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What the heck is coNP???

For the purposes of this talk, you can mentally replace coNP-hard with
NP-hard, or just “hard”, and you will lose essentially nothing.
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Stable Polynomials

Stable Polynomials
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Stable Polynomials

Real Stable Polynomials

Definition

A polynomial f ∈ R[x1, . . . , xn] is real stable if f (ta+ b) ∈ R[t] is
real-rooted for all a ∈ Rn

>0, b ∈ Rn.

Equivalently, f is real stable if f (z1, . . . , zn) ̸= 0 whenever
Im(z1), . . . , Im(zn) > 0.

Implies negative correlation

Implies ultra log-concave coefficients

Interlacing and real-rootedness

Most proofs using stable polynomials start with a polynomial known to be
stable, then apply a series of stability-preserving operations.
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Stable Polynomials

Real Stability is Hard

Theorem (C. 2024)

It is coNP-hard to decide if a homogeneous cubic polynomial is real stable.
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Stable Polynomials

Main Tool: Hyperbolic Polynomials

Definition

Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial and let e ∈ Rn. We
say that f is hyperbolic with respect to e if f (e) > 0 and f (te + x) ∈ R[t]
is real-rooted for all x ∈ Rn.

Fact

A homogeneous polynomial f ∈ R[x1, . . . , xn] is real
stable if and only if it is hyperbolic with respect to
every e ∈ Rn

>0.

Theorem (Gårding, 1959)

If f is hyperbolic with respect to e, then it is also
hyperbolic with respect to every a in the connected
component of Rn \ VR(f ) containing e.
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Stable Polynomials

Real Stability is coNP-Hard

Theorem (Saunderson, 2019)

Let p(x0, x) = x30 − 3x0∥x∥2 + 2q(x). Then p is hyperbolic with respect to
e0 if and only if max∥x∥=1 |q(x)| ≤ 1.

•

p(e0) = 1

p > 0

p is hyperbolic with respect to e0 if and
only if it is hyperbolic with respect to
every point in the red cone.

After a change of variables, the red cone
acts like R2n

≥0, so p̃ is stable if and only
if p is hyperbolic with respect to e0.
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Stable Polynomials

Real Stability is coNP-Hard

If we can test stability, then we can test if a cubic is at most 1 on the
unit sphere.

(Nesterov, 2003) If we can test the maximum of a cubic on the unit
sphere, then we can compute the clique number of a graph:

max
∥x∥2+∥y∥2=1

∑
ij∈E

xixjyij =

√
2

27

√
1− 1

ω(G )
.

Theorem (C. 2024)

Testing whether a homogeneous cubic polynomial is real stable is
coNP-hard.

Corollary (C. 2024)

Testing whether a homogeneous polynomial of degree d ≥ 3 is real stable
is coNP-hard.
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Log-Concave Polynomials

Log-Concave Polynomials
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Log-Concave Polynomials

Log-Concave Polynomials

Definition

Let f ∈ R≥0[x1, . . . , xn]. We say that f is log concave if log(f ) is concave
as a function on Rn

>0.

Theorem (C. 2024)

It is coNP-hard to decide if a homogeneous polynomial of degree 4 is log
concave.
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Log-Concave Polynomials

Convexity is Hard

Theorem (Ahmadi et al., 2011)

Let b be a biquadratic form in 2n variables, and let

f = b(x ; y) +
n2γ

2

(∑
x4i +

∑
y4i +

∑
x2i x

2
j +

∑
y2i y

2
j

)
.

Then f is convex if and only if b is PSD.

Theorem (Motzkin and Straus, 1965)

Let G be a graph and let ω(G ) denote its clique number. Then

bG (x , y) = −2k
∑
ij∈E

xixjyiyj − (1− k)∥x∥2∥y∥2

is PSD if and only if ω(G ) ≤ k.
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Log-Concave Polynomials

Convexity to Log-Concavity

Theorem (Ahmadi et al., 2011; Motzkin and Straus, 1965)

Let G be a graph on n vertices, and let

f = bG (x ; y) +
n2γ

2

(∑
x4i +

∑
y4i +

∑
x2i x

2
j +

∑
y2i y

2
j

)
.

Then f is convex if and only if ω(G ) ≤ k.

Theorem (C. 2024)

Suppose f ∈ R[x1, . . . , xn] is a homogeneous quartic, and let N > 0 be at
least as large as the largest coefficient of f . Define

g(x1, . . . , xn, z) = N(x1 + · · ·+ xn + z)4 − f (x).

