Splicing skew shaped Positroid varieties

Soyeon Kim

UC Davis

joint with Eugene Gorsky, Tonie Scroggin, José Simental arXiv: 2503.04923, 2505.08211

FPSAC 2025

July 23, 2025

Soyeon Kim UC Davis July 23, 2025 1/3

Summary

 \bullet skew shape $\lambda/\mu \leadsto$ skew shaped positroid variety $~S_{\lambda/\mu}^{\circ}$

Given λ/μ , we have a operation of cutting this shape along a column. We are going to make sense of this geometrically.

Theorem (Gorsky-K. -Scroggin-Simental '25)

For certain open set $U\subseteq S_{\lambda/\mu}^{\circ}$, we have a splicing map for skew shaped positroid variety $S_{\lambda/\mu}^{\circ}$:

$$U \cong S_{\lambda_L/\mu_L}^{\circ} \times S_{\lambda_R/\mu_R}^{\circ}.$$

Skew shaped positroid variety

Skew shaped positroid variety

Soyeon Kim UC Davis July 23, 2025 3/30

Skew diagram

 λ, μ are partitions with $\mu_i \leq \lambda_i$ for all $1 \leq i \leq k$.

Definition

The **skew diagram** λ/μ is the set-theoretic difference of the Young diagrams of λ and μ .

Example: $\lambda=(6,6,5)$ and $\mu=(2,1)$

Soyeon Kim UC Davis July 23, 2025 4/

Skew diagram

 λ, μ are partitions with $\mu_i \leq \lambda_i$ for all $1 \leq i \leq k$.

Definition

The **skew diagram** λ/μ is the set-theoretic difference of the Young diagrams of λ and μ .

Example: $\lambda=(6,6,5)$ and $\mu=(2,1)$

Skew diagram

 λ, μ are partitions with $\mu_i \leq \lambda_i$ for all $1 \leq i \leq k$.

Definition

The **skew diagram** λ/μ is the set-theoretic difference of the Young diagrams of λ and μ .

Example: $\lambda=(6,6,5)$ and $\mu=(2,1)$

Fix integers 0 < k < n.

- $\bullet \ \operatorname{Grassmannian} \ Gr(k,n) := \{V \subseteq \mathbb{C}^n : \dim(V) = k\}.$
- $V \in Gr(k,n)$ is represented with a full rank $k \times n$ matrix A whose rows span V.
- Plücker coordinates $\Delta_I(A) := \max$ minor of A located in column set $I \subseteq \{1, 2, \dots, n\}$ with |I| = k.

Example

Take
$$A=egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix}$$
 , then row $\operatorname{space}(A)=\operatorname{span}(e_2,e_4)\in Gr(2,4).$

$$\Delta_{1,2}(A) = \Delta_{1,3}(A) = \Delta_{1,4}(A) = \Delta_{2,3}(A) = \Delta_{3,4}(A) = 0, \quad \Delta_{2,4}(A) = -1.$$

 Soyeon Kim
 UC Davis
 July 23, 2025
 7 / 3

Fix integers 0 < k < n.

- $\bullet \ \operatorname{Grassmannian} \ Gr(k,n) := \{V \subseteq \mathbb{C}^n : \dim(V) = k\}.$
- $\bullet \ V \in Gr(k,n)$ is represented with a full rank $k \times n$ matrix A whose rows span V.
- Plücker coordinates $\Delta_I(A) := \max$ minor of A located in column set $I \subseteq \{1, 2, \dots, n\}$ with |I| = k.

Example

Take
$$A=egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix}$$
 , then row $\operatorname{space}(A)=\operatorname{span}(e_2,e_4)\in Gr(2,4).$

$$\Delta_{1,2}(A) = \Delta_{1,3}(A) = \Delta_{1,4}(A) = \Delta_{2,3}(A) = \Delta_{3,4}(A) = 0, \quad \Delta_{2,4}(A) = -1.$$

Fix integers 0 < k < n.

- $\bullet \ \operatorname{Grassmannian} \ Gr(k,n) := \{V \subseteq \mathbb{C}^n : \dim(V) = k\}.$
- $\bullet \ V \in Gr(k,n)$ is represented with a full rank $k \times n$ matrix A whose rows span V.
- Plücker coordinates $\Delta_I(A):=$ maximal minor of A located in column set $I\subseteq\{1,2,\ldots,n\}$ with |I|=k.

