Lusztig's q-weight multiplicities and KR crystals

Hyeonjae Choi

Seoul National University

(joint work with Donghyun Kim and Seung Jin Lee) arxiv.org/abs/2412.20757

Symmetric function

For a partition λ , the Schur function s_{λ} is defined by

$$s_{\lambda} = \sum_{T} x^{\mathsf{wt}(T)}$$

where the sum is over all semistandard Young tableaux T of shape λ , and for a composition $\alpha=(\alpha_1,\alpha_2,\dots)$, we write $x^\alpha=x_1^{\alpha_1}x_2^{\alpha_2}\cdots$.

Symmetric function

For a partition λ , the Schur function s_{λ} is defined by

$$s_{\lambda} = \sum_{T} x^{\mathsf{wt}(T)}$$

where the sum is over all semistandard Young tableaux T of shape λ , and for a composition $\alpha=(\alpha_1,\alpha_2,\dots)$, we write $x^\alpha=x_1^{\alpha_1}x_2^{\alpha_2}\cdots$.

The Schur function can be expressed as $s_{\lambda} = \sum_{\mu} K_{\lambda,\mu} m_{\mu}$, where m_{μ} is the monomial symmetric function and $K_{\lambda,\mu}$ is the Kostka number.

The Kostka number $K_{\lambda,\mu}$ counts the number of semistandard Young tableaux of shape λ and weight μ .

Kostka-Foulkes polynomial

The Kostka-Foulkes polynomials $K_{\lambda,\mu}(q)$, q-analogue of the Kostka number, are defined by

$$s_{\lambda} = \sum_{\mu} K_{\lambda,\mu}(q) P_{\mu}(x;q),$$

where $P_{\mu}(x;q)$ is the Hall-Littlewood polynomial.

The charge is a statistic on semistandard Young tableaux, introduced by Lascoux and Schtzenberger (1978). It provides a combinatorial formula for the Kostka-Foulkes polynomial:

$$K_{\lambda,\mu}(q) = \sum_{T} q^{\operatorname{charge}(T)}$$

where the sum is over all semistandard Young tableaux T of shape λ and weight $\mu.$

We define the charge on a standard Young tableau T.

Let $\mathrm{Des}(T)$ be the set of integers i such that i+1 appears to the right of i in T. Then the charge is defined by $\sum_{i\in\mathrm{Des}(T)}(n-i)$.

We define the charge on a standard Young tableau T.

Let $\mathrm{Des}(T)$ be the set of integers i such that i+1 appears to the right of i in T. Then the charge is defined by $\sum_{i\in\mathrm{Des}(T)}(n-i)$.

For example, consider the standard Young tableau

$$T = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 4 \\ 5 \end{bmatrix}.$$

We define the charge on a standard Young tableau T.

Let $\mathrm{Des}(T)$ be the set of integers i such that i+1 appears to the right of i in T. Then the charge is defined by $\sum_{i\in\mathrm{Des}(T)}(n-i)$.

For example, consider the standard Young tableau

$$T = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 4 \\ 5 \end{bmatrix}.$$

Then $Des(T) = \{2, 5\}$ and charge(T) = (6-2) + (6-5) = 5.

Generalization

The Kostka-Foulkes polynomials admit two main generalizations:

Generalization

The Kostka-Foulkes polynomials admit two main generalizations:

ullet The Macdonald-Kostka polynomials $K_{\lambda,\mu}(q,t)$, which appear as coefficients when the modified Macdonald polynomials are expanded in terms of the Schur functions. When q=0, the Macdonald-Kostka polynomials reduce to the Kostka-Foulkes polynomials.

Generalization

The Kostka-Foulkes polynomials admit two main generalizations:

- ullet The Macdonald-Kostka polynomials $K_{\lambda,\mu}(q,t)$, which appear as coefficients when the modified Macdonald polynomials are expanded in terms of the Schur functions. When q=0, the Macdonald-Kostka polynomials reduce to the Kostka-Foulkes polynomials.
- Lusztig's q-weight multiplicities, which generalize the Kostka-Foulkes polynomials to other Lie types.

Weight multiplicity

For a Lie algebra \mathfrak{g} , let λ and μ be dominant weights.

The weight multiplicity $KL_{\lambda,\mu}^{\mathfrak{g}}$ is the dimension of the μ -weight space in the irreducible representation of \mathfrak{g} with highest weight λ .

Weight multiplicity

For a Lie algebra \mathfrak{g} , let λ and μ be dominant weights.

