Real Stability and Log Concavity are coNP-Hard

Tracy Chin

University of Washington

FPSAC 2025

arXiv:2405.00162

What the heck is coNP???

For the purposes of this talk, you can mentally replace coNP-hard with NP-hard, or just "hard", and you will lose essentially nothing.

Stable Polynomials

Definition

A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *real stable* if $f(ta+b) \in \mathbb{R}[t]$ is real-rooted for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$.

Definition

A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *real stable* if $f(ta+b) \in \mathbb{R}[t]$ is real-rooted for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$.

Equivalently, f is real stable if $f(z_1, ..., z_n) \neq 0$ whenever $Im(z_1), ..., Im(z_n) > 0$.

Definition

A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *real stable* if $f(ta+b) \in \mathbb{R}[t]$ is real-rooted for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$.

Equivalently, f is real stable if $f(z_1, ..., z_n) \neq 0$ whenever $Im(z_1), ..., Im(z_n) > 0$.

• Implies negative correlation

Definition

A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *real stable* if $f(ta+b) \in \mathbb{R}[t]$ is real-rooted for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$.

Equivalently, f is real stable if $f(z_1, ..., z_n) \neq 0$ whenever $Im(z_1), ..., Im(z_n) > 0$.

- Implies negative correlation
- Implies ultra log-concave coefficients

Definition

A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *real stable* if $f(ta+b) \in \mathbb{R}[t]$ is real-rooted for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$.

Equivalently, f is real stable if $f(z_1, ..., z_n) \neq 0$ whenever $Im(z_1), ..., Im(z_n) > 0$.

- Implies negative correlation
- Implies ultra log-concave coefficients
- Interlacing and real-rootedness

Definition

A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *real stable* if $f(ta+b) \in \mathbb{R}[t]$ is real-rooted for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$.

Equivalently, f is real stable if $f(z_1, ..., z_n) \neq 0$ whenever $Im(z_1), ..., Im(z_n) > 0$.

- Implies negative correlation
- Implies ultra log-concave coefficients
- Interlacing and real-rootedness

Most proofs using stable polynomials start with a polynomial known to be stable, then apply a series of stability-preserving operations.

Real Stability is Hard

Theorem (C. 2024)

It is coNP-hard to decide if a homogeneous cubic polynomial is real stable.

Main Tool: Hyperbolic Polynomials

Definition

Let $f \in \mathbb{R}[x_1, \dots, x_n]$ be a homogeneous polynomial and let $e \in \mathbb{R}^n$. We say that f is hyperbolic with respect to e if f(e) > 0 and $f(te + x) \in \mathbb{R}[t]$ is real-rooted for all $x \in \mathbb{R}^n$.

Main Tool: Hyperbolic Polynomials

Definition

Let $f \in \mathbb{R}[x_1, \dots, x_n]$ be a homogeneous polynomial and let $e \in \mathbb{R}^n$. We say that f is hyperbolic with respect to e if f(e) > 0 and $f(te + x) \in \mathbb{R}[t]$ is real-rooted for all $x \in \mathbb{R}^n$.

Fact

A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is real stable if and only if it is hyperbolic with respect to every $e \in \mathbb{R}^n_{>0}$.

Main Tool: Hyperbolic Polynomials

Definition

Let $f \in \mathbb{R}[x_1, \dots, x_n]$ be a homogeneous polynomial and let $e \in \mathbb{R}^n$. We say that f is hyperbolic with respect to e if f(e) > 0 and $f(te + x) \in \mathbb{R}[t]$ is real-rooted for all $x \in \mathbb{R}^n$.

Fact

A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is real stable if and only if it is hyperbolic with respect to every $e \in \mathbb{R}^n_{>0}$.

Theorem (Gårding, 1959)

If f is hyperbolic with respect to e, then it is also hyperbolic with respect to every a in the connected component of $\mathbb{R}^n \setminus V_{\mathbb{R}}(f)$ containing e.

Theorem (Saunderson, 2019)

Theorem (Saunderson, 2019)

Theorem (Saunderson, 2019)

Theorem (Saunderson, 2019)

Let $p(x_0, x) = x_0^3 - 3x_0 ||x||^2 + 2q(x)$. Then p is hyperbolic with respect to e_0 if and only if $\max_{||x||=1} |q(x)| \le 1$.

 p is hyperbolic with respect to e₀ if and only if it is hyperbolic with respect to every point in the red cone.

