Symmetries of periodic and free boundary *q*-Whittaker measures

Jimmy He

The Ohio State University

joint work with Michael Wheeler

Summary

This talk is about two things:

- Identities of symmetric functions (*q*-Whittaker and Hall–Littlewood functions)
- A different perspective on symmetric functions (connections to probability/statistical physics)

Schur measures

$$\lambda = (4, 3, 1), \quad I(\lambda) = 3.$$

- Many models of random partitions defined using symmetric functions.
- Define the Schur functions by

$$s_{\lambda}(x_1,\ldots,x_n) = \frac{\det\left(x_i^{\lambda_j+n-j}\right)_{i,j=1}^n}{\prod_{i< j}(x_i-x_j).}$$

This is a symmetric polynomial in the x_i 's.

• The Schur measure (Okounkov '01) with parameters x_1, \ldots, x_n and y_1, \ldots, y_m is probability measure on λ proportional to $s_{\lambda}(x_1, \ldots, x_n)s_{\lambda}(y_1, \ldots, y_m)$. Normalization constant given by Cauchy identity

$$\sum_{\lambda} s_{\lambda}(x_1,\ldots,x_n) s_{\lambda}(y_1,\ldots,y_m) = \prod_{i,j} \frac{1}{1-x_i y_j}.$$

Connections to statistical physics

- For many choices of the x_i and y_j , the Schur measure is connected to models coming from statistical physics.
- The Robinson–Schensted–Knuth correspondence sends an $n \times m$ array of integers to a pair of tableau of the same shape λ . If the integers are geometric random variables of parameter $x_i y_j$, then λ is distributed as the Schur measure.
- Define a model called last passage percolation. Consider a random field $X_{i,j}$ of independent geometric random variables of parameter p. The passage time from (0,0) to (n,m) is given by $\max_{\gamma} \sum_{i} X_{\gamma_{i}}$, where γ is an up-right path. Under RSK this corresponds to λ_{1} .

Macdonald measures

- Can define Macdonald measure using the Macdonald polynomials $P_{\lambda}(x;q,t)$ analogously to the Schur measures (Borodin–Corwin '14). They have been used to study many models coming from statistical physics.
- When q=0, this is called the Hall–Littlewood measure, related to the six vertex model and particle systems like the ASEP.

 When t = 0, this is called q-Whittaker measure, related to polymer models like the log-gamma polymer.

Periodic Schur measure

What is a periodic measure on partitions?

- Borodin '07 defined the periodic Schur measure, with the probability of λ proportional to $\sum_{\mu} u^{|\mu|} s_{\lambda/\mu}(x_1,\ldots,x_n) s_{\lambda/\mu}(y_1,\ldots,y_m)$. Here, μ is a partition contained in λ , and $s_{\lambda/\mu}$ is a skew Schur function.
- Normalization constant given by

$$\sum_{\lambda,\mu} u^{|\mu|} s_{\lambda/\mu}(x_1,\ldots,x_n) s_{\lambda/\mu}(y_1,\ldots,y_m) = \frac{1}{(u;u)_{\infty}} \prod_{i,j} \frac{1}{(x_i y_j;u)_{\infty}},$$

where $(x; q)_{\infty} = \prod_{i>0} (1 - q^i x)$ is the *q*-Pochhammer symbol.

• This measure turns out to be related to a quasi-periodic version of last passage percolation. One considers a cylinder tiled by $n \times m$ arrays of geometric random variables, but where powers of u are accumulated in the parameters as well.

Periodic q-Whittaker measure

• We can define a probability measure on partitions called the periodic q-Whittaker measure by setting the probability of λ proportional to

$$\sum_{\mu} u^{|\mu|} P_{\lambda/\mu}(x_1, \ldots, x_n; q, 0) Q_{\lambda/\mu}(y_1, \ldots, y_n; q, 0).$$

The $Q_{\lambda/\mu}$ are a scalar multiple of the $P_{\lambda/\mu}$ (skew Macdonald polynomial).

• The normalization constant is

$$\frac{1}{(u;u)_{\infty}}\prod_{i,i}\frac{1}{(x_iy_j;u,q)_{\infty}},$$

where $(x; q, u)_{\infty} = \prod_{i,j=0}^{\infty} (1 - xu^i q^j)$. This is a version of the Cauchy identity.

