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Introduction

Stanley–Stembridge conjecture

Stanley–Stembridge (1993) :
Stated several conjectures on immanants of Jacobi–Trudi matrices.

Stanley (1995) :
Introduced the chromatic symmetric functions for any graphs and
reformulated one of the above conjectures.

Conjecture (Stanley–Stembridge 1993)

The chromatic symmetric functions for incomparability graphs of
(3 + 1)-free posets are e-positive.

This is Problem 21 in the Stanley’s survey “Positivity problems and
conjectures in algebraic combinatorics”.

Tatsuyuki Hikita (RIMS) Stanley–Stembridge conjecture 2025 06/12 2 / 21



Introduction

Unit interval orders

Guay-Paquet (2013) :
It is enough to prove the e-positivity for (3 + 1)-free and (2 + 2)-free
posets, i.e., for unit interval orders.

#{unit interval orders of size n} = n-th Catalan number

=⇒ related to many other combinatorial objects such as

Dyck paths,

Hessenberg functions,

312-avoiding permutations,

etc.
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Introduction

Conjugate Hessenberg functions

For our purpose, it is convenient to use the set of conjugate Hessenberg
functions for a parametrization of unit interval orders defined by

En := {e : [n] → Z≥0 | 0 ≤ e(i) < i, e(i) ≤ e(i+ 1)} .

An element e ∈ En corresponds to a unit interval graph Γe with

vertices : [n] := {1, . . . , n}
edges : {i → j | e(j) < i < j}.

For example, e = (0, 0, 0, 1, 2, 3) ∈ E6 corresponds to

1 2

3

4

5 6
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Introduction

Chromatic quasisymmetric functions

Shareshian–Wachs (2012) :
Introduced a q-analogue of chromatic symmetric functions called
chromatic quasisymmetric functions for any labeled graphs.

Γ = ([n],Edge) : labeled graph.

κ : [n] → Z>0 : proper coloring for Γ
def⇐⇒ κ(i) ∕= κ(j) for i → j ∈ Edge.

asc(κ) := #{i → j ∈ Edge | κ(i) < κ(j)}.

Definition (Shareshian–Wachs 2012)

The chromatic quasisymmetric function XΓ(q) of Γ is defined by

XΓ(q) :=
󰁛

κ

qasc(κ)
n󰁜

i=1

xκ(i),

where κ runs over the set of all proper colorings of Γ.
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Introduction

Various incarnations

Proposition (Shareshian–Wachs)

If Γ is a unit interval graph, then XΓ(q) is symmetric.

XΓ(q) for unit interval graphs also appear in many places such as :

plethystic substitutions of unicellular LLT polynomials for the
corresponding Dyck paths by Carlsson–Mellit,

cohomology rings of regular semisimple Hessenberg varieties of type
A for the corresponding Hessenberg functions, conjectured by
Shareshian–Wachs and proved by Brosnan–Chow and Guay-Paquet,

traces of the Hecke algebras of type A at the Kazhdan–Lusztig basis
elements for the corresponding 312-avoiding permutations by
Clearman–Hyatt–Shelton–Skandera.
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Introduction

Refinements and the main results

Let us expand XΓ(q) in terms of elementary symmetric functions :

XΓ(q) =
󰁛

λ⊢n
cλ(Γ; q) eλ(x).

Conjecture (Shareshian–Wachs 2012)

For any unit interval graph Γ, we have cλ(Γ; q) ∈ Z≥0[q].

Main Theorem (H. 2024)

For any unit interval graph Γ and q ∈ R>0, we have cλ(Γ; q) ≥ 0.
In particular, the Stanley–Stembridge conjecture holds.
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Probabilistic interpretations

Observations

Notations : [m]q :=
1−qm

1−q , [m]q! :=
󰁔m

i=1[i]q.

Proposition (H. 2025)

For any e ∈ En, we have

󰁛

λ⊢n
pλ(Γe; q) = 1, pλ(Γe; q) := q|e|−|eλ| cλ(Γe; q)󰁔

i[λi]q!
,

where we set |e| :=
󰁓n

i e(i) and |eλ| =
󰁓

i<j λiλj .

When q = 1, this follows easily by comparing the coefficients of
x1x2 · · ·xn and known to experts.

This and the Shareshian–Wachs conjecture suggest to consider
{pλ(Γe; q)}λ⊢n as a probability on the set of partitions of n.

Tatsuyuki Hikita (RIMS) Stanley–Stembridge conjecture 2025 06/12 8 / 21



Probabilistic interpretations

Strategy of proof

Step 1 : Construct the desired probability directly (difficult).

Step 2 : Check that it coincides with pλ(Γe; q) (easy).

For Step 2, we use a characterization of the chromatic quasisymmetric
functions given by Abreu–Nigro (2021), based on certain relations between
XΓ(q)’s called the modular laws. These relations were first found by
Guay-Paquet (2013) when q = 1.