Theorem (Saunderson, 2019)

- p is hyperbolic with respect to e₀ if and only if it is hyperbolic with respect to every point in the red cone.
- After a change of variables, the red cone acts like $\mathbb{R}^{2n}_{\geq 0}$, so \widetilde{p} is stable if and only if p is hyperbolic with respect to e_0 .

• If we can test stability, then we can test if a cubic is at most 1 on the unit sphere.

- If we can test stability, then we can test if a cubic is at most 1 on the unit sphere.
- (Nesterov, 2003) If we can test the maximum of a cubic on the unit sphere, then we can compute the clique number of a graph:

$$\max_{\|x\|^2 + \|y\|^2 = 1} \sum_{ij \in E} x_i x_j y_{ij} = \sqrt{\frac{2}{27}} \sqrt{1 - \frac{1}{\omega(G)}}.$$

- If we can test stability, then we can test if a cubic is at most 1 on the unit sphere.
- (Nesterov, 2003) If we can test the maximum of a cubic on the unit sphere, then we can compute the clique number of a graph:

$$\max_{\|x\|^2 + \|y\|^2 = 1} \sum_{ij \in E} x_i x_j y_{ij} = \sqrt{\frac{2}{27}} \sqrt{1 - \frac{1}{\omega(G)}}.$$

Theorem (C. 2024)

Testing whether a homogeneous cubic polynomial is real stable is coNP-hard.

- If we can test stability, then we can test if a cubic is at most 1 on the unit sphere.
- (Nesterov, 2003) If we can test the maximum of a cubic on the unit sphere, then we can compute the clique number of a graph:

$$\max_{\|x\|^2 + \|y\|^2 = 1} \sum_{ij \in E} x_i x_j y_{ij} = \sqrt{\frac{2}{27}} \sqrt{1 - \frac{1}{\omega(G)}}.$$

Theorem (C. 2024)

Testing whether a homogeneous cubic polynomial is real stable is coNP-hard.

Corollary (C. 2024)

Testing whether a homogeneous polynomial of degree $d \ge 3$ is real stable is coNP-hard.

Log-Concave Polynomials

Log-Concave Polynomials

Definition

Let $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_n]$. We say that f is log concave if $\log(f)$ is concave as a function on $\mathbb{R}_{>0}^n$.

Log-Concave Polynomials

Definition

Let $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_n]$. We say that f is log concave if $\log(f)$ is concave as a function on $\mathbb{R}_{>0}^n$.

Theorem (C. 2024)

It is coNP-hard to decide if a homogeneous polynomial of degree 4 is log concave.

Convexity is Hard

Theorem (Ahmadi et al., 2011)

Let b be a biquadratic form in 2n variables, and let

$$f = b(x; y) + \frac{n^2 \gamma}{2} \left(\sum x_i^4 + \sum y_i^4 + \sum x_i^2 x_j^2 + \sum y_i^2 y_j^2 \right).$$

Then f is convex if and only if b is PSD.

Convexity is Hard

Theorem (Ahmadi et al., 2011)

Let b be a biquadratic form in 2n variables, and let

$$f = b(x; y) + \frac{n^2 \gamma}{2} \left(\sum x_i^4 + \sum y_i^4 + \sum x_i^2 x_j^2 + \sum y_i^2 y_j^2 \right).$$

Then f is convex if and only if b is PSD.

Theorem (Motzkin and Straus, 1965)

Let G be a graph and let $\omega(G)$ denote its clique number. Then

$$b_G(x,y) = -2k \sum_{ij \in E} x_i x_j y_i y_j - (1-k) ||x||^2 ||y||^2$$

is PSD if and only if $\omega(G) \leq k$.

Theorem (Ahmadi et al., 2011; Motzkin and Straus, 1965)

Let G be a graph on n vertices, and let

$$f = b_G(x; y) + \frac{n^2 \gamma}{2} \left(\sum x_i^4 + \sum y_i^4 + \sum x_i^2 x_j^2 + \sum y_i^2 y_j^2 \right).$$

Then f is convex if and only if $\omega(G) \leq k$.

Theorem (Ahmadi et al., 2011; Motzkin and Straus, 1965; C. 2024)

Let G be a graph on n vertices, and let

$$f = b_G(x; y) + \frac{n^2 \gamma}{2} \left(\sum_i x_i^4 + \sum_j y_i^4 + \sum_i x_i^2 x_j^2 + \sum_j y_i^2 y_j^2 \right).$$

Then f is convex on $\mathbb{R}^{2n}_{>0}$ if and only if $\omega(G) \leq k$.

