From linear programming to particle collisions

Raman Sanyal

Goethe-Universität Frankfurt

joint with Alex Black and Niklas Lütjeharms

This talk is based on a true story.

Linear Program (LP)

max
$$c_1 x_1 + \cdots + c_d x_d$$

s.t. $a_{i1}x_1 + \cdots + a_{id}x_d \leq b_i$ for $i = 1, \dots, n$

Dantzig's simplex algorithm is the method of choice for solving LPs

Linear Program (LP)

$$\begin{array}{ll} \max & c_1 \, x_1 + \dots + c_d \, x_d \\ \mathrm{s.t.} & a_{i1} x_1 + \dots + a_{id} x_d \leq b_i \quad \text{ for } i = 1, \dots, n \end{array}$$

Dantzig's simplex algorithm is the method of choice for solving LPs

Geometer's view:

Linear Program (LP)

$$\begin{array}{ll} \max & c_1 \, x_1 + \dots + c_d \, x_d \\ \mathrm{s.t.} & a_{i1} x_1 + \dots + a_{id} x_d \leq b_i \quad \text{ for } i = 1, \dots, n \end{array}$$

Dantzig's simplex algorithm is the method of choice for solving LPs

Geometer's view:

$$P = \{x \in \mathbb{R}^d : Ax \le b\}$$
 is a polytope

Linear Program (LP)

max
$$c_1 x_1 + \cdots + c_d x_d$$

s.t. $a_{i1}x_1 + \cdots + a_{id}x_d \leq b_i$ for $i = 1, \dots, n$

Dantzig's simplex algorithm is the method of choice for solving LPs

Geometer's view:

$$P=\{x\in\mathbb{R}^d:Ax\leq b\}$$
 is a polytope $c=(c_1,\ldots,c_d)$ yields a unique sink orientation of the graph of P

Linear Program (LP)

$$\begin{array}{ll} \max & c_1 \, x_1 + \dots + c_d \, x_d \\ \mathrm{s.t.} & a_{i1} x_1 + \dots + a_{id} x_d \leq b_i \quad \text{ for } i = 1, \dots, n \end{array}$$

Dantzig's simplex algorithm is the method of choice for solving LPs

Geometer's view:

$$P=\{x\in\mathbb{R}^d:Ax\leq b\}$$
 is a polytope $c=(c_1,\ldots,c_d)$ yields a unique sink orientation of the graph of P

simplex algorithm produces a path from any starting node v to the sink v_{opt}

Pivot rules

The pivot rule chooses the path from any starting vertex.

Pivot rules

The pivot rule chooses the path from any starting vertex.

Pivot rule is memory-less if choices are made independently and locally.

Pivot rules

The pivot rule chooses the path from any starting vertex.

Pivot rule is memory-less if choices are made independently and locally.

For fixed LP (P, c), memory-less pivot rules are given by arborescences

$$\mathcal{A}: V \setminus v_{\mathsf{opt}} o V \qquad \mathcal{A}(v) \in \mathrm{Nb}_+(v) \quad ext{ for all } v
eq v_{\mathsf{opt}} \,,$$

where $\mathrm{Nb}_{+}(v)$ are the improving neighbors of v.

Some pivot rules

- (P,c) fixed and a generic weight $\omega \in \mathbb{R}^d$.
 - ▶ Greatest improvement

$$\langle c, u - v \rangle$$

p-Steepest Edge

$$\frac{\langle c, u - v \rangle}{\|u - v\|_p}$$

Max-slope

$$\frac{\langle \omega, u-v\rangle}{\langle c, u-v\rangle}$$

Some pivot rules

- (P,c) fixed and a generic weight $\omega \in \mathbb{R}^d$.
 - ► Greatest improvement

$$\langle \boldsymbol{\omega}, \boldsymbol{u} - \boldsymbol{v} \rangle$$

p-Steepest Edge

$$\frac{\langle \boldsymbol{\omega}, \boldsymbol{u} - \boldsymbol{v} \rangle}{\|\boldsymbol{u} - \boldsymbol{v}\|_{p}}$$