Example

Take
$$A=egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix}$$
 , then row $\operatorname{space}(A)=\operatorname{span}(e_2,e_4)\in Gr(2,4).$

$$\Delta_{1,2}(A) = \Delta_{1,3}(A) = \Delta_{1,4}(A) = \Delta_{2,3}(A) = \Delta_{3,4}(A) = 0, \quad \Delta_{2,4}(A) = -1.$$

Fix integers 0 < k < n.

- Grassmannian $Gr(k,n) := \{V \subseteq \mathbb{C}^n : \dim(V) = k\}.$
- $\bullet \ V \in Gr(k,n)$ is represented with a full rank $k \times n$ matrix A whose rows span V.
- Plücker coordinates $\Delta_I(A) := \max$ minor of A located in column set $I \subseteq \{1, 2, \dots, n\}$ with |I| = k.

Example

Take
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
, then row space $(A) = \text{span}(e_2, e_4) \in Gr(2, 4)$.

$$\Delta_{1,2}(A) = \Delta_{1,3}(A) = \Delta_{1,4}(A) = \Delta_{2,3}(A) = \Delta_{3,4}(A) = 0, \quad \Delta_{2,4}(A) = -1.$$

Soyeon Kim UC Davis July 23, 2025 7/3

Skew shaped positroid variety

Skew shaped positroid variety is one example of positroid varieties, introduced by Knutson–Lam–Speyer in 2013.

Definition

Skew shaped positroid variety $S_{\lambda/\mu}^{\circ} := C_{w_{\mu}} \cap C^{w_{\lambda}}$.

Example
$$\lambda=(6,6,5)$$
 and $\mu=(2,1)$

$$C_{w_{\mu}} = \text{row span}(\begin{pmatrix} * & * & * & * & \textcircled{1} & 0 & 0 & 0 & 0 \\ * & * & * & * & 0 & * & \textcircled{1} & 0 & 0 \\ * & * & * & * & 0 & * & 0 & * & \textcircled{1} \end{pmatrix})$$

$$C^{w_{\lambda}} = \operatorname{row} \operatorname{span}(\begin{pmatrix} \boxed{1} & 0 & * & 0 & * & * & * & * & * \\ 0 & \boxed{1} & * & 0 & * & * & * & * & * \\ 0 & 0 & 0 & \boxed{1} & * & * & * & * & * \end{pmatrix})$$

 Copyeon Kim
 UC Davis
 July 23, 2025
 8/30

Skew shaped positroid variety

Skew shaped positroid variety is one example of positroid varieties, introduced by Knutson–Lam–Speyer in 2013.

Definition

Skew shaped positroid variety $S_{\lambda/\mu}^{\circ} := C_{w_{\mu}} \cap C^{w_{\lambda}}$.

Example $\lambda = (6,6,5)$ and $\mu = (2,1)$

$$C_{w_{\mu}} = \mathsf{row} \; \mathsf{span}(\begin{pmatrix} * & * & * & * & \textcircled{1} & 0 & 0 & 0 & 0 \\ * & * & * & * & 0 & * & \textcircled{1} & 0 & 0 \\ * & * & * & * & 0 & * & 0 & * & \textcircled{1} \end{pmatrix})$$

$$C^{w_{\lambda}} = \operatorname{row} \operatorname{span}(\begin{pmatrix} \textcircled{1} & 0 & * & 0 & * & * & * & * & * \\ 0 & \textcircled{1} & * & 0 & * & * & * & * \\ 0 & 0 & 0 & \textcircled{1} & * & * & * & * \end{pmatrix})$$

◆ロト ◆個ト ◆重ト ◆重ト ■ りゅ○

Main theorem preview

Theorem (Gorsky-K.-Scroggin-Simental, 2025)

For certain open set $U\subseteq S_{\lambda/\mu}^{\circ}$, we have a splicing map for skew shaped positroid variety $S_{\lambda/\mu}^{\circ}$:

$$U \cong S_{\lambda_L/\mu_L}^{\circ} \times S_{\lambda_R/\mu_R}^{\circ}.$$

Soyeon Kim UC Davis July 23, 2025 9 / 3

For $\square \in \lambda/\mu$, the μ_{\square} is the **smallest** shape containing μ and \square .

Example: $\lambda = (6, 6, 5)$ and $\mu = (2, 1)$

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

For $\square \in \lambda/\mu$, the μ_{\square} is the **smallest** shape containing μ and \square .

Step 1: Pick one $\square \in \lambda/\mu$.