Theorem (Ahmadi et al., 2011; Motzkin and Straus, 1965; C. 2024)

Let G be a graph on n vertices, and let

$$f = b_G(x; y) + \frac{n^2 \gamma}{2} \left(\sum x_i^4 + \sum y_i^4 + \sum x_i^2 x_j^2 + \sum y_i^2 y_j^2 \right).$$

Then f is convex on $\mathbb{R}^{2n}_{>0}$ if and only if $\omega(G) \leq k$.

Theorem (C. 2024)

Suppose $f \in \mathbb{R}[x_1, \dots, x_n]$ is a homogeneous quartic, and let N > 0 be at least as large as the largest coefficient of f. Define

$$g(x_1,...,x_n,z) = N(x_1 + \cdots + x_n + z)^4 - f(x).$$

Then g is log concave if and only if f is convex on $\mathbb{R}^n_{>0}$.

Theorem

$$g = N(x_1 + \cdots + x_n + z)^4 - f(x)$$
 is log concave if and only if f is convex on $\mathbb{R}^n_{\geq 0}$.

Fact

If p is homogeneous of degree $d \ge 2$, then p is log concave at $a \in \mathbb{R}^n_{>0}$ if and only if $\nabla^2 p(a)$ has at most one positive eigenvalue.

Theorem

 $g = N(x_1 + \cdots + x_n + z)^4 - f(x)$ is log concave if and only if f is convex on $\mathbb{R}^n_{\geq 0}$.

Fact

If p is homogeneous of degree $d \ge 2$, then p is log concave at $a \in \mathbb{R}^n_{>0}$ if and only if $\nabla^2 p(a)$ has at most one positive eigenvalue.

Note
$$\nabla^2 g = 12N(x_1 + \cdots + x_n + z)^2 \mathbb{11}^T - \nabla^2 f$$

Theorem

 $g = N(x_1 + \cdots + x_n + z)^4 - f(x)$ is log concave if and only if f is convex on $\mathbb{R}^n_{\geq 0}$.

Fact

If p is homogeneous of degree $d \ge 2$, then p is log concave at $a \in \mathbb{R}^n_{>0}$ if and only if $\nabla^2 p(a)$ has at most one positive eigenvalue.

Note
$$\nabla^2 g = 12N(x_1 + \cdots + x_n + z)^2 \mathbb{1} \mathbb{1}^T - \nabla^2 f$$

• If f is convex, then $\nabla^2 g$ has at most 1 positive eigenvalue.

Theorem

$$g = N(x_1 + \cdots + x_n + z)^4 - f(x)$$
 is log concave if and only if f is convex on $\mathbb{R}^n_{\geq 0}$.

Fact

If p is homogeneous of degree $d \ge 2$, then p is log concave at $a \in \mathbb{R}^n_{>0}$ if and only if $\nabla^2 p(a)$ has at most one positive eigenvalue.

Note
$$\nabla^2 g = 12N(x_1 + \dots + x_n + z)^2 \mathbb{1} \mathbb{1}^T - \nabla^2 f$$

- If f is convex, then $\nabla^2 g$ has at most 1 positive eigenvalue.
- If \vec{v} is an eigenvector of $\nabla^2 f(x)$ with a negative eigenvalue, then $\nabla^2 g(x,1)$ is positive definite on span $\left\{ \begin{pmatrix} \vec{v} \\ 0 \end{pmatrix}, \begin{pmatrix} \vec{0} \\ 1 \end{pmatrix} \right\}$

Theorem

 $g = N(x_1 + \cdots + x_n + z)^4 - f(x)$ is log concave if and only if f is convex on $\mathbb{R}^n_{>0}$.

Fact

If p is homogeneous of degree $d \geq 2$, then p is log concave at $a \in \mathbb{R}^n_{>0}$ if and only if $\nabla^2 p(a)$ has at most one positive eigenvalue.

Note
$$\nabla^2 g = 12N(x_1 + \dots + x_n + z)^2 \mathbb{1} \mathbb{1}^T - \nabla^2 f$$

- If f is convex, then $\nabla^2 g$ has at most 1 positive eigenvalue.
- If \vec{v} is an eigenvector of $\nabla^2 f(x)$ with a negative eigenvalue, then $\nabla^2 g(x,1)$ is positive definite on span $\left\{ \begin{pmatrix} \vec{v} \\ 0 \end{pmatrix}, \begin{pmatrix} \vec{0} \\ 1 \end{pmatrix} \right\}$

Theorem

 $g = N(x_1 + \cdots + x_n + z)^4 - f(x)$ is log concave if and only if f is convex on $\mathbb{R}^n_{\geq 0}$.