The weight multiplicity $KL_{\lambda,\mu}^{\mathfrak{g}}$ is the dimension of the μ -weight space in the irreducible representation of \mathfrak{g} with highest weight λ .

By the Weyl character formula,

$$\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}} = \sum_{w \in W} (-1)^{\ell(w)} [e^{w(\lambda+\rho)-(\mu+\rho)}] \prod_{\alpha \in R^+} \frac{1}{1-e^{\alpha}}$$

where W is Weyl group, R^+ is the set of positive roots, $\rho=\frac{1}{2}\sum_{\alpha\in R^+}\alpha$, and $[e^\beta]f$ denotes the coefficient of e^β in f.

The q-analogue of $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}$ is defined by

$$\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q) = \sum_{w \in W} (-1)^{\ell(w)} \left[e^{w(\lambda + \rho) - (\mu + \rho)} \right] \prod_{\alpha \in \mathbb{R}^+} \frac{1}{1 - qe^{\alpha}}.$$

 $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q)$ is Lusztig's q-weight multiplicity.

•
$$\mathrm{KL}_{\lambda,\mu}^{A_{n-1}}(q) = K_{\lambda,\mu}(q)$$

- $\mathrm{KL}_{\lambda,\mu}^{A_{n-1}}(q) = K_{\lambda,\mu}(q)$
- $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q) = q^{(\ell(\omega_{\lambda}) \ell(\omega_{\mu})/2)} P_{\omega_{\mu},\omega_{\lambda}}^{\hat{\mathfrak{g}}}(q^{-1})$, where $P_{x,y}^{\hat{\mathfrak{g}}}(q)$ is affine Kazhdan-Lusztig polynoimal. So, $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q) \in \mathbb{Z}_{\geq 0}[q]$. [Lusztig '83].

- $\mathrm{KL}_{\lambda,\mu}^{A_{n-1}}(q) = K_{\lambda,\mu}(q)$
- $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q)=q^{(\ell(\omega_{\lambda})-\ell(\omega_{\mu})/2)}P_{\omega_{\mu},\omega_{\lambda}}^{\hat{\mathfrak{g}}}(q^{-1})$, where $P_{x,y}^{\hat{\mathfrak{g}}}(q)$ is affine Kazhdan-Lusztig polynoimal. So, $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q)\in\mathbb{Z}_{\geq 0}[q]$. [Lusztig '83].
- $\mathrm{KL}^{\mathfrak{g}}_{\lambda+(k^n),\mu+(k^n)}(q)$ stabilize for sufficiently large k. These are called stable KL polynomials.

- $\mathrm{KL}_{\lambda,\mu}^{A_{n-1}}(q) = K_{\lambda,\mu}(q)$
- $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q) = q^{(\ell(\omega_{\lambda}) \ell(\omega_{\mu})/2)} P_{\omega_{\mu},\omega_{\lambda}}^{\hat{\mathfrak{g}}}(q^{-1})$, where $P_{x,y}^{\hat{\mathfrak{g}}}(q)$ is affine Kazhdan-Lusztig polynoimal. So, $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g}}(q) \in \mathbb{Z}_{\geq 0}[q]$. [Lusztig '83].
- $\mathrm{KL}^{\mathfrak{g}}_{\lambda+(k^n),\mu+(k^n)}(q)$ stabilize for sufficiently large k. These are called stable KL polynomials.
- Combinatorial formulas for stable KL polynomials are known: for types B and C by Shimozono (2005); and for type D by Lecouvey and Shimozono (2007).

Type C

Long-standing problem : Finding a combinatorial formula for $\mathrm{KL}^{\mathfrak{g}}_{\lambda,\mu}(q)$ beyond type A.

Type C

Long-standing problem : Finding a combinatorial formula for ${\rm KL}_{\lambda,\mu}^{\mathfrak g}(q)$ beyond type A.

For type C,

- Lecouvey (2005) studied cyclage graphs on Kashiwara-Nakashima tableaux and defined charge to conjecture a combinatorial formula.
- Lecouvey and Lenart (2020) provided a combinatorial formula when weight is zero, i.e. $\mathrm{KL}_{\lambda,0}^{C_n}(q)$.

Type C

Long-standing problem : Finding a combinatorial formula for ${\rm KL}_{\lambda,\mu}^{\mathfrak g}(q)$ beyond type A.

