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Outline

▶ Rook matroids:
1. Non-nesting rook polynomials.

2. Matroids from restricted rook placements.

3. Relation to: transversal matroids, lattice path matroids, positroids.

▶ Neggers-Stanley conjecture:
1. Posets and P-Eulerian polynomials.

2. Skew shapes to width two posets.
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Rook matroids
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Non-nesting rook placements
▶ Let NNλ/µ be the set of non-nesting rook placements on λ/µ; no

rook can lie South-East of another.
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Figure: Left: nesting rook placement, right: non-nesting rook placement.

▶ Motivation: A combinatorial model for the Narayana numbers of
type A, Narayana numbers of type B, the Fibonacci numbers.
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Non-nesting rook polynomials

▶ Let λ/µ is a skew shape and Mλ/µ(t) =
∑
k≥0

rk(λ/µ)tk where

rk(λ/µ) is the number of non-nesting rook placements of size k.
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▶ λ = (n, n − 1, . . . , 1) =⇒ Mλ(t) = Nn+1(t), Narayana polynomial.

▶ λ = (a, . . . , a)︸ ︷︷ ︸
b times

=⇒ Mλ(t) =
∑
k≥0

(
a
k

)(
b
k

)
tk .
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Non-nesting rook polynomials
Theorem (Heilmann–Lieb ’72, Nijenhuis ’76)
For any board B, the rook polynomial RB(t) is real-rooted.

▶ Tool: Stable polynomials = multivariate analog of real-rootedness.

Theorem (Alexandersson, J. ’24+)
For any skew shape λ/µ, the non-nesting rook polynomial Mλ/µ(t) is
ultra-log-concave. Moreover, there exists a skew shape α/β such that
Mα/β(t) is not real-rooted.

▶ f (t) =
n∑

k=0
aktk is ultra-log-concave if

(
ak(n
k
))2

≥ ak−1( n
k−1
) · ak+1( n

k+1
) for all 1 ≤ k ≤ n − 1.

▶ Tool: Lorentzian polynomials = multivariate analog of log-concavity.
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Non-nesting rook placements

▶ Skew shape λ/µ has r rows and c columns.

▶ Identify σ ∈ NNλ/µ by R(σ) ∪ C(σ) where

R(σ) = {i ∈ [r ] : σ has a rook in row i}
C(σ) = {j ∈ [r + 1, r + c] : σ has no rook in column j}
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(a) R(σ) ∪ C(σ) = {2, 4, 5, 9, 10}
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(b) R(σ) ∪ C(σ) = {1, 2, 3, 7, 10}
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Rook matroids
M = (E ,B) is a matroid with bases B if B is a non-empty collection of
subsets of E satisfying:
▶ For all B1, B2 ∈ B, if a ∈ B1 there exists b ∈ B2 \ B1 such that

(B1 \ a) ∪ b ∈ B.

Theorem (Alexandersson, J. ’24+)
If λ/µ has r rows and c columns, then Rλ/µ = ([r + c],B) is a matroid,
where

B = {R(σ) ∪ C(σ) : σ ∈ NNλ/µ}.
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Log-concavity of the non-nesting rook polynomial

Theorem (Alexandersson, J. ’24+)
For any skew shape λ/µ, the non-nesting rook polynomial Mλ/µ(t) is
ultra-log-concave with no internal zeros.

▶ Proof sketch:

Mλ/µ(t) =
∑

σ∈NNλ/µ

∏
i∈R(σ)

xi
∏

j∈C(σ)

yj |x=(t,t,...,t),y=(1,1,...1).

▶ RHS is the basis-generating polynomial PM(z) =
∑
B∈B

∏
i∈B

zi of the

rook matroid M on λ/µ.

▶ For every matroid M, PM(z) is Lorentzian (Brändén-Huh, ’20).

▶ Mλ/µ is ultra-log-concave with no internal zeros.
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Structure of rook matroids

Theorem (Alexandersson, J. 2024+)
Rook matroids are
▶ (Fundamental) transversal matroids,
▶ Positroids,
▶ Closed under duals and direct sums, but not under minors.

▶ Transversal: every rook placement has a non-nesting representative.

▶ Positroid: rook-theoretic interpretation of Grassmann necklaces.

