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Goal of the talk
Starting from a finite lattice pL,ďq construct a Tamari-like
lattice TrspLq.

§ Original motivation in equivariant algebraic topology
and category theory.

§ Classical combinatorical objects : binary trees, posets
and lattice theory.

§ Inspired by the τ -tilting theory and the lattices of
torsion pairs (Tamari lattices, cambrian lattices, weak
Bruhat orderings etc.).

§ A rather efficient algorithm to count the elements of
TrspLq.
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1 ‚

L “ 0

OO

TrspLq “ ‚

OO
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Motivation
Let G be a finite group. An N8-operad is an equivariant
version of an E8-operad such that algebras over these
operads are equipped with

§ An operation associative and commutative up to
coherent homotopies.

§ Homotopy coherent multiplicative norm maps which are
encoded by the fixed points of the spaces in the operad :
AH Ñ AK for some H ď K .

§ These norm maps seem to be very useful in the
applications (Solution of Kervaire invariant one problem
by Hill, Hopkins, and Ravenel 2009).

§ Classifying N8-operads helps to understand what norms
might appear in applications. Main objective of the
"homotopical combinatorics" of [Blumberg, Hill,
Ormsby, Osorno and Roitzheim Nottices AMS 2024]
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Main theorem [Blumberg, Hill 2015 ¨ ¨ ¨ Balchin Barnes
Roitzheim 2021]

Let G be a finite group. There is an equivalence of categories
between H0pN

G
8q and the poset of G -transfer systems

(viewed as a category).
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Main theorem [Blumberg, Hill 2015 ¨ ¨ ¨ Balchin Barnes
Roitzheim 2021]

Let G be a finite group. There is an equivalence of categories
between H0pN

G
8q and the poset of G -transfer systems

(viewed as a category).

A G -transfer system C is a poset on SubpG q such that :

1. If H C K , then H Ď K .
2. If H C K and g P G , then gHg´1 C gKg´1. Stability by

conjugacy.
3. If H, L Ď K , we have

H X L //

��

L

��
H // K .

If H C K , then H X LC K . Stability by pullback.
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Main theorem [Blumberg, Hill 2015 ¨ ¨ ¨ Balchin Barnes
Roitzheim 2021]

Let G be a finite group. There is an equivalence of categories
between H0pN

G
8q and the poset of G -transfer systems

(viewed as a category).

Let pL,ďq be a finite lattice. A transfer system C on L is a
poset on L such that :
1. If x C y , then x ď y .
2. If x , y ď z , we have

x ^ y //

��

y

��
x // z .

If x C z , then x ^ y C y . Stability by pullback.
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Let pL,ďq be a finite lattice. A transfer system C on L is a
poset on L such that :
1. If x C y , then x ď y .
2. If x , y ď z , we have

x ^ y //

��

y

��
x // z .

If x C z , then x ^ y C y . Stability by pullback.
We denote by TrspLq the set of all transfer systems on the
lattice L. This is a subposet of the “poset of finite posets".
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Total orders
Let G “ Cpn´1 . Then SubpG q – 0 ă 1 ă ¨ ¨ ¨ ă n is a total
order.

A transfer system is a subposet such that @i , j ď k we
have :

minpi , jq //

��

j

��
i // k

§ If j ď i , then minpi , jq “ j : no condition.
§ If i ă j we have i C k implies i C j .

i 8877 j k

§ The condition for Cop is :

i j
ww

k
yy

§ This is an interval-poset of Châtel and Pons.
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Theorem (Roitzheim Barnes Balchin 2022, Luo R- 2024)

The lattice of transfer systems on a total order with n
elements is isomorphic to the Tamari lattice on the binary
trees with n inner vertices.

Proof.
If T is a binary tree, view it as a binary search tree, keep the
decreasing relations of its poset. The opposite is a transfer
system.
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2 1 66 2 883vv
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Theorem
Let Tamn be the Tamari lattice on the binary trees with n
inner vertices.
1. Tamn is a semidistributive lattice (Urquhart 1978).
2. Tamn is a trim lattice (Thomas 2005).
3. Tamn is a congruence uniform lattice (Urquhart 1978).
4. The congruence lattice of Tamn is isomorphic to the

lattice of Dyck paths (Geyer 1994).
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Theorem (Yongle Luo, R- 2024)

Let pL,ďq be a finite lattice. Then TrspLq is
1. a semidistributive lattice ;
2. a trim lattice ;
3. a congruence uniform lattice ;
4. Explicit description of the congruence lattice of TrspLq.
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Definition
A lattice pL,ďq is distributive if for all x , y , z P L, we have

x^py_zq “ px^yq_px^zq and x_py^zq “ px_yq^px_zq
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Definition
A lattice pL,ďq is semidistributive if for all x , y , z P L, we
have

x^py_zq “ px^yq_px^zq and x_py^zq “ px_yq^px_zq

whenever px ^ yq “ px ^ zq and px _ yq “ px _ zq.
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Definition
A lattice pL,ďq is semidistributive if for all x , y , z P L, we
have

x^py_zq “ px^yq_px^zq and x_py^zq “ px_yq^px_zq

whenever px ^ yq “ px ^ zq and px _ yq “ px _ zq.

