Towards plethystic \mathfrak{sl}_2 crystals

Álvaro Gutiérrez (University of Bristol)

Let $\mathfrak{sl}_2=\mathfrak{sl}_2(\mathbb{C})=\{M\in\mathsf{Mat}_{2\times 2}\ :\ \mathsf{tr}(M)=0\}$ with a Lie bracket.

Facts

1

2.

3.

4.

Let $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) = \{M \in \mathsf{Mat}_{2 \times 2} \ : \ \mathsf{tr}(M) = 0\}$ with a Lie bracket.

Facts

- **1.** Irreducible representations¹ of \mathfrak{sl}_2 are $\operatorname{Sym}^r \mathbb{C}^2$ for $r \geq 0$.
- 2.
- 3.
- 4.

Define
$$\operatorname{Sym}^r V = V \otimes \stackrel{r}{\cdots} \otimes V / \langle v \otimes w = w \otimes v \rangle$$
.

 $^{^{1}}$ All representations are assumed finite dimensional, highest weight

Let $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) = \{M \in \mathsf{Mat}_{2 \times 2} : \mathsf{tr}(M) = 0\}$ with a Lie bracket.

Facts

- **1.** Irreducible representations¹ of \mathfrak{sl}_2 are $\operatorname{Sym}^r \mathbb{C}^2$ for $r \geq 0$.
- 2. If V is a representation of \mathfrak{sl}_2 then $V = \bigoplus \operatorname{Sym}^r \mathbb{C}^2$.
- 3.
- 4.

Define Sym^r
$$V = V \otimes \cdot \cdot \cdot \otimes V / \langle v \otimes w = w \otimes v \rangle$$
.

 $^{^{1}}$ All representations are assumed finite dimensional, highest weight

Let $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) = \{M \in \mathsf{Mat}_{2 \times 2} : \mathsf{tr}(M) = 0\}$ with a Lie bracket.

Facts

- **1.** Irreducible representations¹ of \mathfrak{sl}_2 are $\operatorname{Sym}^r \mathbb{C}^2$ for $r \geq 0$.
- **2.** If V is a representation of \mathfrak{sl}_2 then $V = \bigoplus \operatorname{Sym}^r \mathbb{C}^2$.
- **3.** If V is a representation of \mathfrak{sl}_2 then so is $\Lambda^n V$ for all $n \geq 0$.
- 4.

Define
$$\Lambda^n V = V \otimes \cdots \otimes V / \langle v \otimes w = -w \otimes v \rangle$$
.

All representations are assumed finite dimensional, highest weight

Let $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) = \{M \in \mathsf{Mat}_{2 \times 2} : \mathsf{tr}(M) = 0\}$ with a Lie bracket.

Facts

- **1.** Irreducible representations of \mathfrak{sl}_2 are $\operatorname{Sym}^r \mathbb{C}^2$ for $r \geq 0$.
- **2.** If V is a representation of \mathfrak{sl}_2 then $V = \bigoplus \operatorname{Sym}^r \mathbb{C}^2$.
- 3. If V is a representation of \mathfrak{sl}_2 then so is $\Lambda^n V$ for all $n \geq 0$.
- 4.

Problem A

Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

Let $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) = \{M \in \mathsf{Mat}_{2 \times 2} \ : \ \mathsf{tr}(M) = 0\}$ with a Lie bracket.

Facts

- **1.** Irreducible representations of \mathfrak{sl}_2 are $\operatorname{Sym}^r \mathbb{C}^2$ for $r \geq 0$.
- **2.** If V is a representation of \mathfrak{sl}_2 then $V = \bigoplus \operatorname{Sym}^r \mathbb{C}^2$.
- **3.** If V is a representation of \mathfrak{sl}_2 then so is $\Lambda^n V$ for all $n \ge 0$.
- **4.** If V and W are representations of \mathfrak{sl}_2 then so is $V \otimes W$.