For type C,

- Lecouvey (2005) studied cyclage graphs on Kashiwara-Nakashima tableaux and defined charge to conjecture a combinatorial formula.
- Lecouvey and Lenart (2020) provided a combinatorial formula when weight is zero, i.e. $\mathrm{KL}_{\lambda,0}^{C_n}(q)$.

For a partition μ , Lee conjectured a formula in terms of Killirov-Reshitikhin crystals, which was proved by C.-Kim-Lee (2024).

Combinatorial object

There are several known combinatorial models for $\mathrm{KL}_{\lambda,\mu}^{C_n}$:

- Kashiwara-Nakashima tableaux.
- King tableaux.

Combinatorial object

There are several known combinatorial models for $\mathrm{KL}_{\lambda,\mu}^{C_n}$:

- Kashiwara-Nakashima tableaux.
- King tableaux.
- Semistandard oscillating tableaux [Lee '23].

Combinatorial object

There are several known combinatorial models for $\mathrm{KL}_{\lambda,\mu}^{C_n}$:

- Kashiwara-Nakashima tableaux.
- King tableaux.
- Semistandard oscillating tableaux [Lee '23].

In this talk, we focus on semistandard oscillating tableaux.

An oscillating horizontal strip (ohs) S is a triple of partitions (λ,μ,ν) such that both μ/λ and μ/ν are horizontal strips.

We define:

- length(S) = $|\mu/\lambda| + |\mu/\nu|$,
- $I(S) = \lambda$, $F(S) = \nu$, and $c(S) = \mu_1$.

An oscillating horizontal strip (ohs) S is a triple of partitions (λ,μ,ν) such that both μ/λ and μ/ν are horizontal strips.

We define:

- length(S) = $|\mu/\lambda| + |\mu/\nu|$,
- $I(S) = \lambda$, $F(S) = \nu$, and $c(S) = \mu_1$.

A semistandard oscillating tableaux T is a sequence of ohs

$$(S_1, S_2, \cdots, S_n)$$
 satisfying:

- $I(S_1) = \emptyset$,
- $I(S_{i+1}) = F(S_i)$ for $i \in \mathbb{Z}_{>0}$.

A semistandard oscillating tableaux T is a sequence of ohs (S_1, S_2, \cdots, S_n) satisfying:

- $I(S_1) = \emptyset$,
- $I(S_{i+1}) = F(S_i)$ for $i \in \mathbb{Z}_{>0}$.

We define the following:

- $\operatorname{wt}(T) = (\operatorname{length}(S_1), \dots, \operatorname{length}(S_n))$ and $c(T) = \max(c(S_i))$.
- $T \in SSOT(\lambda, \mu)$ if $F(S_n) = \lambda$ and $wt(T) = \mu$.
- $T \in SSOT_{\leq g}(\lambda, \mu)$ if $T \in SSOT(\lambda, \mu)$ and $c(T) \leq g$.

Example

Let
$$\lambda = (0, 0, 0, 0), \mu = (1, 1, 1, 1).$$

Example

Let
$$\lambda = (0, 0, 0, 0), \mu = (1, 1, 1, 1).$$

 $SSOT(\lambda, \mu)$ consists of the following:

- $T_1 = ((\emptyset, \square, \square), (\square, \square, \square), (\square, \square, \square), (\square, \square, \emptyset))$
- $T_2 = ((\emptyset, \square, \square), (\square, \square, \emptyset), (\emptyset, \square, \square), (\square, \square, \emptyset)),$
- $T_3 = ((\emptyset, \square, \square), (\square, \square, \square), (\square, \square, \square), (\square, \square, \emptyset)).$

Example

Let
$$\lambda = (0, 0, 0, 0), \mu = (1, 1, 1, 1).$$

 $SSOT(\lambda, \mu)$ consists of the following:

•
$$T_1 = ((\emptyset, \square, \square), (\square, \square, \square), (\square, \square, \square), (\square, \square, \emptyset)),$$

•
$$T_2 = ((\emptyset, \square, \square), (\square, \square, \emptyset), (\emptyset, \square, \square), (\square, \square, \emptyset)),$$

•
$$T_3 = ((\emptyset, \square, \square), (\square, \square), (\square, \square), (\square, \square, \square), (\square, \square, \emptyset)).$$

 $\mathrm{SSOT}_{\leq 1}(\lambda,\mu)$ contains only T_1 and T_2 , since $c(T_3)=2$.

Type C object

Lee (2023) proved that for any $g \ge \lambda_1$,

$$\mathrm{KL}_{\lambda,\mu}^{C_n} = |\operatorname{SSOT}_{\leq g}(\hat{\lambda}, \hat{\mu})|,$$

where
$$\hat{\lambda} = (g - \lambda_n, \dots, g - \lambda_1)$$
.

