THE POSITIVE ORTHOGONAL GRASSMANNIAN JOINT WORK WITH YASSINE EL MAAZOUZ

Yelena Mandelshtam

IAS / University of Michigan

FPSAC 2025, July 23

THE POSITIVE GRASSMANNIAN $Gr_{>0}(k, n)$

- ▶ $Gr_{\mathbb{R}}(k, n)$ parameterizes *k*-dimensional subspaces in \mathbb{R}^n
- ▶ $Gr(k, n) = Mat_{k \times n} / left multiplication by <math>GL_k$.
- ▶ Embed into $\mathbb{P}^{\binom{n}{k}-1}$ via $k \times k$ minors, called the Plücker coordinates and denoted p_l , for $l \in \binom{[n]}{k}$.

•
$$\begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{bmatrix} \rightsquigarrow [1:c:-a:d:-b:ad-bc] \in \mathbb{P}^5$$

- ► The Grassmannian is a projective variety cut out by the Plücker relations
 - $p_{12}p_{34} p_{13}p_{24} + p_{14}p_{23}$
- ▶ The positive Grassmannian $Gr_{>0}(k, n)$ is the subset of Gr(k, n) where all p_l have the same sign.
 - Admits a stratification by positroid cells that can be indexed by combinatorial objects like Grassmann necklaces, decorated permutations, plabic graphs and Le diagrams [Postnikov].

what about type D?

FPAC 2025, Sapporo, Japan.

THE ORTHOGONAL GRASSMANNIAN

▶ Let ω be the nondegenerate bilinear form on \mathbb{C}^n

$$\omega(x,y) = x_1y_1 - x_2y_2 + \cdots + (-1)^{n-1}x_ny_n.$$

- ▶ A subspace $V \subset \mathbb{C}^n$ is isotropic if $\omega(v, w) = 0$ for all $v, w \in V$.
- ▶ The orthogonal Grassmannian

$$\operatorname{OGr}(k, n) = \{ V \in \operatorname{Gr}(k, n) \mid \omega |_{V \times V} \equiv 0 \}$$

parametrizes all such k-dimensional isotropic subspaces.

- In coordinates, one imposes additional quadratic relations among the Plücker coordinates p_l to enforce $\omega(v, w) = 0$.
 - For example, OGr(1, n) is cut out by one relation, $p_1^2 p_2^2 + p_3^2 + \dots + (-1)^{n-1}p_n^2 = 0$
- As with Gr(k, n), it is also interesting to consider the positive part of OGr(k, n), which we denote by $OGr_+(k, n)$

The Case n = 2k: Physics and Mathematical Foundations

- ▶ The set $OGr_+(k, 2k)$ was first studied by physicists. In 3D Chern–Simons–matter ABJM theory, tree-level amplitudes find a positive geometry description in $OGr_+(k, 2k)$ [Huang-Wen, 2013]
- ▶ Huang-Wen and Huang-Wen-Xie stated many observations about the combinatorics of $OGr_+(k, 2k)$
- ▶ Galashin-Pylyavskyy studied $OGr_+(k, 2k)$ from a mathematical point of view and connected it to the Ising model in 2018
 - OGr(k, 2k) defined by Plücker relations and $p_I = \pm p_{[2k] \setminus I}$
 - Developed a cell decomposition of $OGr_+(k, 2k)$ indexed by fixed-point-free involutions on [2k]
 - Detailed combinatorial description of the stratification
 - Provided parameterizations for cells (cell structure induced from the positroid cell stratification of $Gr_{\geq 0}(k, n)$).

The Case n = 2k: Physics and Mathematical Foundations

- ▶ The set $OGr_+(k, 2k)$ was first studied by physicists. In 3D Chern–Simons–matter ABJM theory, tree-level amplitudes find a positive geometry description in $OGr_+(k, 2k)$ [Huang-Wen, 2013]
- \blacktriangleright Huang-Wen and Huang-Wen-Xie stated many observations about the combinatorics of $\mathrm{OGr}_+(k,2k)$
- ▶ Galashin-Pylyavskyy studied $OGr_+(k, 2k)$ from a mathematical point of view and connected it to the Ising model in 2018
 - OGr(k, 2k) defined by Plücker relations and $p_I = \pm p_{[2k] \setminus I}$
 - Developed a cell decomposition of $OGr_+(k, 2k)$ indexed by fixed-point-free involutions on [2k]
 - Detailed combinatorial description of the stratification
 - Provided parameterizations for cells (cell structure induced from the positroid cell stratification of $Gr_{>0}(k, n)$).

Our goal: depart from n = 2k and find interesting structure for other values of n.