Problem A

Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

Problem A'

Decompose $\operatorname{Sym}^r \mathbb{C}^2 \otimes \operatorname{Sym}^n \mathbb{C}^2$.

Let $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) = \{M \in \mathsf{Mat}_{2 \times 2} : \mathsf{tr}(M) = 0\}$ with a Lie bracket.

Facts

- **1.** Irreducible representations of \mathfrak{sl}_2 are $\operatorname{Sym}^r \mathbb{C}^2$ for $r \geq 0$.
- **2.** If V is a representation of \mathfrak{sl}_2 then $V = \bigoplus \operatorname{Sym}^r \mathbb{C}^2$.
- 3. If V is a representation of \mathfrak{sl}_2 then so is $\Lambda^n V$ for all n > 0.
- **4.** If V and W are representations of \mathfrak{sl}_2 then so is $V \otimes W$.

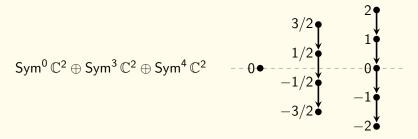
Problem A

Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

Problem A'

Decompose $\operatorname{Sym}^r \mathbb{C}^2 \otimes \operatorname{Sym}^n \mathbb{C}^2$.

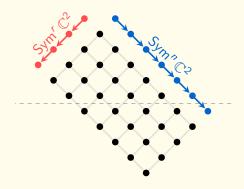
Clebsch-Gordan (1800s), Kashiwara (1990s)


sl₂ crystals

Any \mathfrak{sl}_2 representation V has a crystal:

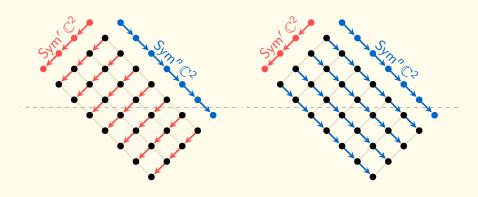
A crystal is a vertex-weighted directed graph,

- if $x \longrightarrow y$ then wt(y) = wt(x) 1,
- connected components are paths,
- it is weight-symmetric.


Connected components correspond to irreducible representations.

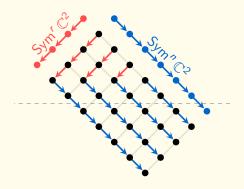
Problem A'

Decompose $\operatorname{Sym}^r \mathbb{C}^2 \otimes \operatorname{Sym}^n \mathbb{C}^2$.


Clebsch and Gordan (1800s)

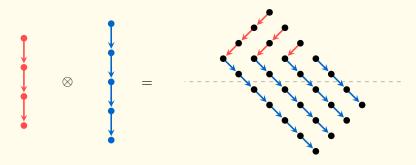
Problem A'

Decompose $\operatorname{Sym}^r \mathbb{C}^2 \otimes \operatorname{Sym}^n \mathbb{C}^2$.


Clebsch and Gordan (1800s)

Problem A'

Decompose $\operatorname{Sym}^r \mathbb{C}^2 \otimes \operatorname{Sym}^n \mathbb{C}^2$.


Clebsch and Gordan (1800s)

Problem A'

Decompose $\operatorname{Sym}^r \mathbb{C}^2 \otimes \operatorname{Sym}^n \mathbb{C}^2$.

Clebsch and Gordan (1800s)

 $\operatorname{\mathsf{Sym}^3}\mathbb{C}^2 \otimes \operatorname{\mathsf{Sym}^4}\mathbb{C}^2 = \operatorname{\mathsf{Sym}^9}\mathbb{C}^2 \oplus \operatorname{\mathsf{Sym}^7}\mathbb{C}^2 \oplus \operatorname{\mathsf{Sym}^5}\mathbb{C}^2 \oplus \operatorname{\mathsf{Sym}^3}\mathbb{C}^2$