 4 □ → 4 ⓓ → 4 ⓓ → 4 ⓓ → 월 → 9 ○ ○

 July 23, 2025
 11/30

Soyeon Kim UC Davis

For $\square \in \lambda/\mu$, the μ_{\square} is the **smallest** shape containing μ and \square .

Step 2: Find μ_{\square} .

◆ロト ◆母 ト ◆ 喜 ト ◆ 喜 ・ 夕 Q (~)

For $\square \in \lambda/\mu$, the μ_\square is the **smallest** shape containing μ and \square . $I'(\square):=$ the k-element subset consists of labels in the vertical steps of boundary of μ_\square .

Step 3: Label the boundary in red.

◆ロト ◆部ト ◆差ト ◆差ト を めんぐ

Soyeon Kim UC Davis July 23, 2025 13 / 3

For $\square \in \lambda/\mu$, the μ_\square is the **smallest** shape containing μ and \square . $I'(\square):=$ the k-element subset consists of labels in the vertical steps of boundary of μ_\square .

Step 4: Label \square with vertical step labelings.

◆ロト ◆部ト ◆意ト ◆意ト ・意 ・ 夕 Q (?)

5, 7, 8	5, 6, 7	4, 5, 6	3, 4, 5	2, 3, 4	
	5, 6, 9	4, 5, 9	3, 4, 9	2, 3, 9	1, 2, 9
		4, 7, 9	3, 7, 9	2, 7, 9	1, 7, 9

Soyeon Kim UC Davis July 23, 2025 15 / 30

Main theorem: Part 1

- Choose a column of λ .
- Decompose λ/μ along the ath column, and get two skew diagrams λ_L/μ_L and λ_R/μ_R .

Note that we can pick any columns of λ/μ .

Main theorem: Part 1

Choose a column of λ .

- Decompose λ/μ along the ath column, and get two skew shapes λ_L/μ_L and λ_R/μ_R .
- Define

$$U = \{V \in S_{\lambda/\mu}^{\circ} : \Delta_{I'(\square)}(V) \neq 0 \quad \text{for all \square in the ath column of λ/μ}\}.$$

Theorem (Gorsky-K. -Scroggin-Simental '25)

We have an explicit isomorphism

$$U \cong S_{\lambda_L/\mu_L}^{\circ} \times S_{\lambda_R/\mu_R}^{\circ}$$

Soyeon Kim UC Davis July 23, 2025 17 /

Example: Finding U

5, 7, 8	5, 6, 7	4, 5, 6	3, 4, 5	2, 3, 4	
	5, 6, 9	4, 5, 9	3, 4, 9	2, 3, 9	1, 2, 9
		4, 7, 9	3, 7, 9	2,7,9	1, 7, 9

$$U \cong \{V \in S^{\circ}_{(6,6,5)/(2,1)} : \Delta_{3,7,9}(V) \neq 0, \Delta_{3,4,9}(V) \neq 0, \Delta_{3,4,5}(V) \neq 0\}$$

←ロト ←団 ト ← 巨 ト → 巨 ・ り へ ○

Cluster algebra

- Start with a quiver with some cluster variables labeling its vertices. This is called a seed.
- A mutation at a vertex produces a new quiver and a new cluster variable.
- Mutate in all possible directions. Get lots of cluster variables.
- Cluster algebra = $\mathbb{C}[\text{cluster variables}].$

Building up on the work of Leclerc '14 and Serhiyenko–Sherman-Bennett–Williams '19, Galashin and Lam proved the following:

Theorem (Galashin-Lam '23'

- Start with a quiver with some cluster variables labeling its vertices. This is called a seed.
- A mutation at a vertex produces a new quiver and a new cluster variable.
- Mutate in all possible directions. Get lots of cluster variables.
- Cluster algebra = $\mathbb{C}[\text{cluster variables}].$

Building up on the work of Leclerc '14 and Serhiyenko–Sherman-Bennett–Williams '19, Galashin and Lam proved the following:

Theorem (Galashin-Lam '23)

- Start with a quiver with some cluster variables labeling its vertices. This is called a seed.
- A mutation at a vertex produces a new quiver and a new cluster variable.
- Mutate in all possible directions. Get lots of cluster variables.
- Cluster algebra = $\mathbb{C}[\text{cluster variables}]$.