Max-slope

$$\frac{\langle \boldsymbol{\omega}, \boldsymbol{u} - \boldsymbol{v} \rangle}{\langle \boldsymbol{c}, \boldsymbol{u} - \boldsymbol{v} \rangle}$$

Some pivot rules

- (P,c) fixed and a generic weight $\omega \in \mathbb{R}^d$.
 - ► Greatest improvement

$$\langle \boldsymbol{\omega}, \boldsymbol{u} - \boldsymbol{v} \rangle$$

p-Steepest Edge

$$\frac{\langle \boldsymbol{\omega}, \boldsymbol{u} - \boldsymbol{v} \rangle}{\|\boldsymbol{u} - \boldsymbol{v}\|_{p}}$$

Max-slope

$$\frac{\langle \boldsymbol{\omega}, \boldsymbol{u} - \boldsymbol{v} \rangle}{\langle \boldsymbol{c}, \boldsymbol{u} - \boldsymbol{v} \rangle}$$

For a weight ω and normalization $\eta: \mathbb{R}^d \to \mathbb{R}$ the associated normalized-weight pivot rule is $\mathcal{A}^\omega: V \setminus v_{\mathsf{opt}} \to V$

$$\mathcal{A}^{\omega}(v) \; := \; \operatorname{argmax} \left\{ rac{\langle \omega, u - v
angle}{\eta(u - v)} : u \in \mathrm{Nb}_{+}(v)
ight\} \, .$$

Polytope $P \subset \mathbb{R}^d$, objective function $c \in \mathbb{R}^d$, and normalization $\eta : \mathbb{R}^d \to \mathbb{R}$.

Polytope $P \subset \mathbb{R}^d$, objective function $c \in \mathbb{R}^d$, and normalization $\eta : \mathbb{R}^d \to \mathbb{R}$.

For an arborescence $\mathcal{A}: V \setminus v_{\mathsf{opt}} \to V$ define

$$\Psi(\mathcal{A}) \ := \ \sum_{v
eq v_{ ext{out}}} rac{\mathcal{A}(v) - v}{\eta(\mathcal{A}(v) - v)}$$

Polytope $P \subset \mathbb{R}^d$, objective function $c \in \mathbb{R}^d$, and normalization $\eta : \mathbb{R}^d \to \mathbb{R}$.

For an arborescence $\mathcal{A}: V \setminus v_{\mathsf{opt}} \to V$ define

$$\Psi(\mathcal{A}) \ := \ \sum_{v \neq v_{\mathsf{Opt}}} \frac{\mathcal{A}(v) - v}{\eta(\mathcal{A}(v) - v)}$$

Pivot rule polytope

$$\Pi(P,c) := \text{conv}\{\Psi(A) : A \text{ arborescence of } (P,c)\}$$

Polytope $P \subset \mathbb{R}^d$, objective function $c \in \mathbb{R}^d$, and normalization $\eta : \mathbb{R}^d \to \mathbb{R}$.

For an arborescence $\mathcal{A}: V \setminus v_{\mathsf{opt}} o V$ define

$$\Psi(\mathcal{A}) \; := \; \sum_{v
eq v_{\mathrm{opt}}} rac{\mathcal{A}(v) - v}{\eta(\mathcal{A}(v) - v)}$$

Pivot rule polytope

$$\Pi(P,c) := \operatorname{conv}\{\Psi(A) : A \text{ arborescence of } (P,c)\}$$

Theorem (Black, De Loera, Lütjeharms, S.'22)

For generic $\omega \in \mathbb{R}^d$ and arborescence \mathcal{A} the following are equivalent:

- 1. $\Psi(A)$ is the vertex of $\Pi(P,c)$ maximizing ω .
- 2. A is the normalized weight arborescence A^{ω} .

Polytope $P \subset \mathbb{R}^d$, objective function $c \in \mathbb{R}^d$, and normalization $\eta : \mathbb{R}^d \to \mathbb{R}$.