Problem A

Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

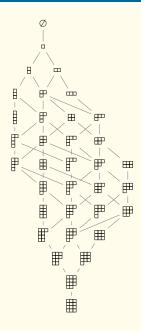
Problem A

Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

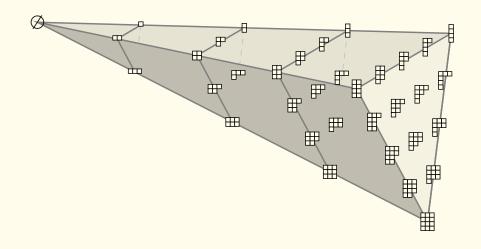
A canonical basis of $\Lambda^n\operatorname{Sym}^{n+m-1}\mathbb{C}^2$ is in bijection with

$$L(n, m) = \{ partitions in an $n \times m box \}.$$$

Problem A


Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

A canonical basis of $\Lambda^n\operatorname{Sym}^{n+m-1}\mathbb{C}^2$ is in bijection with


$$L(n, m) = \{ \text{partitions in an } n \times m \text{ box} \}.$$

This is a ranked poset: Young's lattice.

Example: L(3, 4)

Example: L(3, 4)

Problem A

Decompose $\Lambda^n \operatorname{Sym}^r \mathbb{C}^2$.

A canonical basis of $\Lambda^n \operatorname{Sym}^{n+m-1} \mathbb{C}^2$ is in bijection with

$$L(n, m) = \{ \text{partitions in an } n \times m \text{ box} \}.$$

This is a ranked poset: Young's lattice.

Problem B

Problem B

Problem B

n =	0	1	2	3	4	5	
Stanley '80	*	*	*				

Problem B

n =	0	1	2	3	4	5	
Stanley '80 Lindström '80 West '80	*	*	*	*	*		

Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		

Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		

Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		

Problem B

		1	^	2	4	_	
n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		

Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David-Spink-Tiba '17	*	*	*	*	*		

Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David-Spink-Tiba '17	*	*	*	*	*		
Xin-Zhong '21	*	*	*	*	*		

Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David-Spink-Tiba '17	*	*	*	*	*		
Xin-Zhong '21	*	*	*	*	*		
Wen '24						*	

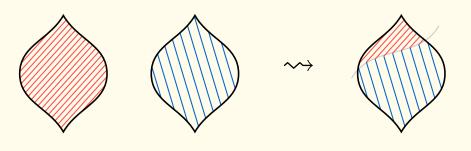
Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David–Spink–Tiba '17	*	*	*	*	*		
Xin-Zhong '21	*	*	*	*	*		
Wen '24						*	
Orellana–Saliola–Schilling–Zabrocki '24				*	*		
Coggins-Donley-Gondal-Krishna '24				*			
Gutiérrez '24	*	*	*	*	*		

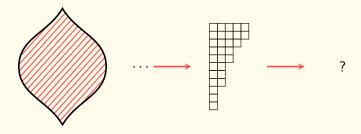
Problem B

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David-Spink-Tiba '17	*	*	*	*	*		
Xin-Zhong '21	*	*	*	*	*		
Wen '24						*	
Orellana–Saliola–Schilling–Zabrocki '24				*	*		
Coggins-Donley-Gondal-Krishna '24				*			
Gutiérrez '24	*	*	*	*	*		

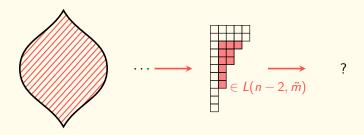
Problem B

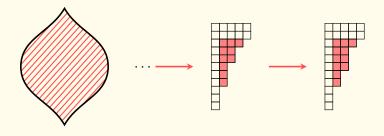

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David-Spink-Tiba '17	*	*	*	*	*		
Xin-Zhong '21	*	*	*	*	*		
Wen '24						*	
Orellana-Saliola-Schilling-Zabrocki '24				*	*		
Coggins-Donley-Gondal-Krishna '24				*			
Gutiérrez '24	*	*	*	*	*		