Symmetries of periodic q-Whittaker measures

Theorem (H.-Wheeler '23)

The expression

$$\sum_{\mu,\lambda:\lambda_1\leq k}\frac{u^{|\mu|}}{(q;q)_{n-\lambda_1}}P_{\lambda/\mu}(x_1,\ldots,x_n;q,0)Q_{\lambda/\mu}(y_1,\ldots,y_m;q,0)$$

is symmetric in the parameters u and q.

- Generalizes an identity of Imamura–Mucciconi–Sasamoto '23, who showed the special case when one parameter is 0.
- The IMS proof is bijective, would be interesting to see if it could be extended to this case.

Probabilistic meaning

Theorem (H.-Wheeler '23)

The expression

$$\sum_{\mu,\lambda:\lambda_1\leq k}\frac{u^{|\mu|}}{(q;q)_{k-\lambda_1}}P_{\lambda/\mu}(x_1,\ldots,x_n;q,0)Q_{\lambda/\mu}(y_1,\ldots,y_m;q,0)$$

is symmetric in the parameters u and q.

• The expression has a probabilistic interpretation: If χ is a q-geometric random variable, meaning $\mathbb{P}(\chi \leq n) = \frac{(q;q)_{\infty}}{(q;q)_n}$, then the expression is equivalent to $\mathbb{P}(\lambda_1 + \chi \leq k)$.

Contour integral formulas

Theorem (H.–Wheeler '23)

The expression

$$\sum_{\mu,\lambda:\lambda_1\leq k}\frac{u^{|\mu|}}{(q;q)_{n-\lambda_1}}P_{\lambda/\mu}(x_1,\ldots,x_n;q,0)Q_{\lambda/\mu}(y_1,\ldots,y_m;q,0)$$

equals

$$\Phi_n(u,q)\oint_C \frac{dz_1}{2\pi i z_1}\cdots\oint_C \frac{dz_k}{2\pi i z_k}\prod_{i,j}(1+z_i^{-1}x_j)\prod_{i,j}(1+z_iy_j)\widetilde{\Delta}(z;q,u),$$

where C is a circle centered at 0,

$$\Phi_n(u,q) = \frac{(1-qu)^k}{n!(1-u)^k(1-q)^k},$$

and

$$\widetilde{\Delta}(z;q,u) = \prod_{i \neq j} \frac{(1 - quz_iz_j^{-1})(1 - z_iz_j^{-1})}{(1 - qz_iz_j^{-1})(1 - uz_iz_j^{-1})}.$$

Stochastic six vertex model

 Stochastic six vertex model is probability distribution on configurations of arrows traveling edges of a grid.

- Model depends on global parameter t, and row/column parameters x₁..., x_n and y₁..., y_m.
- Can be sampled one vertex at a time. Probabilities at vertex (i,j) depend on t and x_iy_j (called the spectral parameter). Come from R-matrix of $U_q(\widehat{\mathfrak{sl}_2})$.

Quasi-periodic boundary conditions

We represent a single $m \times n$ 6VM (with spectral parameter scaled by z) by

We define quasi-periodic 6VM of length L by

Gray line indicates identification of edges. Can send $L \to \infty$, and we do so.

Periodic Hall-Littlewood measure

ullet Analogous to periodic q-Whittaker measure, we define the periodic Hall-Littlewood measure by setting probability of λ proportional to

$$\sum_{\mu} u^{|\mu|} P_{\lambda/\mu}(x_1,\ldots,x_n;0,t) Q_{\lambda/\mu}(y_1,\ldots,y_m;0,t).$$

Normalization constant is

$$\frac{1}{(u;u)_{\infty}}\prod_{i,j}\frac{(tx_iy_j;u)_{\infty}}{(x_iy_j;u)_{\infty}}.$$

Quasi-periodic 6VM and periodic HL measure

Theorem (H.–Wheeler '23)

The distribution for the number of times arrows cross the red line plus χ equals that of $I(\lambda)$, where λ follows the periodic HL measure and χ is u-geometric (with parameters in both models matching).

- Proof uses vertex models, Yang-Baxter equation.
- When $u \to 1$, model becomes stationary periodic stochastic six vertex model, but observable in theorem blows up.