Then g is log concave if and only if f is convex on Rn
≥0.
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Log-Concave Polynomials

Convexity to Log-Concavity

Theorem

g = N(x1 + · · ·+ xn + z)4 − f (x) is log concave if and only if f is convex
on Rn

≥0.

Fact

If p is homogeneous of degree d ≥ 2, then p is log concave at a ∈ Rn
>0 if

and only if ∇2p(a) has at most one positive eigenvalue.

Note ∇2g = 12N(x1 + · · ·+ xn + z)211T −∇2f

If f is convex, then ∇2g has at most 1 positive
eigenvalue.

If v⃗ is an eigenvector of ∇2f (x) with a
negative eigenvalue, then ∇2g(x , 1) is positive

definite on span

{(
v⃗
0

)
,

(
0⃗
1

)}
⇒ ∇2g(x , 1) has at least 2 positive eigenvalues

Rn

∇2g ≻ 0

(⃗0, 1)

(v⃗ , 0)
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Log-Concave Polynomials

Putting it together...

f is convex on R2n
≥0 if and only if ω(G ) ≤ k

g is log concave if and only if f is convex on R2n
≥0

... so it is coNP-hard to test if g is log concave.

Corollary

It is coNP-hard to test if a homogeneous polynomial of degree d ≥ 4 is log
concave.
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Plot Twist!

Lorentzian Polynomials

Definition

A homogeneous polynomial f ∈ R≥0[x1, . . . , xn] is Lorentzian if for all
α ∈ Zn

≥0, ∂
αf is log concave.

Fact

For homogeneous polynomials with nonnegative coefficients

real stable︸ ︷︷ ︸
hard!

⊆ Lorentzian

︸ ︷︷ ︸
polynomial time!!!

⊆ log concave︸ ︷︷ ︸
hard!
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Plot Twist!

Strong Log Concavity is Easy

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time O(nd+1)

Lemma (Anari et al., 2024; Brändén and Huh, 2020)

For f homogeneous of degree d ≥ 2, f is Lorentzian if and only if

(i) For all |α| ≤ d − 2, the graph with edges {ij : ∂2
ij f ̸= 0} is connected

(ii) For all |α| = d − 2, ∇2∂αf has one positive eigenvalue

O(nd−2) derivatives to check

For |α| ≤ d − 2, check connectivity of a graph → O(n2 · nd−2)

For |α| = d − 2, diagonalize the quadratic form → O(n3 · nd−2)
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For f homogeneous of degree d ≥ 2, f is Lorentzian if and only if

(i) For all |α| ≤ d − 2, the graph with edges {ij : ∂2
ij f ̸= 0} is connected

(ii) For all |α| = d − 2, ∇2∂αf has one positive eigenvalue

O(nd−2) derivatives to check

For |α| ≤ d − 2, check connectivity of a graph → O(n2 · nd−2)

For |α| = d − 2, diagonalize the quadratic form → O(n3 · nd−2)

Tracy Chin (UW) Stability and Log Concavity are coNP-Hard FPSAC 2025 17 / 21



Plot Twist!

Strong Log Concavity is Easy

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time O(nd+1)

Lemma (Anari et al., 2024; Brändén and Huh, 2020)
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Future Directions

Why not coNP-complete?

There are obvious certificates that a polynomial is not real stable or
that it is not log concave, so why not say coNP-complete?

Don’t know that the “obvious” certificates are polynomial size

Open Question

Are real stability and log-concavity in coNP?

Open Question

Real stability and log concavity are in the complexity class ∀R (universal
theory of the reals). Are they ∀R-complete?
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Future Directions

Morals

If you want log concavity, check Lorentzianity first

Only look for stability if you have a reason to suspect it might be
there

Operations that look like derivatives or other “nice” linear operators

My undergrad CS professor was right
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Thank you!
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Degree Minimality

Theorem (C. 2024)

Real stability is coNP-hard for degree d ≥ 3.

Log concavity is coNP-hard for degree d ≥ 4.

In degree d = 2, real stable = strongly log-concave = log-concave.

Theorem (C. 2024)

If f ∈ R≥0[x1, . . . , xn] is homogeneous of degree 3 such that the graph
{ij : ∂i∂j f ̸= 0} is connected, then f is log concave if and only if
∂1f , . . . , ∂nf are log concave.

∇2f (x) =
∑n

i=1 xi∇2∂i f (x)

∂i f is quadratic, so ∇2∂i f is constant

f log-concave ⇒
∑

xi∇2∂i f has one positive eigenvalue for all
x ∈ Rn

>0 ⇒ ∇2∂i f has one positive eigenvalue
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