For an arborescence $\mathcal{A}: V \setminus v_{\mathsf{opt}} \to V$ define

$$\Psi(\mathcal{A}) \; := \; \sum_{v
eq v_{\mathrm{opt}}} rac{\mathcal{A}(v) - v}{\eta(\mathcal{A}(v) - v)}$$

Pivot rule polytope

$$\Pi(P,c) := \text{conv}\{\Psi(A) : A \text{ arborescence of } (P,c)\}$$

Theorem (Black, De Loera, Lütjeharms, S.'22)

For generic $\omega \in \mathbb{R}^d$ and arborescence \mathcal{A} the following are equivalent:

- 1. $\Psi(A)$ is the vertex of $\Pi(P,c)$ maximizing ω .
- 2. A is the normalized weight arborescence A^{ω} .

(coherent) triangulations? GKZ-vectors? secondary/fiber polytopes?

 c, ω define a projection $\pi: \mathbb{R}^d \to \mathbb{R}^2$

 c, ω define a projection $\pi: \mathbb{R}^d \to \mathbb{R}^2$

 c, ω define a projection $\pi : \mathbb{R}^d \to \mathbb{R}^2$

 c, ω define a projection $\pi: \mathbb{R}^d \to \mathbb{R}^2$

Path from minimizer v_{-opt} to v_{opt} is a c-monotone path.

This is a coherent monotone path in the sense of Billera–Sturmfels.

 c, ω define a projection $\pi: \mathbb{R}^d \to \mathbb{R}^2$

Path from minimizer $v_{-\text{opt}}$ to v_{opt} is a c-monotone path.

This is a coherent monotone path in the sense of Billera–Sturmfels.

Theorem (Billera-Sturmfels'92)

The monotone path polytope $\Sigma(P,c)$ parametrizes coherent c-monotone paths.

Theorem (Black, De Loera, Lütjeharms, S.'22)

 $\Sigma(P,c)$ is a weak Minkowski summand of $\Pi(P,c)$.

n-dimensional simplex

$$\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1}) \subset \mathbb{R}^{n+1}$$

Objective function $c = (c_1 < c_2 < \cdots < c_{n+1})$.

n-dimensional simplex

$$\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1}) \subset \mathbb{R}^{n+1}$$

Objective function $c = (c_1 < c_2 < \cdots < c_{n+1})$.

n-dimensional simplex

$$\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1}) \subset \mathbb{R}^{n+1}$$

Objective function $c = (c_1 < c_2 < \cdots < c_{n+1})$.


```
[42]: PivPolytopes = []
for n in [2, 3, 4, 5, 6, 7]:
    P = polytopes.simplex(n)
    c = vector([2 ** i for i in range(n+1) ])
    D = P.graph().orient( lambda e: e if c*e[0].vector() < c*e[1].vector() else (e[1],e[0], e[2]) )

PP = []
for v in D.vertices():
    Nb = [e[1].vector() - v.vector() for e in D.outgoing_edges(v) ]
    if Nb != []:
        PP.append( Polyhedron( [ u / (c*u) for u in Nb ] ) )
PP = sum(PP)
    PivPolytopes.append( (n, PP) )
[PP.n_vertices() for n, PP in PivPolytopes ]</pre>
```

[42]: [2, 5, 14, 42, 132, 429]

n-dimensional simplex

$$\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1}) \subset \mathbb{R}^{n+1}$$

Objective function $c = (c_1 < c_2 < \cdots < c_{n+1})$.


```
[42]: PivPolytopes = []
for n in [2, 3, 4, 5, 6, 7]:
    P = polytopes.simplex(n)
    c = vector([2 ** i for i in range(n+1)])
    D = P.graph().orient( lambda e: e if c*e[0].vector() < c*e[1].vector() else (e[1],e[0], e[2]) )

PP = []
for v in D.vertices():
    Nb = [e[1].vector() - v.vector() for e in D.outgoing_edges(v)]
    if Nb != []:
        PP.append( Polyhedron( [ u / (c*u) for u in Nb ] ) )
    PP = sum(PP)
    PivPolytopes.append( (n, PP) )
[PP.n_vertices() for n, PP in PivPolytopes ]</pre>
```

```
[42]: [2, 5, 14, 42, 132, 429]

[43]: [PP.is_combinatorially_isomorphic( polytopes.associahedron(['A',n-1] ) ) for n, PP in PivPolytopes ]

[43]: [True, True, True, True, True]
```

or Stasheff polytope is an (n-1)-dim. simple polytope that parametrizes...

