c = (¢ < & < - ++ < Cny1).

PivPolytopes = []
for n in [2, 3, 4, 5, 6, 7]:
P = polytopes.simplex(n)
c = vector([ 2 *x i for i in range(n+1) ])
D = P.graph().orient( lambda e: e if cke[@].vector() < cxe[1].vector() else (e[1l],e[0], e[2]) )

PP = []
for v in D.vertices():
Nb = [ e[1]l.vector() - v.vector() for e in D.outgoing_edges(v) ]
if Nb != []:
PP.append( Polyhedron( [ u / (cku) for u in Nb | ) )
PP = sum(PP)
PivPolytopes.append( (n, PP) )
[ PP.n_vertices() for n, PP in PivPolytopes |
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An example: max-slope pivot rules on simplices

n-dimensional simplex
A, = conv(ey, e, ..., en41) C R

Objective function c = (¢ < & < - ++ < Cny1).

PivPolytopes = []
for n in [2, 3, 4, 5, 6, 7]:
P = polytopes.simplex(n)
c = vector([ 2 *x i for i in range(n+1) ])
D = P.graph().orient( lambda e: e if cke[@].vector() < cxe[1].vector() else (e[1l],e[0], e[2]) )

PP = []
for v in D.vertices():
Nb = [ e[1]l.vector() - v.vector() for e in D.outgoing_edges(v) ]
if Nb != []:
PP.append( Polyhedron( [ u / (cku) for u in Nb | ) )
PP = sum(PP)
PivPolytopes.append( (n, PP) )
[ PP.n_vertices() for n, PP in PivPolytopes |

[2, 5, 14, 42, 132, 429]
[ PP.is_combinatorially_isomorphic( polytopes.associahedron(['A',n-1] ) ) for n, PP in PivPolytopes |

[True, True, True, True, True, Truel
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The associahedron Asso,_1

or Stasheff polytope is an (n — 1)-dim. simple polytope that parametrizes...
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The associahedron Asso,_1

or Stasheff polytope is an (n — 1)-dim. simple polytope that parametrizes...

...parenthesizations of a (non-associative) product a; - ap - - - any2

@b) (cd)

a (b (col)

@ab)c%\ A sso,

(@ (be))e et ((be)dl)
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The associahedron Asso,_1

or Stasheff polytope is an (n — 1)-dim. simple polytope that parametrizes...
...triangulations of (n + 2)-gon
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The associahedron Asso,_1

or Stasheff polytope is an (n — 1)-dim. simple polytope that parametrizes...
...binary trees with n+ 1 leaves
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The associahedron Asso,_1

or Stasheff polytope is an (n — 1)-dim. simple polytope that parametrizes...

...collisions of n+ 1 particles

Theorem (Black-Liitjeharms-S.'24)

The max-slope pivot rule polytope of (A, c) is isomorphic to Asso,_1.
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Prisms over simplices
Prism over A, is prism(A,) = A, x [0,1] € R"2.

Generic objective function ¢’ = (c; < ¢ < -+ - < €py1 < dy).
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Theorem (Black-Liitjeharms-S.'24)

Max-slope pivot polytope of (prism*(A,), c') is isom. to k-multiplihedron Mulﬁ.
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Products of simplices

prismk(A,,) =A, X A1 X - x g

k

Max-slope pivot rule polytopes of A, x A,

Theorem (Black, Liitjeharms, S.'24)

MN(A, x A, ¢) is combinatorially isomorphic to the
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Products of simplices

prismk(A,,) =A, X A1 X - x g
k

Max-slope pivot rule polytopes of A, x A,

Theorem (Black, Liitjeharms, S.'24)

MN(A, x A, ¢) is combinatorially isomorphic to the (m, n)-constrainahedron.

Constrainahedra [Bottman—Poliakova'22, Chapoton—Pilaud'22] capture the
combinatorics of particles to parallel lines in R2.

What is the connection between max-slope pivot rules and particles?

Theorem (Pilaud—Poullot'25)

M(Ap X -+ X Ap,c) is comb. isomorphic to the (ni, ..., nj)-constrainahedron.