Free boundary measures

- So far, we've discussed various measures related to the Cauchy identity. We now turn to the Littlewood identity, which turns out to correspond to models with either one or two open boundaries.
- The classic example is the Pfaffian Schur measure, for which λ has probability proportional to $s_{\lambda}(x_1,\ldots,x_n)\mathbf{1}_{\lambda'\text{ even}}$ (here λ' means rows and columns in picture are swapped). Normalization constant given by the Littlewood identity

$$\sum_{\lambda:\lambda' \text{ even}} s_{\lambda}(x_1,\ldots,x_n) = \prod_{i < j} \frac{1}{1-x_ix_j}.$$

• Generalized by Betea–Bouttier–Nejjar–Vuletić '18 to free boundary Schur measure, where probability of λ proportional to $\mathbf{1}_{\lambda' \text{ even}} \sum_{\mu' \text{ even}} u^{|\mu|} s_{\lambda/\mu}(x_1,\ldots,x_n)$, with normalization constant

$$\frac{1}{(u;u)_{\infty}}\prod_{i\leq i}\frac{1}{(x_ix_j;u)_{\infty}}$$

Free boundary *q*-Whittaker measure

• We can define a probability measure on partitions called the periodic q-Whittaker measure by setting the probability of λ proportional to

$$\sum_{\mu} u^{|\mu|/2} h_{\lambda'}^*(a,b;q) h_{\mu'}(c/\sqrt{u},d/\sqrt{u};q) P_{\lambda/\mu}(x_1,\ldots,x_n;q,0).$$

The h_{λ}^{*} and h_{μ} are boundary weights, defined in terms of parameters a,b,c,d. If a=b=c=d=0, restrict μ' and λ' to be even.

• The normalization constant is explicit and factorized (but complicated). When a=b=c=d=0, it's

$$\frac{1}{(u;u)_{\infty}(uq;u,q)_{\infty}}\prod_{i\leq i}\frac{1}{(x_ix_j;u,q)_{\infty}}.$$

Symmetries of free boundary q-Whittaker measures

Theorem (H.-Wheeler '25+)

The expression

$$\sum_{\lambda,\mu:\lambda_1 \leq k} u^{|\mu|/2} \frac{h_{k-\lambda_1}(ab;q) h_{\lambda'}^*(a,b;q)}{(q;q)_{k-\lambda_1}} h_{\mu'}(c/\sqrt{u},d/\sqrt{u};q) P_{\lambda/\mu}(x;q,0)$$

is symmetric in the parameters u and q, and separately in a, b, c, d.

- As in periodic setting, we find explicit contour integral formulas, and this has a probabilistic interpretation.
- Generalizes previous identities of Imamura–Mucciconi–Sasamoto '23 (and extended in H. '24).

Free boundary Hall-Littlewood measure

 We can define the free boundary Hall-Littlewood measure analogously. Like in periodic setting, can be related to observables in quasi-open six vertex model. Here arrows enter from diagonal with weights depending on a, b, c, d.

A pair of curious identities

Theorem (H.-Wheeler '23)

$$\sum_{\lambda,\mu:\lambda_{1}\leq k} \frac{(t;t)_{m_{k}(\mu)}}{(t;t)_{m_{k}(\lambda)}} u^{|\mu|} P_{\lambda/\mu}(x_{1},\ldots,x_{n};0,t) Q_{\lambda/\mu}(y_{1},\ldots,y_{m};0,t)$$

$$= \frac{1}{(u;u)_{k}} \left(\prod_{i=1}^{m} y_{j}^{k}\right) P_{k^{m}}(x_{1},\ldots,x_{n},y_{1}^{-1},\ldots,y_{m}^{-1};u,t).$$

Theorem (Finn-Vanicat '17)

$$\sum_{\lambda,\mu:\lambda_1\leq 2k}u^{|\mu|/2}\frac{h_\lambda(a,b;t)}{h_{m_{2k}(\lambda)}(ab;t)}h_\mu^*(c/\sqrt{u},d/\sqrt{u};t)P_{\lambda/\mu}(x_1,\ldots,x_n;0,t)$$

$$=C_k(u,t,a,b,c,d)\left(\prod_{i=1}^n x_i^k\right)K_{k^n}(x_1,\ldots,x_n;u,t,a,b,c,d).$$

Thanks for listening!