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Symmetric function

For a partition λ, the Schur function sλ is defined by

sλ =
∑
T

xwt(T )

where the sum is over all semistandard Young tableaux T of shape λ, and

for a composition α = (α1, α2, . . . ), we write xα = xα1
1 xα2

2 · · · .

The Schur function can be expressed as sλ =
∑

µKλ,µmµ, where mµ is

the monomial symmetric function and Kλ,µ is the Kostka number.

The Kostka number Kλ,µ counts the number of semistandard Young

tableaux of shape λ and weight µ.
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Kostka-Foulkes polynomial

The Kostka-Foulkes polynomials Kλ,µ(q), q-analogue of the Kostka

number, are defined by

sλ =
∑
µ

Kλ,µ(q)Pµ(x; q),

where Pµ(x; q) is the Hall-Littlewood polynomial.
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Charge

The charge is a statistic on semistandard Young tableaux, introduced by

Lascoux and Schẗzenberger (1978). It provides a combinatorial formula for

the Kostka-Foulkes polynomial:

Kλ,µ(q) =
∑
T

qcharge(T )

where the sum is over all semistandard Young tableaux T of shape λ and

weight µ.
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Charge

We define the charge on a standard Young tableau T .

Let Des(T ) be the set of integers i such that i+ 1 appears to the right of

i in T . Then the charge is defined by
∑

i∈Des(T )

(n− i).

For example, consider the standard Young tableau

T = 1 3 6
2 4
5

.

Then Des(T ) = {2, 5} and charge(T ) = (6− 2) + (6− 5) = 5.
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Generalization

The Kostka-Foulkes polynomials admit two main generalizations:

The Macdonald-Kostka polynomials Kλ,µ(q, t), which appear as

coefficients when the modified Macdonald polynomials are expanded

in terms of the Schur functions. When q = 0, the Macdonald-Kostka

polynomials reduce to the Kostka-Foulkes polynomials.

Lusztig’s q-weight multiplicities, which generalize the Kostka-Foulkes

polynomials to other Lie types.
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Weight multiplicity

For a Lie algebra g, let λ and µ be dominant weights.

The weight multiplicity KLg
λ,µ is the dimension of the µ-weight space in

the irreducible representation of g with highest weight λ.

By the Weyl character formula,

KLg
λ,µ =

∑
w∈W

(−1)ℓ(w)[ew(λ+ρ)−(µ+ρ)]
∏

α∈R+

1

1− eα

where W is Weyl group, R+ is the set of positive roots, ρ = 1
2

∑
α∈R+ α,

and [eβ]f denotes the coefficient of eβ in f .
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Lusztig’s q-weight multiplicity

The q-analogue of KLg
λ,µ is defined by

KLg
λ,µ(q) =

∑
w∈W

(−1)ℓ(w)[ew(λ+ρ)−(µ+ρ)]
∏

α∈R+

1

1− qeα
.

KLg
λ,µ(q) is Lusztig’s q-weight multiplicity.
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Lusztig’s q-weight multiplicity

KL
An−1

λ,µ (q) = Kλ,µ(q)

KLg
λ,µ(q) = q(ℓ(ωλ)−ℓ(ωµ)/2)P ĝ

ωµ,ωλ(q
−1), where P ĝ

x,y(q) is affine

Kazhdan-Lusztig polynoimal. So, KLg
λ,µ(q) ∈ Z≥0[q]. [Lusztig ’83].

KLg
λ+(kn),µ+(kn)(q) stabilize for sufficiently large k. These are called

stable KL polynomials.

Combinatorial formulas for stable KL polynomials are known:

for types B and C by Shimozono (2005) ; and for type D by

Lecouvey and Shimozono (2007).
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Type C

Long-standing problem : Finding a combinatorial formula for KLg
λ,µ(q)

beyond type A.

For type C,

Lecouvey (2005) studied cyclage graphs on Kashiwara-Nakashima

tableaux and defined charge to conjecture a combinatorial formula.

Lecouvey and Lenart (2020) provided a combinatorial formula when

weight is zero, i.e. KLCn
λ,0(q).

For a partition µ, Lee conjectured a formula in terms of

Killirov-Reshitikhin crystals, which was proved by C.-Kim-Lee (2024).
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Combinatorial object

There are several known combinatorial models for KLCn
λ,µ:

Kashiwara-Nakashima tableaux.

King tableaux.

Semistandard oscillating tableaux [Lee ’23].

In this talk, we focus on semistandard oscillating tableaux.
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Semistandard oscillating tableau

An oscillating horizontal strip (ohs) S is a triple of partitions (λ, µ, ν) such

that both µ/λ and µ/ν are horizontal strips.