Building up on the work of Leclerc '14 and Serhiyenko–Sherman-Bennett–Williams '19, Galashin and Lam proved the following:

Theorem (Galashin-Lam '23'

- Start with a quiver with some cluster variables labeling its vertices. This is called a seed.
- A mutation at a vertex produces a new quiver and a new cluster variable.
- Mutate in all possible directions. Get lots of cluster variables.
- Cluster algebra = $\mathbb{C}[\text{cluster variables}].$

Building up on the work of Leclerc '14 and Serhiyenko–Sherman-Bennett–Williams '19, Galashin and Lam proved the following:

Theorem (Galashin-Lam '23)

- Start with a quiver with some cluster variables labeling its vertices. This is called a seed.
- A mutation at a vertex produces a new quiver and a new cluster variable.
- Mutate in all possible directions. Get lots of cluster variables.
- Cluster algebra = $\mathbb{C}[\text{cluster variables}].$

Building up on the work of Leclerc '14 and Serhiyenko–Sherman-Bennett–Williams '19, Galashin and Lam proved the following:

Theorem (Galashin-Lam '23)

- Start with a quiver with some cluster variables labeling its vertices. This is called a seed.
- A mutation at a vertex produces a new quiver and a new cluster variable.
- Mutate in all possible directions. Get lots of cluster variables.
- Cluster algebra = $\mathbb{C}[\text{cluster variables}].$

Building up on the work of Leclerc '14 and Serhiyenko–Sherman-Bennett–Williams '19, Galashin and Lam proved the following:

Theorem (Galashin-Lam '23)

Seed preview

Boxes correspond to vertices in a quiver and arrows are shown in the figure.

What are the *initial* cluster variable at each vertex?

Seed preview

Boxes correspond to vertices in a quiver and arrows are shown in the figure.

What are the *initial* cluster variable at each vertex?

Cluster structure for $S_{\lambda/\mu}^{\circ}$

Proposition (Gorsky–K. –Scroggin–Simental '25)

The skew diagram λ/μ provides a seed for $S_{\lambda/\mu}^{\circ}$, where initial cluster variables are Plücker coordinates $\Delta_{I'(\square)}$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Why quasi-cluster isomorphism?

Definition (Fraser '16)

The quasi-cluster isomorphism $f: X \to Y$ is a map that sends cluster variables to cluster variables, up to well-behaved multiplication of units in cluster algebra.

Concretely, we need to find a seed for X and a seed for Y with the same quiver where

The **quasi-cluster isomorphism** preserves essential geometrical data arising from a cluster structure, for example,

- $\{\text{cluster monomials}\}\subseteq \text{theta basis }[\text{Gross-Hacking-Keel-Kontsevich}],$
- totally positive part of a variety,
- image of a special torus called the *cluster tori*.

Soveon Kim UC Davis July 23, 2025 23 / 30

Main theorem: Part 2

The open subset U inherits a cluster structure from $S_{\lambda/\mu}^{\circ}.$

Theorem (Gorsky–K. –Scroggin–Simental '25)

Splicing isomorphism

$$U \cong S_{\lambda_L/\mu_L}^{\circ} \times S_{\lambda_R/\mu_R}^{\circ}$$

is a quasi-cluster isomorphism.

Example

Thank you!

FPSAC 2025 Soyeon

Further Direction

Braid group Br_n : like S_n , but $s_i^2 \neq e$. For example, $\beta = s_1 s_2 s_1 s_3 s_4 \in Br_4^+$.

Braid variety $X(\beta)$ vastly generalizes positroid varieties, double Bott–Samelson varieties, open Richardson varieties and etc.

 $\mathsf{Theorem}\; \mathsf{(Casals\mathsf{-Gorsky\mathsf{-Gorsky\mathsf{-Le\mathsf{-}Shen\mathsf{-}Simental, Galashin\mathsf{-Lam\mathsf{-}Sherman\mathsf{-}Bennett\mathsf{-}Speyer})}$

Braid varieties are cluster varieties.

Given β and some additional choices, we define the specific open subset $U \subset X(\beta)$ and two braids $\tilde{\beta}_1$ and $\tilde{\beta}_2$ and prove the following:

Theorem (Gorsky–K. –Scroggin–Simental '25)

We have an isomorphism

$$X(\tilde{\beta}_1) \times X(\tilde{\beta}_2) \cong U$$

Conjecture: This isomorphism is a quasi-cluster isomorphism.