OUR MAIN RESULTS

- 1. **Geometry and commutative algebra of** OGr(k, n): equations cutting out the ideal, Gröbner basis, dimension, degree, primality
- 2. **Quadric case** (k = 1): OGr₊(1, n) is a positive geometry; full boundary description
- 3. The case (n = 2k + 1):

$$OGr_{+}(k, 2k + 1) \cong OGr_{+}(k + 1, 2k + 2)$$

inherits the combinatorics of matchings on [2k + 2]

4. **General failure**: For n > 2k + 1, positroid cells of $Gr_+(k, n)$ do not induce CW decomposition on $OGr_+(k, n)$

EQUATIONS CUTTING OUT $OGr^{\omega}(k, n)$

► We work in the Plücker embedding

$$\mathrm{OGr}^{\omega}(k,n) \subset \mathbb{P}^{\binom{n}{k}-1}$$
 with homogeneous coordinates. $(p_l)_{|l|=k}$.

▶ The orthogonal relations are the $\frac{1}{2}\binom{n}{k-1}\left(\binom{n}{k-1}+1\right)$ equations of the form

$$\sum_{\ell=1}^{n} (-1)^{(\ell-1)} \varepsilon(I\ell) \, \varepsilon(J\ell) \, \rho_{I\ell} \, \rho_{J\ell} \, = \, 0, \quad I, J \in \binom{[n]}{k-1},$$

where $\varepsilon(I\ell)$ is the sign of the ordering of $I \cup \{\ell\}$.

COMMUTATIVE ALGEBRA AND GEOMETRY OF OGr(k, n)

- ► Gröbner basis: comes from "straightening-law" quadrics, where each non-standard Plücker monomial is rewritten as an alternating sum over permutations of corresponding skew Young tableau entries
- ▶ Dimension:

$$\dim \mathrm{OGr}(k,n) = \dim \mathrm{Gr}(k,n) - \frac{k(k+1)}{2} = k(n-k) - \frac{k(k+1)}{2} = \frac{k(2n-3k-1)}{2}.$$

▶ Degree:

where $m := \lfloor n/2 \rfloor$ and $D := k(n-k) - {k+1 \choose 2}$

- Each degree ℓ piece of the homogeneous coordinate ring of $\mathrm{OGr}(k,n)$ is an irreducible representation of $\mathrm{SO}(n)$ corresponding to a specific highest weight vector [Borel-Weil-Bott]
- Weyl dimension formula allows us to compute the dimensions of these representations and then the Hilbert polynomial of the coordinate ring.

$$D! \cdot \left(\prod_{\substack{1 \le i \le k \\ k < j \le m}} \frac{1}{(2m-i-j)(j-i)} \right) \left(\prod_{1 \le i < j \le k} \frac{2}{2m-i-j} \right), \quad \text{if } n = 2m,$$

$$D! \cdot \left(\prod_{1 \le i \le k} \frac{2}{2m-2i+1} \right) \left(\prod_{\substack{1 \le i \le k \\ k < j \le m}} \frac{1}{(2m-i-j)(j-i)} \right) \left(\prod_{1 \le i < j \le k} \frac{2}{2m-i-j+1} \right), \quad \text{if } n = 2m+1.$$

THE QUADRIC $OGr_+(1, n)$

▶ $OGr(1, n) \subset \mathbb{P}^{n-1}$: single quadric hypersurface

$$\sum_{i\in [n]\cap (2\mathbb{Z}+1)} x_i^2 = \sum_{j\in [n]\cap 2\mathbb{Z}} x_j^2 \quad \text{and} \quad x\in \mathbb{P}_+^{n-1}.$$

Boundaries of cells are obtained by driving some of the coordinates to 0. Each boundary is a lower dimensional $OGr_+(1, n')$

- lacktriangle Combinatorially isomorphic to the product of simplices $\Delta_{p-1} imes \Delta_{q-1}$
- We describe the cell poset structure, give parameterizations, and prove that $OGr_+(1, n)$ is a positive geometry

THE QUADRIC $OGr_+(1, n)$

▶ $OGr(1, n) \subset \mathbb{P}^{n-1}$: single quadric hypersurface

$$\sum_{i\in [n]\cap (2\mathbb{Z}+1)} x_i^2 = \sum_{j\in [n]\cap 2\mathbb{Z}} x_j^2 \quad \text{and} \quad x\in \mathbb{P}_+^{n-1}.$$

Boundaries of cells are obtained by driving some of the coordinates to 0. Each boundary is a lower dimensional $OGr_+(1, n')$

- lacktriangle Combinatorially isomorphic to the product of simplices $\Delta_{p-1} imes \Delta_{q-1}$
- ▶ We describe the cell poset structure, give parameterizations, and prove that $OGr_+(1, n)$ is a positive geometry

Example: n = 4 The points $(x_1 : x_2 : x_3 : x_4)$ in the positive orthogonal Grassmannian $OGr_+(1, 4)$ in \mathbb{P}^3 are those that satisfy:

$$x_1^2 - x_2^2 + x_3^2 - x_4^2 = 0$$
 and $x_1, x_2, x_3, x_4 \ge 0$.