We define:

length(S) = |µ/λ|+ |µ/ν|,

I(S) = λ, F (S) = ν, and c(S) = µ1.
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Semistandard oscillating tableau

A semistandard oscillating tableaux T is a sequence of ohs

(S1, S2, · · · , Sn) satisfying:

I(S1) = ∅,

I(Si+1) = F (Si) for i ∈ Z>0.

We define the following:

wt(T ) = (length(S1), · · · , length(Sn)) and c(T ) = max(c(Si)).

T ∈ SSOT(λ, µ) if F (Sn) = λ and wt(T ) = µ.

T ∈ SSOT≤g(λ, µ) if T ∈ SSOT(λ, µ) and c(T ) ≤ g.
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Example

Let λ = (0, 0, 0, 0), µ = (1, 1, 1, 1).

SSOT(λ, µ) consists of the following:

T1 = ((∅, , ), ( , , ), ( , , ), ( , , ∅)),

T2 = ((∅, , ), ( , , ∅), (∅, , ), ( , , ∅)),

T3 = ((∅, , ), ( , , ), ( , , ), ( , , ∅)).

SSOT≤1(λ, µ) contains only T1 and T2, since c(T3) = 2.
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Type C object

Lee (2023) proved that for any g ≥ λ1,

KLCn
λ,µ = |SSOT≤g(λ̂, µ̂)|,

where λ̂ = (g − λn, . . . , g − λ1).

We now investigate the energy function on the Kirillov–Reshetikhin

crystal, which plays the role of the charge statistic on SSOT.
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Kirillov-Reshetikhin crystal

The Kirillov-Reshetikhin crystals (KR crystals) are crystal bases Br,s for

certain irreducible finite-dimensional modules W
(r)
s , called

Kirillov-Reshetikhin modules (KR modules), over the quantized affine

algebra U ′
q(g).

For a partition µ, define Bµ = Bµn,1 ⊗ · · · ⊗Bµ1,1.

For a partition λ, let HW(Bµ, λ) be the set of classical highest weight

elements of weight λt in Bµ.

By duality, we use KR crystals of type B
(1)
N for sufficiently large N .
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Kirillov-Reshetikhin crystal

There exists a natural bijection between SSOT(λ, µ) and HW(Bµ, λ) by

recording the column indices.

For SSOT≤1((0, 0, 0, 0), (1, 1, 1, 1)), we have:

T1 = ((∅, , ), ( , , ), ( , , ), ( , , ∅)) ↔ −1⊗−1⊗ 1⊗ 1

T2 = ((∅, , ), ( , , ∅), (∅, , ), ( , , ∅)) ↔ −1⊗ 1⊗−1⊗ 1
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Energy function

The energy function is a map D : B → Z, which is constant on each

classical component.

It is defined locally using the combinatorial R-matrix and the crystal

operator e0, and then extended globally.

In general, the energy function is difficult to compute.

However, when B = (B1,1)⊗n, the energy function can be computed

explicitly.
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Energy function when standard case

Let an ⊗ an−1 ⊗ · · · ⊗ a1 be an element in (B1,1)⊗n of type B
(1)
N .

The local energy function H(b, a) is defined by:

H(b, a) =


2 if a = 1 and b = 1

1 if b ≻ a and (b, a) ̸= (1, 1)

0 if b ⪯ a

under the order 1 ≺ 2 ≺ · · · ≺ 2̄ ≺ 1̄.

The energy function D is defined by D =
n−1∑
i=1

(n− i)H(ai+1, ai).

Hyeonjae Choi (SNU) Lusztig’s q-weight multiplicities July 22, 2025 19 / 26



Energy function when standard case

Let an ⊗ an−1 ⊗ · · · ⊗ a1 be an element in (B1,1)⊗n of type B
(1)
N .

The local energy function H(b, a) is defined by:

H(b, a) =


2 if a = 1 and b = 1

1 if b ≻ a and (b, a) ̸= (1, 1)

0 if b ⪯ a

under the order 1 ≺ 2 ≺ · · · ≺ 2̄ ≺ 1̄.

The energy function D is defined by D =
n−1∑
i=1

(n− i)H(ai+1, ai).

Hyeonjae Choi (SNU) Lusztig’s q-weight multiplicities July 22, 2025 19 / 26



Energy function when standard case

Let an ⊗ an−1 ⊗ · · · ⊗ a1 be an element in (B1,1)⊗n of type B
(1)
N .

The local energy function H(b, a) is defined by:

H(b, a) =


2 if a = 1 and b = 1

1 if b ≻ a and (b, a) ̸= (1, 1)

0 if b ⪯ a

under the order 1 ≺ 2 ≺ · · · ≺ 2̄ ≺ 1̄.

The energy function D is defined by D =
n−1∑
i=1

(n− i)H(ai+1, ai).

Hyeonjae Choi (SNU) Lusztig’s q-weight multiplicities July 22, 2025 19 / 26



Type A case

For type A, the energy function coincides with the charge statistics

[Nakayashiki-Yamada ’97].

