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This talk is based on a true story.
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Linear programs and the simplex algorithm
Linear Program (LP)

max c1 x1 + · · ·+ cd xd
s.t. ai1x1 + · · ·+ aidxd  bi for i = 1, . . . , n

Dantzig’s simplex algorithm is the method of choice for solving LPs

Geometer’s view:

P = {x 2 Rd
: Ax  b} is a polytope

c = (c1, . . . , cd) yields a unique sink orientation of the graph of P

vopt

v

simplex algorithm produces a path from any starting node v to the sink vopt
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Pivot rules
The pivot rule chooses the path from any starting vertex.

Pivot rule is memory-less if choices are made independently and locally.

For fixed LP (P , c), memory-less pivot rules are given by arborescences

A : V \ vopt ! V A(v) 2 Nb+(v) for all v 6= vopt ,

where Nb+(v) are the improving neighbors of v .
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Some pivot rules
(P , c) fixed and a generic weight ! 2 Rd

.

I Greatest improvement

hc , u � vi
I p-Steepest Edge

hc , u � vi
ku � vkp

I Max-slope

h!, u � vi
hc , u � vi

For a weight ! and normalization ⌘ : Rd ! R
the associated normalized-weight pivot rule is A!

: V \ vopt ! V

A!
(v) := argmax

⇢
h!, u � vi
⌘(u � v)

: u 2 Nb+(v)

�
.
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A polytope of pivot rules
Polytope P ⇢ Rd

, objective function c 2 Rd
, and normalization ⌘ : Rd ! R.

For an arborescence A : V \ vopt ! V define

 (A) :=

X

v 6=vopt

A(v)� v

⌘(A(v)� v)

Pivot rule polytope

⇧(P , c) := conv{ (A) : A arborescence of (P , c)}

Theorem (Black, De Loera, Lütjeharms, S.’22)
For generic ! 2 Rd and arborescence A the following are equivalent:

1.  (A) is the vertex of ⇧(P , c) maximizing !.

2. A is the normalized weight arborescence A!.

(coherent) triangulations? GKZ-vectors? secondary/fiber polytopes?
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Max-slope and monotone path polytopes
c ,! define a projection ⇡ : Rd ! R2

Path from minimizer v�opt to vopt is a c-monotone path.

This is a coherent monotone path in the sense of Billera–Sturmfels.

Theorem (Billera-Sturmfels’92)
The monotone path polytope ⌃(P , c) parametrizes coherent c-monotone paths.

Theorem (Black, De Loera, Lütjeharms, S.’22)
⌃(P , c) is a weak Minkowski summand of ⇧(P , c).
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An example: max-slope pivot rules on simplices
n-dimensional simplex

�n = conv(e1, e2, . . . , en+1) ⇢ Rn+1

Objective function c = (c1 < c2 < · · · < cn+1).
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The associahedron Asson�1

or Stashe↵ polytope is an (n � 1)-dim. simple polytope that parametrizes...

Theorem (Black-Lütjeharms-S.’24)
The max-slope pivot rule polytope of (�n, c) is isomorphic to Asson�1.
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The associahedron Asson�1

or Stashe↵ polytope is an (n � 1)-dim. simple polytope that parametrizes...

...parenthesizations of a (non-associative) product a1 · a2 · · · an+2

Theorem (Black-Lütjeharms-S.’24)
The max-slope pivot rule polytope of (�n, c) is isomorphic to Asson�1.
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The associahedron Asson�1

or Stashe↵ polytope is an (n � 1)-dim. simple polytope that parametrizes...

...triangulations of (n + 2)-gon

Theorem (Black-Lütjeharms-S.’24)
The max-slope pivot rule polytope of (�n, c) is isomorphic to Asson�1.
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The associahedron Asson�1

or Stashe↵ polytope is an (n � 1)-dim. simple polytope that parametrizes...

...binary trees with n + 1 leaves

Theorem (Black-Lütjeharms-S.’24)
The max-slope pivot rule polytope of (�n, c) is isomorphic to Asson�1.
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The associahedron Asson�1

or Stashe↵ polytope is an (n � 1)-dim. simple polytope that parametrizes...

...collisions of n + 1 particles

Theorem (Black-Lütjeharms-S.’24)
The max-slope pivot rule polytope of (�n, c) is isomorphic to Asson�1.
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Prisms over simplices
Prism over �n is prism(�n) = �n ⇥ [0, 1] ⇢ Rn+2

.

Generic objective function c 0 = (c1 < c2 < · · · < cn+1 < d1).

Number of max-slope arborescences of (prism(�n), c 0) for n � 0

1, 2, 6, 21, 80, 322, . . .

Sloane database (OEIS): Number of vertices of the multiplihedron Muln.

Number of ways to evaluate f (a1 · a2 · · · an+1), where f is multiplicative.
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Products of simplices

prism
k
(�n) = �n ⇥�1 ⇥ · · ·⇥�1| {z }

k

Max-slope pivot rule polytopes of �n ⇥�m

Theorem (Black, Lütjeharms, S.’24)
⇧(�n ⇥�m, c) is combinatorially isomorphic to the

(m, n)-constrainahedron.

Constrainahedra [Bottman–Poliakova’22, Chapoton–Pilaud’22] capture the

combinatorics of particles to parallel lines in R2
.

What is the connection between max-slope pivot rules and particles?

Theorem (Pilaud–Poullot’25)
⇧(�n1 ⇥ · · ·⇥�nl , c) is comb. isomorphic to the (n1, . . . , nl)-constrainahedron.

Piecewise-linear homeomorphism between normal fans of ⇧(�n, c) and Loday’s

associahedron Asson�1. Extends to shu✏e products of deformed permutahedra.

11/ 15
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Max-slope pivot rules on simplices
simplex �n = conv(e1, e2, . . . , en+1) obj. function c = (c1 < c2 < · · · < cn+1)

Arborescences correspond to maps A : [n] ! [n + 1] with A(i) > i for all i
�! n! many arborescences

Max-slope arborescence for ! = (!1, . . . ,!n)

A!
(i) = argmax

⇢
!j � !i

cj � ci
: j > i

�

Non-crossing arborescences – Catalan recurrence!
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Particles with locations and velocities
Consider n � 2 labelled particles on a real line.

At time t = 0, they are at locations �!1  �!2  · · ·  �!n.

For t > 0 they travel at constant velocities 0 > �c1 > �c2 > · · · > �cn

If i < j collide, then i is absorbed by the faster j , which continues at speed �cj .

Define A : [n � 1] ! [n] such that particle i is absorbed by particle A(i)
I A is precisely the max-slope arborescence for (c ,!).

I the associated bracketing yields the isomorphism of face lattices

13/ 15
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