< □ ▷ 〈□ ▷ 〈□ ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ ○ 필 ○ ♡Q (~)

Braid group Br_n : like S_n , but $s_i^2 \neq e$. For example, $\beta = s_1 s_2 s_1 s_3 s_4 \in Br_4^+$.

Braid variety $X(\beta)$ vastly **generalizes** positroid varieties, double Bott–Samelson varieties, open Richardson varieties and etc.

 $\mathsf{Theorem}\,\,ig(\mathsf{Casals}\mathsf{-Gorsky}\mathsf{-Gorsky}\mathsf{-Le}\mathsf{-Shen}\mathsf{-Simental},\,\,\mathsf{Galashin}\mathsf{-Lam}\mathsf{-Sherman}\mathsf{-Bennett}\mathsf{-Speyer}$

Braid varieties are cluster varieties

Given β and some additional choices, we define the specific open subset $U \subset X(\beta)$ and two braids $\tilde{\beta}_1$ and $\tilde{\beta}_2$ and prove the following:

Theorem (Gorsky–K. –Scroggin–Simental '25)

We have an isomorphism

$$X(\tilde{\beta}_1) \times X(\tilde{\beta}_2) \cong U.$$

Conjecture: This isomorphism is a quasi-cluster isomorphism.

4□ > 4Ē > 4Ē > 4Ē > 9

Braid group Br_n : like S_n , but $s_i^2 \neq e$. For example, $\beta = s_1 s_2 s_1 s_3 s_4 \in Br_4^+$.

Braid variety $X(\beta)$ vastly generalizes positroid varieties, double Bott–Samelson varieties, open Richardson varieties and etc.

Theorem (Casals–Gorsky–Gorsky–Le–Shen–Simental, Galashin–Lam–Sherman-Bennett–Speyer)

Braid varieties are cluster varieties.

Given β and some additional choices, we define the specific open subset $U \subset X(\beta)$ and two braids $\tilde{\beta}_1$ and $\tilde{\beta}_2$ and prove the following:

Theorem (Gorsky–K. –Scroggin–Simental '25)

We have an isomorphism

$$X(\tilde{\beta}_1) \times X(\tilde{\beta}_2) \cong U.$$

Conjecture: This isomorphism is a quasi-cluster isomorphism.

4□▶ 4團▶ 4불▶ 4불▶ 불 ∽9

Braid group Br_n : like S_n , but $s_i^2 \neq e$. For example, $\beta = s_1 s_2 s_1 s_3 s_4 \in Br_4^+$.

Braid variety $X(\beta)$ vastly generalizes positroid varieties, double Bott–Samelson varieties, open Richardson varieties and etc.

Theorem (Casals–Gorsky–Gorsky–Le–Shen–Simental, Galashin–Lam–Sherman-Bennett–Speyer)

Braid varieties are cluster varieties.

Given β and some additional choices, we define the specific open subset $U \subset X(\beta)$ and two braids $\tilde{\beta}_1$ and $\tilde{\beta}_2$ and prove the following:

Theorem (Gorsky–K. –Scroggin–Simental '25)

We have an isomorphism

$$X(\tilde{\beta}_1) \times X(\tilde{\beta}_2) \cong U.$$

Conjecture: This isomorphism is a **quasi-cluster isomorphism**.

Appendix: Splicing braid varieties

Appendix: Splicing braid varieties

Soyeon Kim UC Davis July 23, 2025 29 / 30

Splicing braid varieties continued

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

Splicing braid varieties continued

$$\mathcal{F}^{\text{std}} \xrightarrow{s_{i_1}} \mathcal{F}^1 \xrightarrow{s_{i_2}} \cdots \xrightarrow{s_{i_{r_1}}} \mathcal{F}^{r_1} \xrightarrow{s_{i_{r_1}+1}} \cdots \xrightarrow{s_{i_r}} \mathcal{F}^{\text{ant}}$$

$$\mathcal{F}^{\text{std}} \xrightarrow{s_{a_{\ell(w_0)}}} \widetilde{\mathcal{F}}^{\ell(w_0)-1} \leftarrow \cdots \leftarrow \mathcal{F}(w_0 w) \xleftarrow{s_{a_{\ell(w_0)}}} \cdots \xleftarrow{s_{a_1}} \mathcal{F}^{\text{ant}}$$

◆ロト ◆部ト ◆意ト ◆意ト · 意 · かへで

Soyeon Kim UC Davis July 23, 2025 30 / 30

Splicing braid varieties continued

◆ロト ◆部ト ◆意ト ◆意ト · 意 · かへで