or Stasheff polytope is an (n-1)-dim. simple polytope that parametrizes... ...parenthesizations of a (non-associative) product $a_1 \cdot a_2 \cdots a_{n+2}$

or Stasheff polytope is an (n-1)-dim. simple polytope that parametrizes... ...triangulations of (n+2)-gon

or Stasheff polytope is an (n-1)-dim. simple polytope that parametrizes... ...binary trees with n+1 leaves

or Stasheff polytope is an (n-1)-dim. simple polytope that parametrizes... ...collisions of n+1 particles

or Stasheff polytope is an (n-1)-dim. simple polytope that parametrizes... ...collisions of n+1 particles

Theorem (Black-Lütjeharms-S.'24)

The max-slope pivot rule polytope of (Δ_n, c) is isomorphic to $Asso_{n-1}$.

Prisms over simplices

Prism over Δ_n is $\operatorname{prism}(\Delta_n) = \Delta_n \times [0,1] \subset \mathbb{R}^{n+2}$. Generic objective function $c' = (c_1 < c_2 < \cdots < c_{n+1} < d_1)$.

Prisms over simplices

Prism over Δ_n is prism $(\Delta_n) = \Delta_n \times [0,1] \subset \mathbb{R}^{n+2}$.

Generic objective function $c' = (c_1 < c_2 < \cdots < c_{n+1} < d_1)$.

Number of max-slope arborescences of $(\operatorname{prism}(\Delta_n),c')$ for $n\geq 0$

 $1, 2, 6, 21, 80, 322, \dots$

Prisms over simplices

Prism over Δ_n is $prism(\Delta_n) = \Delta_n \times [0,1] \subset \mathbb{R}^{n+2}$.

Generic objective function $c' = (c_1 < c_2 < \cdots < c_{n+1} < d_1)$.

Number of max-slope arborescences of $(\operatorname{prism}(\Delta_n),c')$ for $n\geq 0$

 $1, 2, 6, 21, 80, 322, \dots$

Sloane database (OEIS): Number of vertices of the multiplihedron Mul_n.

Prisms over simplices

Prism over Δ_n is $\mathsf{prism}(\Delta_n) = \Delta_n \times [0,1] \subset \mathbb{R}^{n+2}$.

Generic objective function $c' = (c_1 < c_2 < \cdots < c_{n+1} < d_1)$.

Number of max-slope arborescences of $(prism(\Delta_n), c')$ for $n \ge 0$

 $1, 2, 6, 21, 80, 322, \dots$

Sloane database (OEIS): Number of vertices of the multiplihedron Mul_n . Number of ways to evaluate $f(a_1 \cdot a_2 \cdots a_{n+1})$, where f is multiplicative.

Prisms over simplices

Prism over Δ_n is $prism(\Delta_n) = \Delta_n \times [0,1] \subset \mathbb{R}^{n+2}$.

Generic objective function $c' = (c_1 < c_2 < \cdots < c_{n+1} < d_1)$.

Number of max-slope arborescences of $(\operatorname{prism}(\Delta_n),c')$ for $n\geq 0$

 $1, 2, 6, 21, 80, 322, \dots$

Sloane database (OEIS): Number of vertices of the multiplihedron Mul_n . Number of ways to evaluate $f(a_1 \cdot a_2 \cdots a_{n+1})$, where f is multiplicative.

Theorem (Black-Lütjeharms-S.'24)

Max-slope pivot polytope of $(prism(\Delta_n), c')$ is isom. to multiplihedron Mul_n .

Prisms over simplices

Prism over Δ_n is $prism(\Delta_n) = \Delta_n \times [0,1] \subset \mathbb{R}^{n+2}$.

Generic objective function $c' = (c_1 < c_2 < \cdots < c_{n+1} < d_1)$.

