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Let slp = sl(C) = {M € Mataxo : tr(M) =0} with a Lie bracket.
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2. If V is a representation of sl then V = @ Sym’ C2.

3. If V is a representation of sl, then so is A" V for all n > 0.
4. If V and W are representations of sl then sois V @ W.

Problem A
Decompose A" Sym’ C2.

Problem A’
Decompose Sym” C2 ® Sym" C2.

Clebsch—Gordan (1800s), Kashiwara (1990s)



sl, crystals

Any sl representation V has a crystal:

A crystal is a vertex-weighted directed graph,
e if x — y then wt(y) = wt(x) — 1,
® connected components are paths,

® it is weight-symmetric.

Connected components correspond to irreducible representations.
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Problem A’
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Sym? C? @ Sym* C2 = Sym® C2 @ Sym’ C2 & Sym® C2 @ Sym3 C2
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A canonical basis of A" Sym"T™~1C2 is in bijection with
L(n, m) = {partitions in an n X m box}.

This is a ranked poset: Young's lattice.
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Our main problem

Problem A
Decompose A" Sym” C?.

A canonical basis of A" Sym"T™~1 2

is in bijection with
L(n, m) = {partitions in an n X m box}.
This is a ranked poset: Young's lattice.

Problem B
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Conclusion

® Rediscover combinatorial formulas for plethystic coefficients by
Orellana—Saliola=Schilling—Zabrocki‘24

® New combinatorial proof for a formula for the number of
constituents of A2 Sym” C2, A3 Sym" C?, by Almkvist—Fossum'78

® New recursive formulas for plethysm of Schur functions

What about n =5 and beyond?
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Thank you!