Type C object

Lee (2023) proved that for any $g \ge \lambda_1$,

$$\mathrm{KL}_{\lambda,\mu}^{C_n} = |\operatorname{SSOT}_{\leq g}(\hat{\lambda}, \hat{\mu})|,$$

where
$$\hat{\lambda} = (g - \lambda_n, \dots, g - \lambda_1)$$
.

We now investigate the energy function on the Kirillov–Reshetikhin crystal, which plays the role of the charge statistic on SSOT.

Kirillov-Reshetikhin crystal

The Kirillov-Reshetikhin crystals (KR crystals) are crystal bases $B^{r,s}$ for certain irreducible finite-dimensional modules $W_s^{(r)}$, called Kirillov-Reshetikhin modules (KR modules), over the quantized affine algebra $U_a'(\mathfrak{g})$.

Kirillov-Reshetikhin crystal

The Kirillov-Reshetikhin crystals (KR crystals) are crystal bases $B^{r,s}$ for certain irreducible finite-dimensional modules $W^{(r)}_s$, called Kirillov-Reshetikhin modules (KR modules), over the quantized affine algebra $U_q'(\mathfrak{g})$.

- For a partition μ , define $B_{\mu} = B^{\mu_n,1} \otimes \cdots \otimes B^{\mu_1,1}$.
- For a partition λ , let $HW(B_{\mu}, \lambda)$ be the set of classical highest weight elements of weight λ^t in B_{μ} .
- \bullet By duality, we use KR crystals of type $B_N^{(1)}$ for sufficiently large N.

Kirillov-Reshetikhin crystal

There exists a natural bijection between $SSOT(\lambda, \mu)$ and $HW(B_{\mu}, \lambda)$ by recording the column indices.

Kirillov-Reshetikhin crystal

There exists a natural bijection between $SSOT(\lambda, \mu)$ and $HW(B_{\mu}, \lambda)$ by recording the column indices.

For $SSOT_{<1}((0,0,0,0),(1,1,1,1))$, we have:

$$T_{1} = ((\emptyset, \square, \square), (\square, \square, \square), (\square, \square, \square), (\square, \square, \emptyset)) \leftrightarrow -1 \otimes -1 \otimes 1 \otimes 1$$

$$T_{2} = ((\emptyset, \square, \square), (\square, \square, \emptyset), (\emptyset, \square, \square), (\square, \square, \emptyset)) \leftrightarrow -1 \otimes 1 \otimes -1 \otimes 1$$

$$T_2 = ((\emptyset, \square, \square), (\square, \square, \emptyset), (\emptyset, \square, \square), (\square, \square, \emptyset)) \leftrightarrow -1 \otimes 1 \otimes -1 \otimes 1$$

Energy function

The energy function is a map $\overline{D}:B\to\mathbb{Z}$, which is constant on each classical component.

It is defined locally using the combinatorial R-matrix and the crystal operator e_0 , and then extended globally.

Energy function

The energy function is a map $\overline{D}:B\to\mathbb{Z}$, which is constant on each classical component.

It is defined locally using the combinatorial R-matrix and the crystal operator e_0 , and then extended globally.

In general, the energy function is difficult to compute.

However, when $B=(B^{1,1})^{\otimes n}$, the energy function can be computed explicitly.

Energy function when standard case

Let $a_n \otimes a_{n-1} \otimes \cdots \otimes a_1$ be an element in $(B^{1,1})^{\otimes n}$ of type $B_N^{(1)}$.

Energy function when standard case

Let $a_n \otimes a_{n-1} \otimes \cdots \otimes a_1$ be an element in $(B^{1,1})^{\otimes n}$ of type $B_N^{(1)}$. The local energy function H(b,a) is defined by:

$$H(b,a) = \begin{cases} 2 & \text{if } a = 1 \text{ and } b = \overline{1} \\ 1 & \text{if } b \succ a \text{ and } (b,a) \neq (\overline{1},1) \\ 0 & \text{if } b \preceq a \end{cases}$$

under the order $1 \prec 2 \prec \cdots \prec \bar{2} \prec \bar{1}$.