Number of max-slope arborescences of $(\operatorname{prism}(\Delta_n), c')$ for $n \geq 0$

$$1, 2, 6, 21, 80, 322, \dots$$

Sloane database (OEIS): Number of vertices of the multiplihedron Mul_n . Number of ways to evaluate $f(a_1 \cdot a_2 \cdots a_{n+1})$, where f is multiplicative.

Theorem (Black-Lütjeharms-S.'24)

Max-slope pivot polytope of (prism $^{k}(\Delta_{n}), c'$) is isom. to k-multiplihedron $\operatorname{Mul}_{n}^{k}$.

$$\mathsf{prism}^k(\Delta_n) = \Delta_n \times \underbrace{\Delta_1 \times \cdots \times \Delta_1}_k$$

Max-slope pivot rule polytopes of $\Delta_n \times \Delta_m$

Theorem (Black, Lütjeharms, S.'24)

 $\Pi(\Delta_n \times \Delta_m,c)$ is combinatorially isomorphic to the

$$\mathsf{prism}^k(\Delta_n) = \Delta_n imes \underbrace{\Delta_1 imes \cdots imes \Delta_1}_k$$

Max-slope pivot rule polytopes of $\Delta_n \times \Delta_m$

Theorem (Black, Lütjeharms, S.'24)

 $\Pi(\Delta_n \times \Delta_m, c)$ is combinatorially isomorphic to the (m, n)-constrainahedron.

Constrainahedra [Bottman–Poliakova'22, Chapoton–Pilaud'22] capture the combinatorics of particles to parallel lines in \mathbb{R}^2 .

$$\mathsf{prism}^k(\Delta_n) = \Delta_n imes \underbrace{\Delta_1 imes \cdots imes \Delta_1}_k$$

Max-slope pivot rule polytopes of $\Delta_n \times \Delta_m$

Theorem (Black, Lütjeharms, S.'24)

 $\Pi(\Delta_n \times \Delta_m, c)$ is combinatorially isomorphic to the (m, n)-constrainahedron.

Constrainahedra [Bottman–Poliakova'22, Chapoton–Pilaud'22] capture the combinatorics of particles to parallel lines in \mathbb{R}^2 .

What is the connection between max-slope pivot rules and particles?

$$\mathsf{prism}^k(\Delta_n) = \Delta_n imes \underbrace{\Delta_1 imes \cdots imes \Delta_1}_k$$

Max-slope pivot rule polytopes of $\Delta_n \times \Delta_m$

Theorem (Black, Lütjeharms, S.'24)

 $\Pi(\Delta_n \times \Delta_m, c)$ is combinatorially isomorphic to the (m, n)-constrainahedron.

Constrainahedra [Bottman–Poliakova'22, Chapoton–Pilaud'22] capture the combinatorics of particles to parallel lines in \mathbb{R}^2 .

What is the connection between max-slope pivot rules and particles?

Theorem (Pilaud-Poullot'25)

 $\Pi(\Delta_{n_1}\times \cdots \times \Delta_{n_l},c) \text{ is comb. isomorphic to the } (n_1,\ldots,n_l)\text{-constrainahedron}.$

Piecewise-linear homeomorphism between normal fans of $\Pi(\Delta_n, c)$ and Loday's associahedron Asso_{n-1} . Extends to shuffle products of deformed permutahedra.

simplex
$$\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1})$$
 obj. function $c = (c_1 < c_2 < \dots < c_{n+1})$

simplex $\Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1})$ obj. function $c = (c_1 < c_2 < \dots < c_{n+1})$ Arborescences correspond to maps $A : [n] \to [n+1]$ with A(i) > i for all $i \to n!$ many arborescences

```
simplex \Delta_n = \operatorname{conv}(e_1, e_2, \dots, e_{n+1}) obj. function c = (c_1 < c_2 < \dots < c_{n+1})
```

Arborescences correspond to maps $A: [n] \to [n+1]$ with A(i) > i for all $i \to n!$ many arborescences