Then $\mathrm{OGr}_+(1,4)$ is a curvy quadrilateral inside the 3-simplex in \mathbb{P}^3_+

Poset structure of $OGr_+(1, n)$

Figure. The Hasse diagram of the poset structure on $\mathfrak{S}_{1,5}$.

ISOMORPHISM FOR n = 2k + 1

▶ Map sending a k-plane in $OGr_+(k, 2k + 1)$ to (k + 1)-plane in $OGr_+(k + 1, 2k + 2)$

$$\begin{array}{cccc} \Phi_k \colon & \mathrm{OGr}(k+1,2k+2) & \to & \mathrm{OGr}(k,2k+1) \\ & & (q_J)_{J \in \binom{[2k+2]}{k+1}} & \mapsto & (p_I = q_{I \cup \{2k+2\}})_{I \in \binom{[2k+1]}{k}} \end{array}$$

ightharpoonup Cells correspond to perfect matchings on [2k+2]

The equations that cut out OGr(k, 2k + 1) in Gr(k, 2k + 1) are all quadrics. So it is remarkable that we can still describe the face structure of $OGr_+(k, 2k + 1)$ from our understanding of the face structure of $OGr_+(k + 1, 2k + 2)$ which is obtained by taking a linear slice of $Gr_+(k + 1, 2k + 2)$!

What goes wrong for k > 1, n > 2k + 1?

Key example: the following orthopositroid cells σ and τ in $OGr_+(2,6)$:

The two-dimensional cells $C_{\sigma} = \Pi_{\sigma} \cap \mathrm{OGr}_{+}(2,6)$ and $C_{\tau} = \Pi_{\tau} \cap \mathrm{OGr}_{+}(2,6)$ are described by

$$M_{\sigma} = \begin{bmatrix} 1 & 1 & 0 & 0 & -x & -x \\ 0 & 0 & 1 & 1 & y & y \end{bmatrix}, \qquad \qquad \text{where } x, y > 0,$$
 $M_{\tau} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & a & b & c \end{bmatrix}, \qquad \qquad \text{where } \begin{cases} a, b, c > 0 \\ 1 + b^2 = a^2 + c^2 \end{cases}.$

The closure of the cell C_{σ} has the combinatorial type of a triangle. Its edges are given by:

$$e_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & b & b \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 1 & 1 & b & b & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & b & b \end{bmatrix} \quad b \geq 0.$$

The closure of the cell C_{τ} is isomorphic to $\mathrm{OGr}_{+}(1,4)$ so it is a square.

$$M_{\sigma} = \begin{bmatrix} 1 & 1 & 0 & 0 & -x & -x \\ 0 & 0 & 1 & 1 & y & y \end{bmatrix}, \qquad \qquad \text{where } x, y > 0,$$
 $M_{\tau} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & a & b & c \end{bmatrix}, \qquad \qquad \text{where } \begin{cases} a, b, c > 0 \\ 1 + b^2 = a^2 + c^2 \end{cases}.$

The closure of C_{σ} is a triangle with edges:

$$e_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & -b & -b \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 1 & 1 & b & b & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & b & b \end{bmatrix} \quad b \geq 0.$$

The edge e_3 is one of the diagonals of the "square" C_{τ} .

This problem arises as soon as n > 2k + 1. We can extend any 2×6 matrix in $OGr_+(2,6)$ by a $(k-2) \times (n-6)$ matrix to make an element of $OGr_+(k,n)$:

This problem arises as soon as n > 2k + 1. We can extend any 2×6 matrix in $OGr_+(2,6)$ by a $(k-2) \times (n-6)$ matrix to make an element of $OGr_+(k,n)$:

We need new combinatorics to give a CW cell decomposition of $OGr_+(k, n)$ when n > 2k + 1 and k > 1.

OPEN QUESTIONS

- ightharpoonup General boundary classification for arbitrary (k, n)
- Alternative (more refined) cell decompositions?
- Computation of canonical forms: toward ABJM amplitude formulas
- Connections to cluster algebras in the orthogonal setting