Theorem (Luo R- 2024)

Let pL,ďq be a finite lattice. Then TrspLq is a
semidistributive lattice.
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Definition
A lattice pL,ďq is semidistributive if for all x , y , z P L, we
have

x^py_zq “ px^yq_px^zq and x_py^zq “ px_yq^px_zq

whenever px ^ yq “ px ^ zq and px _ yq “ px _ zq.

Theorem (Luo R- 2024)

Let pL,ďq be a finite lattice. Then TrspLq is a
semidistributive lattice.

Proof.
Let R1 and R2 be two transfer systems. Then
R1 ^ R2 “ R1 X R2 and R1 _ R2 “ pR1 Y R2q

tc .
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E. Barnard’s work on semidistributive lattices
Let pL,ďq be a finite semidistributive lattice.

§ Each element of L has a canonical join representation.

§ There is an injective map LÑ P
`

JirrpLq
˘

.
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1
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3
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0

^^ @@
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E. Barnard’s work on semidistributive lattices
Let pL,ďq be a finite semidistributive lattice.

§ Each element of L has a canonical join representation.
§ There is an injective map LÑ P

`

JirrpLq
˘

.

§ A subset S of JirrpLq is a canonical join representation if
and only if i ď κpjq for all i ‰ j P S [Reading Speyer
Thomas 2021]

§ The set ΓpLq of all canonical join representations is a
simplicial complex.

§ The complex ΓpLq is flag : it is the clique complex of its
1-skeleton G pLq.

§ There is a bijection between L and the cliques of G pLq.
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and only if i ď κpjq for all i ‰ j P S [Reading Speyer
Thomas 2021]

§ The set ΓpLq of all canonical join representations is a
simplicial complex.

§ The complex ΓpLq is flag : it is the clique complex of its
1-skeleton G pLq.

§ There is a bijection between L and the cliques of G pLq.
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For transfer systems

Proposition (Yongle Luo, R- 2024)

Let pL,ďq be a finite lattice. Then there is a bijection
between the join irreducibles of TrspLq and
Rel˚pLq “ tpa, bq P L2 | a ă bu.
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For transfer systems
The elevating graph of pL,ďq is :

§ Vertices = Rel˚pLq.
§ Edges pa, bq ´ pc , dq if and only if pa, bq lifts on the left
pc , dq : if a ď c and b ď d , then b ď c .
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For transfer systems

Theorem (Luo, R- 2024)

There is an explicit bijection between cliques of the elevating
graph of pL,ďq and TrspLq.

Rather efficient algorithm to compute the number of transfer
systems !

§ The number of transfer systems on P
`

t1, 2, 3, 4u
˘

is
5389480.

§ The algorithm is not good enough for n “ 5.
§ The boolean lattice Ppt1, ¨ ¨ ¨ , nuq is the lattice of

subgroups of a squarefree elementary abelian group.
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A lower bound for the number of transfer systems

Obvious remark
If there is a clique of size r in G pLq, then there are at least 2r

transfer systems.



Lattices of
transfer systems

Yongle Luo and
Baptiste
Rognerud

An example

Homotopical
combinatorics

Total orders

Main results

Application of
semidistributivity

Transfer systems
on the boolean
lattices

A lower bound for the number of transfer systems

Obvious remark
If there is a clique of size r in G pLq, then there are at least 2r

transfer systems.

Lemma
Let Bn “ Pprnsq. Then there is a clique of size an “

§
ř

n´1
2

j“0

`

n
j

˘`

n´j
n´2j

˘

if n is odd,

§
ř

n
2
j“1

`

n
j

˘`

n´j
n`1´2j

˘

If n is even.
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Lemma
Let Bn “ Pprnsq. Then there is a clique of size an “

§
ř

n´1
2

j“0

`

n
j

˘`

n´j
n´2j

˘

if n is odd,

§
ř

n
2
j“1

`

n
j

˘`

n´j
n`1´2j

˘

If n is even.

Proof.
For 1 ď k ď 2n ´ 1. Rk : X Ck Y if and only if X “ Y or
X Ă Y and and |X | ` |Y | ď k .

1
2 1 2

3 3 7 3 3
4 6 16 13 16 6 4

5 10 30 35 51 35 30 10 5
6 15 50 75 126 121 126 75 50 15 6

7 21 77 140 266 322 393 322 266 140 77 21 7
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Arigatô gozaimasu
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