Max-slope arborescence for $\omega = (\omega_1, \dots, \omega_n)$

$$\mathcal{A}^{\omega}(i) = \operatorname{argmax} \left\{ \frac{\omega_j - \omega_i}{c_j - c_i} : j > i \right\}$$

simplex
$$\Delta_n = \mathsf{conv}(e_1, e_2, \dots, e_{n+1})$$
 obj. function $c = (c_1 < c_2 < \dots < c_{n+1})$

Arborescences correspond to maps $A:[n] \to [n+1]$ with A(i) > i for all $i \to n!$ many arborescences

Max-slope arborescence for $\omega = (\omega_1, \dots, \omega_n)$

$$\mathcal{A}^{\omega}(i) = \operatorname{argmax} \left\{ \frac{\omega_j - \omega_i}{c_j - c_i} : j > i \right\}$$

Non-crossing arborescences

simplex
$$\Delta_n = \mathsf{conv}(e_1, e_2, \dots, e_{n+1})$$
 obj. function $c = (c_1 < c_2 < \dots < c_{n+1})$

Arborescences correspond to maps $A:[n] \to [n+1]$ with A(i) > i for all $i \to n!$ many arborescences

Max-slope arborescence for $\omega = (\omega_1, \dots, \omega_n)$

$$\mathcal{A}^{\omega}(i) = \operatorname{argmax} \left\{ \frac{\omega_j - \omega_i}{c_j - c_i} : j > i \right\}$$

Non-crossing arborescences – Catalan recurrence!

Consider $n \ge 2$ labelled particles on a real line.

Consider $n \ge 2$ labelled particles on a real line.

At time t=0, they are at locations $-\omega_1 \leq -\omega_2 \leq \cdots \leq -\omega_n$.

For t>0 they travel at constant velocities $0>-c_1>-c_2>\cdots>-c_n$

If i < j collide, then i is absorbed by the faster j, which continues at speed $-c_j$.

Consider $n \ge 2$ labelled particles on a real line.

At time t=0, they are at locations $-\omega_1 \leq -\omega_2 \leq \cdots \leq -\omega_n$.

For t>0 they travel at constant velocities $0>-c_1>-c_2>\cdots>-c_n$

If i < j collide, then i is absorbed by the faster j, which continues at speed $-c_j$.

Consider $n \ge 2$ labelled particles on a real line.

At time t=0, they are at locations $-\omega_1 \leq -\omega_2 \leq \cdots \leq -\omega_n$.

For t>0 they travel at constant velocities $0>-c_1>-c_2>\cdots>-c_n$

If i < j collide, then i is absorbed by the faster j, which continues at speed $-c_j$.

Define $A:[n-1] \rightarrow [n]$ such that particle i is absorbed by particle A(i)

Consider $n \ge 2$ labelled particles on a real line.

At time t=0, they are at locations $-\omega_1 \leq -\omega_2 \leq \cdots \leq -\omega_n$.

For t>0 they travel at constant velocities $0>-c_1>-c_2>\cdots>-c_n$

If i < j collide, then i is absorbed by the faster j, which continues at speed $-c_j$.

Define $A: [n-1] \rightarrow [n]$ such that particle i is absorbed by particle A(i)

ightharpoonup A is precisely the max-slope arborescence for (c,ω) .

Consider $n \ge 2$ labelled particles on a real line.

At time t=0, they are at locations $-\omega_1 \leq -\omega_2 \leq \cdots \leq -\omega_n$.

For t>0 they travel at constant velocities $0>-c_1>-c_2>\cdots>-c_n$

If i < j collide, then i is absorbed by the faster j, which continues at speed $-c_j$.

Define $A: [n-1] \rightarrow [n]$ such that particle i is absorbed by particle A(i)

- ▶ A is precisely the max-slope arborescence for (c, ω) .
- the associated bracketing yields the isomorphism of face lattices

From linear programming to particle collisions

The Polyhedral Geometry of Pivot Rules and Monotone Paths (Black, De Loera, Lütjeharms, S.), SIAGA 2023, arXiv:2201.05134 From linear programming to colliding particles (A. Black, N. Lütjeharms, S.) arXiv:2405.08506

Applications of max-slope polytopes to (flag) matroids and flag varieties Flag Polymatroids (Black, S.), Adv. Math. 2024, arXiv:2207.12221