Energy function when standard case

Let $a_n \otimes a_{n-1} \otimes \cdots \otimes a_1$ be an element in $(B^{1,1})^{\otimes n}$ of type $B_N^{(1)}$. The local energy function H(b, a) is defined by:

$$H(b,a) = \begin{cases} 2 & \text{if } a = 1 \text{ and } b = \overline{1} \\ 1 & \text{if } b \succ a \text{ and } (b,a) \neq (\overline{1},1) \\ 0 & \text{if } b \preceq a \end{cases}$$

under the order $1 \prec 2 \prec \cdots \prec \bar{2} \prec \bar{1}$. The energy function \overline{D} is defined by $\overline{D} = \sum\limits_{i=1}^{n-1} (n-i)H(a_{i+1},a_i)$.

Type A case

For type A, the energy function coincides with the charge statistics [Nakayashiki-Yamada '97].

Type A case

For type A, the energy function coincides with the charge statistics [Nakayashiki-Yamada '97].

For example, consider

$$T = \begin{array}{|c|c|}\hline 1 & 3 & 6 \\\hline 2 & 4 \\\hline 5 & \end{array} \leftrightarrow 3 \otimes 1 \otimes 2 \otimes 2 \otimes 1 \otimes 1$$

Since $3\otimes 1\otimes 2\otimes 2\otimes 1\otimes 1$, we have $\overline{D}(T)=(6-5)+(6-2)=5$, which exactly matches the charge of T.

SSOT(
$$(0,0,0,0),(1,1,1,1)$$
) = $\{T_1,T_2,T_3\}$ where $T_1 = -1 \otimes -1 \otimes 1 \otimes 1$, $T_2 = -1 \otimes 1 \otimes -1 \otimes 1$, and $T_3 = -1 \otimes -2 \otimes 2 \otimes 1$.

$$\begin{split} & \text{SSOT}((0,0,0,0),(1,1,1,1)) = \{T_1,T_2,T_3\} \text{ where } T_1 = -1 \otimes -1 \otimes 1 \otimes 1, \\ & T_2 = -1 \otimes 1 \otimes -1 \otimes 1, \text{ and } T_3 = -1 \otimes -2 \otimes 2 \otimes 1. \end{split}$$

- $-1 \otimes -1 \otimes 1 \otimes 1$ with $\overline{D}(T_1) = (4-2) \times 2 = 4$.
- $-1 \otimes 1 \otimes -1 \otimes 1$ with $\overline{D}(T_2) = (4-3) \times 2 + (4-1) \times 2 = 8$.
- $-1 \otimes -2 \otimes 2 \otimes 1$ with $\overline{D}(T_3) = (4-3) + (4-2) + (4-1) = 6$.

Main theorem

Theorem (C.-Kim-Lee, 2024)

$$\mathrm{KL}_{\lambda,\mu}^{C_n}(q) = \sum_{T \in \mathrm{SSOT}_{\leq q}(\hat{\lambda},\hat{\mu})} q^{\overline{D}(T)},$$

where $g \geq \lambda_1$.

Main theorem

Theorem (C.-Kim-Lee, 2024)

$$\mathrm{KL}_{\lambda,\mu}^{C_n}(q) = \sum_{T \in \mathrm{SSOT}_{\leq q}(\hat{\lambda},\hat{\mu})} q^{\overline{D}(T)},$$

where $q > \lambda_1$.

As a corollary, we have $\mathrm{KL}_{\lambda+(1^n),\mu+(1^n)}^{C_n}(q) \geq \mathrm{KL}_{\lambda,\mu}^{C_n}(q)$,

since $SSOT_{\leq g+1}(\hat{\lambda}, \hat{\mu}) \supseteq SSOT_{\leq g}(\hat{\lambda}, \hat{\mu})$.

Let
$$\hat{\lambda} = (0, 0, 0, 0)$$
 and $\hat{\mu} = (1, 1, 1, 1)$.

Let
$$\hat{\lambda} = (0, 0, 0, 0)$$
 and $\hat{\mu} = (1, 1, 1, 1)$.

When g=1, we have $\lambda=(1,1,1,1)$ and $\mu=(0,0,0,0).$

$$\mathrm{KL}_{(1,1,1,1),(0,0,0,0)}^{C_n}(q) = q^{\overline{D}(T_1)} + q^{\overline{D}(T_2)} = q^8 + q^4.$$

Let $\hat{\lambda} = (0, 0, 0, 0)$ and $\hat{\mu} = (1, 1, 1, 1)$.