Theorem (Abreu–Nigro 2021)

For unit interval graphs Γ, XΓ(q)’s are characterized by the modular laws,
multiplicativity XΓ∪Γ′(q) = XΓ(q)XΓ′(q), and XΓn(q) = [n]q!en(x) where
Γn is the complete graph with n vertices.
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Probabilistic interpretations

How to construct a probability?

Imagine that someone drops a box one by one to create Young diagrams :

t=0

We want to find transition probabilities (depending on e ∈ En) so that the
probability of becoming λ at time n coincides with pλ(Γe; q).
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Probabilistic interpretations

How to construct a probability?

Imagine that someone drops a box one by one to create Young diagrams :

t=2

We want to find transition probabilities (depending on e ∈ En) so that the
probability of becoming λ at time n coincides with pλ(Γe; q).
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Probabilistic interpretations

How to construct a probability?

Imagine that someone drops a box one by one to create Young diagrams :

t=3

We want to find transition probabilities (depending on e ∈ En) so that the
probability of becoming λ at time n coincides with pλ(Γe; q).
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Probabilistic interpretations

First attempt

Define Φ : En → Vn := Q(q)〈λ | λ ⊢ n〉 by

Φ(e) =
󰁛

λ⊢n
pλ(Γe; q)λ.

First assume for simplicity that the desired stochastic process is Markov,
i.e., we assume that there exist linear maps Ωr : Vn → Vn+1 so that

Ωr(Φ(e)) = Φ(e ∪ r)

if e ∈ En and e ∪ r := (e(1), . . . , e(n), r) ∈ En+1.

For example, we should have

Φ(0) = = Ω0(∅),
Φ(0, 0) = = Ω0 ( ) ,

Φ(0, 1) = = Ω1 ( ) .
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Probabilistic interpretations

n = 2

For n = 2, we obtain

Φ(0, 0, 0) = = Ω0( ), Φ(0, 0, 2) = = Ω2( ),

Φ(0, 1, 1) = = Ω1

󰀓 󰀔
, Φ(0, 1, 2) = = Ω2

󰀓 󰀔
,

Φ(0, 0, 1) =
1

[2]q
+

q

[2]q
= Ω1( ).

We do not need a formula of Ω0

󰀓 󰀔
for the reconstruction of Φ, but it

might be natural to take

Ω0

󰀓 󰀔
= .
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Probabilistic interpretations

n = 3

For n = 3, we obtain for example

Φ(0, 0, 0, r) =
[r]q
[3]q

+
qr[3− r]q

[3]q
= Ωr( ) (0 ≤ r ≤ 3),

Φ(0, 0, 1, 1) =
[2]q
[3]q

+
q2

[3]q
=

1

[2]q
Ω1

󰀓 󰀔
+

q

[2]q
Ω1( ),

=⇒ Ω1

󰀓 󰀔
= ,

Φ(0, 0, 1, 2) =
1

[2]q
+

q

[3]q
+

q3

[2]q[3]q

=
1

[2]q
Ω2

󰀓 󰀔
+

q

[2]q
Ω2( ) =⇒ Ω2

󰀓 󰀔
= ,

Φ(0, 0, 2, 2) = = Ω2

󰀓 󰀔
.

Last two equalities suggest that this approach works well to some extent.
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Probabilistic interpretations

Failures

However, we will soon arrive at a contradiction :

Φ(0, 0, 2, 2) = = Ω2

󰀓 󰀔
,

Φ(0, 1, 1, 2) =
1

[2]q
+

q

[2]q

?
= Ω2

󰀓 󰀔
.

We interpret this as a failure of Markov property for the stochastic process
since we have Φ(0, 0, 2) = Φ(0, 1, 1) but they are obtained as

Φ(0, 0, 2) : → → ,

Φ(0, 1, 1) : → → .

I.e., the desired stochastic process depends on the “past states”.
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Probabilistic interpretations

Markovization

Idea : We extend the state space by remembering all the past states in
order to make the process “more Markov”.

We realize this idea by writing down the present time in the added box,
i.e., by considering the standard Young tableaux.

󰁨Vn := Q(q)〈T | T ∈ SYT(λ),λ ⊢ n〉 π−→ Vn

T 󰀁→ λ

Problem

Find linear maps 󰁨Ωr : 󰁨Vn → 󰁨Vn+1 such that

we have Φ(e) = π 󰁨Ωe(n)
󰁨Ωe(n−1) · · · 󰁨Ωe(1)(∅) for any e ∈ En,

󰁨Ωr(T ) is a linear combination of standard Young tableaux obtained by
adding n+ 1 on a top of some column of T .
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Probabilistic interpretations

Experimental results

Surprisingly, one can determine 󰁨Ωr(T ) uniquely and consistently for many
T experimentally. For example, we may avoid the above inconsistency by

󰁨Ω2

󰀓
3
1 2

󰀔
= 3 4

1 2
, 󰁨Ω2

󰀓
2
1 3

󰀔
=

1

[2]q

4
2
1 3

+
q

[2]q
2
1 3 4

.