▶ Closed under duals: Conjugate the skew shape.

▶ Not minor-closed: Fundamental transversal matroids rarely are.
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Matroids from skew shapes

▶ Given a skew shape λ/µ, consider a lattice path L contained in λ/µ.

▶ Identify L by its set of East steps.
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Lattice paths contained in λ/µ ←→ Non-nesting rook placements on λ/µ.
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Relation to lattice path matroids

Theorem (Alexandersson, J. ’24+)
Let λ/µ be a skew shape and Rλ/µ and Pλ/µ respectively be the rook
and lattice path matroid on λ/µ. Then:
▶ Rλ/µ

∼= Pλ/µ if and only if 332/1 is not a subshape of λ/µ.
▶ Nevertheless, we always have equality of Tutte polynomials:

T (Rλ/µ; x , y) = T (Pλ/µ; x , y).

Theorem (Bonin, de Mier ’25+)
The universal valuative invariant G is equal on Rλ/µ and Pλ/µ for every
skew shape λ/µ.

▶ Subshape: skew shape obtained from λ/µ by deleting rows/columns.

▶ The if direction follows because...
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Q6 and 332/1
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Figure: R332/1 and P332/1 are not isomorphic.
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Neggers–Stanley conjecture
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P-Eulerian polynomials
▶ If (P, ω) is a labeled poset on n elements, its Jordan–Hölder set is

given by

L(P, ω) = {σ ∈ Sn : i ≺ j =⇒ ω(i) appears before ω(j) in σ}.
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Figure: (P, ω) of width two, ω natural.

L(P, ω) = {412356, 124356, . . .}

The (P, ω)-Eulerian polynomial is

WP,ω(t) =
∑

σ∈L(P,ω)

tdes(σ).

e.g. on the left:

WP(t) = t3 + 6t2 + 6t + 1
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Neggers–Stanley conjecture

Conjecture (Neggers ’78, Stanley ’86)
Let (P, ω) be a labeled poset. Then WP,ω(t) is real-rooted.

▶ For P = n-step ladder, WP(t) =
n+1∑
k=1

1
n + 1

(
n + 1

k

)(
n + 1
k − 1

)
tk−1.

▶ For P = Disjoint union of chains of length a and b,

WP(t) =
∑
k≥0

(
a
k

)(
b
k

)
tk .

▶ False for non-naturally labeled width two poset (Brändén ’04).

▶ False for naturally labeled width two poset (Stembridge ’06).
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Brenti’s conjecture

Conjecture (Brenti ’89)
Let (P, ω) be a labeled poset. Then WP,ω(t) is log-concave with no
internal zeros.

▶ WP is symmetric and unimodal when P is naturally labeled and
graded (Reiner–Welker ’05, Brändén ’07).

Theorem (Alexandersson, J. ’24+)
Let P be a naturally labeled poset of width two. Then WP(t) is
ultra-log-concave with no internal zeros.

▶ Proof idea: Use non-nesting rook placements!
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Poset – skew shape correspondence
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(a) Skew shape λ/µ.
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(b) Poset P.
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(c) Rooks ↔ paths ↔
linear extensions

Linear extensions of thin P ←→ Non-nesting rook placements on λ/µ:

WP(t) = Mλ/µ(t).

Stembridge’s counterexample to Neggers–Stanley implies Mλ/µ is not
always real-rooted.
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Related combinatorial objects
Antichains of skew

Ferrers poset
Linear extensions of
a width two poset

Lower intervals
[id, σ]W , σ ∈ S321

Lattice paths con-
tained in λ/µ

Non-nesting rook
placements on λ/µ

Figure: Non-nesting rook placements and friends.
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Open ends
▶ Algebraic: Equivariant log-concavity for non-nesting rooks?

1. Li (2022) did this for graph matchings.

2. Find the right group action on NNλ/µ that preserves # of rooks.

3. Actions on linear extensions of posets.

▶ Dynamical: Interpret classical operators on L(P) in terms of rooks.
1. Promotion, rowmotion, Bender–Knuth toggles, modified Foata–Strehl.

▶ For more on rook matroids:
https://arxiv.org/abs/2410.00127

Thank you!
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