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sl2 crystals

Any sl2 representation V has a crystal:

A crystal is a vertex-weighted directed graph,

• if x −→ y then wt(y) = wt(x)− 1,

• connected components are paths,

• it is weight-symmetric.

Connected components correspond to irreducible representations.
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⊗ =

Sym3C2 ⊗ Sym4C2 = Sym9C2 ⊕ Sym7C2 ⊕ Sym5C2 ⊕ Sym3C2
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