When g=1, we have $\lambda=(1,1,1,1)$ and $\mu=(0,0,0,0).$

$$\mathrm{KL}_{(1,1,1,1),(0,0,0,0)}^{C_n}(q) = q^{\overline{D}(T_1)} + q^{\overline{D}(T_2)} = q^8 + q^4.$$

When g=2, we have $\lambda=(2,2,2,2)$ and $\mu=(1,1,1,1)$.

$$\mathrm{KL}_{(2,2,2,2),(1,1,1,1)}^{C_n}(q) = q^{\overline{D}(T_1)} + q^{\overline{D}(T_2)} + q^{\overline{D}(T_3)} = q^8 + q^6 + q^4.$$

We introduce another natural q-analogue of the weight multiplicity, called the level-restricted q-weight multiplicity.

We introduce another natural q-analogue of the weight multiplicity, called the level-restricted q-weight multiplicity.

We define a subset R_A of R^+ by $R_A = \{\varepsilon_i - \varepsilon_j \text{ for } i < j\}$.

We introduce another natural q-analogue of the weight multiplicity, called the level-restricted q-weight multiplicity.

We define a subset R_A of R^+ by $R_A = \{\varepsilon_i - \varepsilon_j \text{ for } i < j\}$.

The level-restricted q-weight multiplicity $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g},lr}(q)$ is defined by

$$\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g},lr}(q) = \sum_{w \in W} (-1)^{\ell(w)} [e^{w(\lambda+\rho)-(\mu+\rho)}] \prod_{\alpha \in R_A} \frac{1}{1-qe^{\alpha}} \prod_{\alpha \in R^+ \backslash R_A} \frac{1}{1-e^{\alpha}}.$$

We introduce another natural q-analogue of the weight multiplicity, called the level-restricted q-weight multiplicity.

We define a subset R_A of R^+ by $R_A = \{\varepsilon_i - \varepsilon_j \text{ for } i < j\}$.

The level-restricted q-weight multiplicity $\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g},lr}(q)$ is defined by

$$\mathrm{KL}_{\lambda,\mu}^{\mathfrak{g},lr}(q) = \sum_{w \in W} (-1)^{\ell(w)} [e^{w(\lambda+\rho)-(\mu+\rho)}] \prod_{\alpha \in R_A} \frac{1}{1 - qe^{\alpha}} \prod_{\alpha \in R^+ \setminus R_A} \frac{1}{1 - e^{\alpha}}.$$

We also proved the following formula

$$\mathrm{KL}_{\lambda,\mu}^{C_n,lr}(q) = \sum_{\substack{T \in \mathrm{SSOT}(\hat{\lambda},\hat{\mu}) \\ c(T) \leq g}} q^{||\hat{\mu}|| + \frac{|\hat{\mu}| - |\hat{\lambda}|}{2} - \overline{D}(\phi_r(T))}$$

using the row KR crystals $B^{1,\mu_n} \otimes \cdots \otimes B^{1,\mu_1}$ of type $C_N^{(1)}$.

Summary and future direction

We also investigate these multiplicities for other Lie types.

	Lusztig's q -weight multiplicity		I.r. q-weight multiplicity
type A	Lascoux and Schützenberger (1978)		
type B	$D_{N+1}^{(2)}$ -column	?	$D_{N+1}^{(2)}$ -row
type C	$B_N^{(1)}$ -co	olumn	$C_N^{(1)}$ -row
type D	?		$B_N^{(1)}$ -row

ullet For type B, our results currently cover only the case of spin weights.

Summary and future direction

We also investigate these multiplicities for other Lie types.

	Lusztig's q -weight multiplicity		I.r. q-weight multiplicity	
type A	Lascoux and Schützenberger (1978)			
type B	$D_{N+1}^{(2)}$ -column	?	$D_{N+1}^{(2)}$ -row	
type C	$B_N^{(1)}$ -co	olumn	$C_N^{(1)}$ -row	
type D	?		$B_N^{(1)}$ -row	

- ullet For type B, our results currently cover only the case of spin weights.
- A natural next step is to fill in the missing entries.

Summary and future direction

We also investigate these multiplicities for other Lie types.

	Lusztig's q -weight multiplicity		I.r. q-weight multiplicity	
type A	Lascoux and Schützenberger (1978)			
type B	$D_{N+1}^{(2)}$ -column	?	$D_{N+1}^{(2)}$ -row	
type C	$B_N^{(1)}$ -co		$C_N^{(1)}$ -row	
type D	?		$B_N^{(1)}$ -row	

- ullet For type B, our results currently cover only the case of spin weights.
- A natural next step is to fill in the missing entries.
- It would also be interesting to investigate the connection with rigged configurations.

Thanks for listening