For example, consider

T = 1 3 6
2 4
5

↔ 3⊗ 1⊗ 2⊗ 2⊗ 1⊗ 1

Since 3⊗1⊗ 2⊗ 2⊗1⊗ 1, we have D(T ) = (6− 5) + (6− 2) = 5, which

exactly matches the charge of T .
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Example

SSOT((0, 0, 0, 0), (1, 1, 1, 1)) = {T1, T2, T3} where T1 = −1⊗−1⊗ 1⊗ 1,

T2 = −1⊗ 1⊗−1⊗ 1, and T3 = −1⊗−2⊗ 2⊗ 1.

−1⊗−1⊗1⊗ 1 with D(T1) = (4− 2)× 2 = 4.

−1⊗1⊗−1⊗1 with D(T2) = (4− 3)× 2 + (4− 1)× 2 = 8.

−1⊗− 2⊗2⊗1 with D(T3) = (4− 3) + (4− 2) + (4− 1) = 6.
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T2 = −1⊗ 1⊗−1⊗ 1, and T3 = −1⊗−2⊗ 2⊗ 1.

−1⊗−1⊗1⊗ 1 with D(T1) = (4− 2)× 2 = 4.

−1⊗1⊗−1⊗1 with D(T2) = (4− 3)× 2 + (4− 1)× 2 = 8.

−1⊗− 2⊗2⊗1 with D(T3) = (4− 3) + (4− 2) + (4− 1) = 6.
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Main theorem

Theorem (C.-Kim-Lee, 2024)

KLCn
λ,µ(q) =

∑
T∈SSOT≤g(λ̂,µ̂)

qD(T ),

where g ≥ λ1.

As a corollary, we have KLCn

λ+(1n),µ+(1n)(q) ≥ KLCn
λ,µ(q),

since SSOT≤g+1(λ̂, µ̂) ⊇ SSOT≤g(λ̂, µ̂).

Hyeonjae Choi (SNU) Lusztig’s q-weight multiplicities July 22, 2025 22 / 26



Main theorem

Theorem (C.-Kim-Lee, 2024)

KLCn
λ,µ(q) =

∑
T∈SSOT≤g(λ̂,µ̂)

qD(T ),

where g ≥ λ1.

As a corollary, we have KLCn

λ+(1n),µ+(1n)(q) ≥ KLCn
λ,µ(q),

since SSOT≤g+1(λ̂, µ̂) ⊇ SSOT≤g(λ̂, µ̂).

Hyeonjae Choi (SNU) Lusztig’s q-weight multiplicities July 22, 2025 22 / 26



Example

Let λ̂ = (0, 0, 0, 0) and µ̂ = (1, 1, 1, 1).

When g = 1, we have λ = (1, 1, 1, 1) and µ = (0, 0, 0, 0).

KLCn

(1,1,1,1),(0,0,0,0)(q) = qD(T1) + qD(T2) = q8 + q4.

When g = 2, we have λ = (2, 2, 2, 2) and µ = (1, 1, 1, 1).

KLCn

(2,2,2,2),(1,1,1,1)(q) = qD(T1) + qD(T2) + qD(T3) = q8 + q6 + q4.
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Level-restricted q weight multiplicity

We introduce another natural q-analogue of the weight multiplicity, called

the level-restricted q-weight multiplicity.

We define a subset RA of R+ by RA = {εi − εj for i < j}.
The level-restricted q-weight multiplicity KLg,lr

λ,µ(q) is defined by

KLg,lr
λ,µ(q) =

∑
w∈W

(−1)ℓ(w)[ew(λ+ρ)−(µ+ρ)]
∏

α∈RA

1

1− qeα

∏
α∈R+\RA

1

1− eα
.

We also proved the following formula

KLCn,lr
λ,µ (q) =

∑
T∈SSOT(λ̂,µ̂)

c(T )≤g

q||µ̂||+
|µ̂|−|λ̂|

2
−D(ϕr(T ))

using the row KR crystals B1,µn ⊗ · · · ⊗B1,µ1 of type C
(1)
N .
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Summary and future direction

We also investigate these multiplicities for other Lie types.

Lusztig’s q-weight multiplicity l.r. q-weight multiplicity

type A Lascoux and Schützenberger (1978)

type B D
(2)
N+1-column ? D

(2)
N+1-row

type C B
(1)
N -column C

(1)
N -row

type D ? B
(1)
N -row

For type B, our results currently cover only the case of spin weights.

A natural next step is to fill in the missing entries.

It would also be interesting to investigate the connection with rigged

configurations.
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Thanks for listening

Hyeonjae Choi (SNU) Lusztig’s q-weight multiplicities July 22, 2025 26 / 26


	Appendix