Usually, formulas for 󰁨Ωr(T ) are simple and look like

󰁨Ωr(T ) =
[r]q
[m]q

T ′ +
qr[m− r]q

[m]q
T ′′,

but we encounter more difficult formulas such as

󰁨Ω4

󰀓
4 6
1 2 3 5

󰀔
=

[3]q
[2]q[4]q

7
4 6
1 2 3 5

+
q

[2]2q
4 6 7
1 2 3 5

+
q2[3]q
[2]q[4]q

4 6
1 2 3 5 7

.
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Probabilistic interpretations

Experimental observations

Similar formulas occur for

4 6
1 2 3 5

, 4 5
1 2 3 6

, 3 6
1 2 4 5

, 3 5
1 2 4 6

.

We observe that the places of boxes i with i > 4 are the same in this

example. By looking at other examples of 󰁨Ωr(T ) focusing on the places of
boxes i with i > r, we observe that the transition rules only depend on
the binary sequence (“Maya diagram”) δ(r)(T ) = (δi)i∈Z determined by

looking at T from above and record the numbers in the boxes,

replacing the numbers with > r by 1 and by 0 otherwise,

completing it by adding 1∞ to the left and 0∞ to the right.

For the above examples, we obtain

δ(4)(T ) = (1∞, 0, 1, 0, 1, 0∞).
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Probabilistic interpretations
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Probabilistic interpretations

Guess the general formulas

We further observe that the new boxes are allowed to fall only at the places
of leftmost consecutive sequences of 0 in δ(r)(T ). Let us write fc(T ) the
standard Young tableau obtained by adding n+ 1 at c-th column of T .

For example, when δ(r)(T ) = (1∞, 0a, 1b, 0∞), we obtain

󰁨Ωr(T ) =
[a]q

[a+ b]q
f1(T ) +

qa[b]q
[a+ b]q

fa+b+1(T ).

Experiments suggest that if δ(r)(T ) = (1∞, 0a, 1b, 0c, 1d, 0∞), we have

󰁨Ωr(T ) =
[a]q[a+ b+ c]q

[a+ b]q[a+ b+ c+ d]q
f1(T ) +

qa[b]q[c]q
[a+ b]q[c+ d]q

fa+b+1(T )

+
qa+c[b+ c+ d]q[d]q

[a+ b+ c+ d]q[c+ d]q
fa+b+c+d+1(T ).

Now it is easy to guess the general formulas without further experiments.
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Conclusion

Definition of 󰁨Ωr

For any binary sequence δ = (δi)i∈Z, we write

W (δ) := {i ∈ Z | δi = 0, δi−1 = 1} (leftmost white boxes)

R(δ) := {i ∈ Z | δi = 1, δi−1 = 0} (leftmost red boxes)

Definition (H. 2024, reformulation by Guay-Paquet)

We define a linear map 󰁨Ωr : 󰁨Vn → 󰁨Vn+1 by

󰁨Ωr(T ) :=
󰁛

c∈W (δ(r)(T ))

󰁔
i∈R(δ(r)(T ))[i− c]q󰁔

j∈W (δ(r)(T ))\{c}[j − c]q
fc(T ).

One can check that the coefficients are nonnegative and sum to 1.
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Conclusion

Probabilistic formula

Now we can state our main results.

Theorem (H. 2024)

For any conjugate Hessenberg function e ∈ En, we have

Φ(e) = π 󰁨Ωe(n)
󰁨Ωe(n−1) · · · 󰁨Ωe(1)(∅).

Corollary

For any unit interval graph Γ and q ∈ R>0, the chromatic quasisymmetric
function XΓ(q) specialized at q ∈ R>0 is e-positive. In particular, the
Stanley–Stembridge conjecture holds.
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Conclusion

Future problems

Finally, we list some remaining problems.
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Prove the Shareshian–Wachs conjecture.
(Our formula for the e-expansion coefficients of XΓ(q) can be a sum
of genuine rational functions on q.)
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(Probabilistic models can be considered more generally.)

Tatsuyuki Hikita (RIMS) Stanley–Stembridge conjecture 2025 06/12 21 / 21



Conclusion

Future problems

Finally, we list some remaining problems.

Prove the Shareshian–Wachs conjecture.
(Our formula for the e-expansion coefficients of XΓ(q) can be a sum
of genuine rational functions on q.)

Generalize the probabilistic formula to more general labeled graphs
with symmetric chromatic quasisymmetric functions.
(Probabilistic models can be considered more generally.)

Thank you!
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