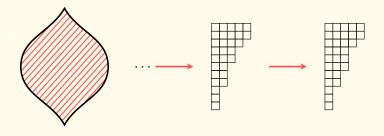
Problem B

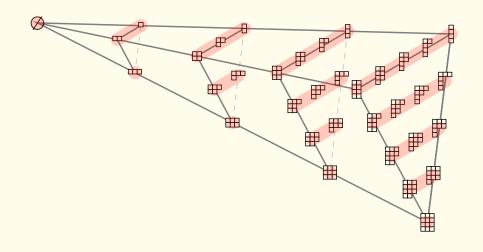

n =	0	1	2	3	4	5	
Rieß '78	*	*	*	*	*		
Stanley '80	*	*	*				
Lindström '80				*			
West '80					*		
Greene '90	*	*	*	*	*		
Wen '03				*	*		
Dhand '12	*	*	*	*	*		
David–Spink–Tiba '17	*	*	*	*	*		
Xin-Zhong '21	*	*	*	*	*		
Wen '24						*	
Orellana-Saliola-Schilling-Zabrocki '24				*	*		
Coggins-Donley-Gondal-Krishna '24				*			
Gutiérrez '24	*	*	*	*	*		

Our strategy for Problem B

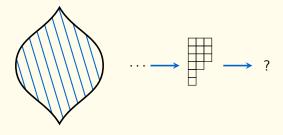

Problem B


Problem B

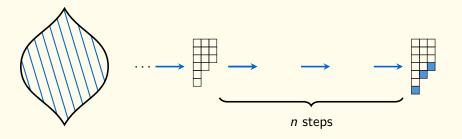

Problem B


Problem B

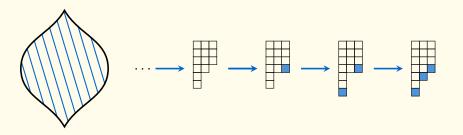
Problem B



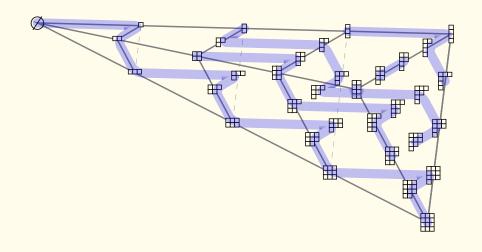
Example: L(3, 4)


The bottom decomposition

Problem B

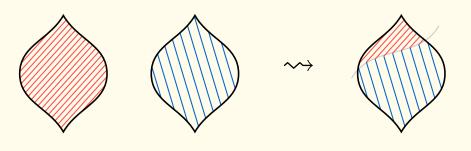

The bottom decomposition

Problem B

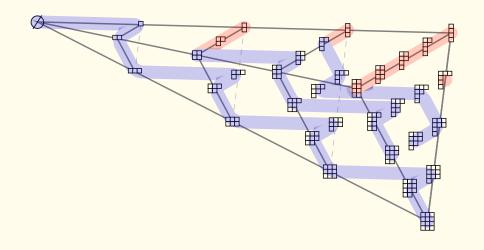


The bottom decomposition

Problem B



Example: L(3, 4)



Our strategy for Problem B

Problem B

Example: L(3,4)

Conclusion

Corollaries

- Rediscover combinatorial formulas for plethystic coefficients by Orellana–Saliola–Schilling–Zabrocki'24
- New combinatorial proof for a formula for the number of constituents of Λ² Sym^r C², Λ³ Sym^r C², by Almkvist–Fossum'78
- New recursive formulas for plethysm of Schur functions

What about n = 5 and beyond?

Conclusion

Corollaries

- Rediscover combinatorial formulas for plethystic coefficients by Orellana–Saliola–Schilling–Zabrocki'24
- New combinatorial proof for a formula for the number of constituents of Λ² Sym^r C², Λ³ Sym^r C², by Almkvist–Fossum'78
- New recursive formulas for plethysm of Schur functions

What about n = 5 and beyond?