Piecewise-linear homeomorphism between normal fans of M(A,, ¢) and Loday's
associahedron Asso,,_;. Extends to shuffle products of deformed permutahedra.
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Max-slope pivot rules on simplices

simplex A, = conv(er, €,...,€,41) obj. function c = (c; < & < -+ < €py1)
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Max-slope pivot rules on simplices

simplex A, = conv(er, €,...,€,41) obj. function c = (c; < & < -+ < €py1)

Arborescences correspond to maps A : [n] — [n+ 1] with A(7) > i for all i
— n! many arborescences

Max-slope arborescence for w = (w1, ...,wy)
. wi—wi ..
A“(i) = argmaxq —L——:j > |
G — G

Non-crossing arborescences
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Max-slope pivot rules on simplices

simplex A, = conv(er, €,...,€,41) obj. function c = (c; < & < -+ < €py1)

Arborescences correspond to maps A : [n] — [n+ 1] with A(7) > i for all i
— n! many arborescences

Max-slope arborescence for w = (w1, ...,wy)
. wi—wi ..
A“(i) = argmaxq —L——:j > |
G — G

2. Lt | 2 2 & | 2 3 %
m N /7<A
| 2 2 4 | 2 2 4 | 2. 2 2
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Particles with locations and velocities

Consider n > 2 labelled particles on a real line.
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Particles with locations and velocities

Consider n > 2 labelled particles on a real line.
At time t = 0, they are at locations —w; < —wp < -+ < —wp,.
For t > 0 they travel at constant velocities 0 > —¢; > —c, > --- > —¢,

1 2 3 1 5 G 7

—0—@ *—@ @ 4 *—
+—-2 4— < 5 7
4+— -] ¢4—F— 3 4+

If i < j collide, then i is absorbed by the faster j, which continues at speed —¢;.
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Consider n > 2 labelled particles on a real line.
At time t = 0, they are at locations —w; < —wp < -+ < —wp,.
For t > 0 they travel at constant velocities 0 > —¢; > —c, > --- > —¢,

7

@ 4 *—

+—-2 4— < 5 < 7
4+— -] ¢— -3

4+ 0

If i < j collide, then i is absorbed by the faster j, which continues at speed —¢;.

[ ]

[ ]
[ ]
[ ]

®
[ ]

® ¢ 0o 9
J
3
>

13/ 15
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Consider n > 2 labelled particles on a real line.
At time t = 0, they are at locations —w; < —wp < -+ < —wp,.

For t > 0 they travel at constant velocities 0 > —¢; > —c, > --- > —¢,

1 2 3 4 5 G 7
—0—@ *—@ @ 4 *—
+—-2 4— < 5 < 7
+— -] — -3 4+ 6

If i < j collide, then i is absorbed by the faster j, which continues at speed —¢;.

-0 Py P P
Lan g @ @

o
A 4

® ¢ ¢ % 0 o
J
3
>

Define A : [n — 1] — [n] such that particle i is absorbed by particle A(/)
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Define A : [n — 1] — [n] such that particle i is absorbed by particle A(/)
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Particles with locations and velocities

Consider n > 2 labelled particles on a real line.
At time t = 0, they are at locations —w; < —wp < -+ < —wp,.

For t > 0 they travel at constant velocities 0 > —¢; > —c, > --- > —¢,

If i < j collide, then i is absorbed by the faster j, which continues at speed —¢;.

-0 Py P P
Lan g @ @

o
A 4

® 0 ¢ %9 0 o
')
°
°

Define A : [n — 1] — [n] such that particle i is absorbed by particle A(/)
> A is precisely the max-slope arborescence for (c,w).
» the associated bracketing yields the isomorphism of face lattices
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From linear programming to particle collisions

The Polyhedral Geometry of Pivot Rules and Monotone Paths
(Black, De Loera, Liitjeharms, S.), SIAGA 2023, arXiv:2201.05134

From linear programming to colliding particles
(A. Black, N. Liitjeharms, S.) arXiv:2405.08506

Applications of max-slope polytopes to (flag) matroids and flag varieties

Flag Polymatroids
(Black, S.), Adv. Math. 2024, arXiv:2207.12221
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