Fact

If p is homogeneous of degree $d \ge 2$, then p is log concave at $a \in \mathbb{R}^n_{>0}$ if and only if $\nabla^2 p(a)$ has at most one positive eigenvalue.

Note
$$\nabla^2 g = 12N(x_1 + \dots + x_n + z)^2 \mathbb{1} \mathbb{1}^T - \nabla^2 f$$

- If f is convex, then $\nabla^2 g$ has at most 1 positive eigenvalue.
- If \vec{v} is an eigenvector of $\nabla^2 f(x)$ with a negative eigenvalue, then $\nabla^2 g(x,1)$ is positive definite on span $\left\{ \begin{pmatrix} \vec{v} \\ 0 \end{pmatrix}, \begin{pmatrix} \vec{0} \\ 1 \end{pmatrix} \right\}$

• f is convex on $\mathbb{R}^{2n}_{>0}$ if and only if $\omega(G) \leq k$

- f is convex on $\mathbb{R}^{2n}_{>0}$ if and only if $\omega(G) \leq k$
- g is log concave if and only if f is convex on $\mathbb{R}^{2n}_{\geq 0}$

- f is convex on $\mathbb{R}^{2n}_{\geq 0}$ if and only if $\omega(G) \leq k$
- g is log concave if and only if f is convex on $\mathbb{R}^{2n}_{\geq 0}$

... so it is coNP-hard to test if g is log concave.

- f is convex on $\mathbb{R}^{2n}_{>0}$ if and only if $\omega(G) \leq k$
- g is log concave if and only if f is convex on $\mathbb{R}^{2n}_{\geq 0}$

... so it is coNP-hard to test if g is log concave.

Corollary

It is coNP-hard to test if a homogeneous polynomial of degree $d \ge 4$ is log concave.

Plot Twist!

Lorentzian Polynomials

Definition

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_n]$ is *Lorentzian* if for all $\alpha \in \mathbb{Z}_{\geq 0}^n$, $\partial^{\alpha} f$ is log concave.

Lorentzian Polynomials

Definition

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_n]$ is *Lorentzian* if for all $\alpha \in \mathbb{Z}_{\geq 0}^n$, $\partial^{\alpha} f$ is log concave.

Fact

For homogeneous polynomials with nonnegative coefficients

$$\underbrace{real\ stable}_{\textit{hard!}} \subseteq \underbrace{Lorentzian} \subseteq \underbrace{log\ concave}_{\textit{hard!}}$$

Lorentzian Polynomials

Definition

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_n]$ is *Lorentzian* if for all $\alpha \in \mathbb{Z}_{\geq 0}^n$, $\partial^{\alpha} f$ is log concave.

Fact

For homogeneous polynomials with nonnegative coefficients

$$\underbrace{\textit{real stable}}_{\textit{hard!}} \subseteq \underbrace{\textit{Lorentzian}}_{\textit{polynomial time!!!}} \subseteq \underbrace{\textit{log concave}}_{\textit{hard!}}$$

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time $O(n^{d+1})$

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time $O(n^{d+1})$

Lemma (Anari et al., 2024; Brändén and Huh, 2020)

- **③** For all $|\alpha| \leq d-2$, the graph with edges $\{ij: \partial_{ij}^2 f \neq 0\}$ is connected
- **1** For all $|\alpha| = d 2$, $\nabla^2 \partial^{\alpha} f$ has one positive eigenvalue

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time $O(n^{d+1})$

Lemma (Anari et al., 2024; Brändén and Huh, 2020)

- **⑤** For all $|\alpha| \leq d-2$, the graph with edges $\{ij : \partial_{ii}^2 f \neq 0\}$ is connected
- ① For all $|\alpha| = d 2$, $\nabla^2 \partial^{\alpha} f$ has one positive eigenvalue
 - $O(n^{d-2})$ derivatives to check

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time $O(n^{d+1})$

Lemma (Anari et al., 2024; Brändén and Huh, 2020)

- **1** For all $|\alpha| \le d-2$, the graph with edges $\{ij : \partial_{ij}^2 f \ne 0\}$ is connected
- **1** For all $|\alpha| = d 2$, $\nabla^2 \partial^{\alpha} f$ has one positive eigenvalue
 - $O(n^{d-2})$ derivatives to check
 - For $|\alpha| \le d-2$, check connectivity of a graph $\to O(n^2 \cdot n^{d-2})$

Theorem (C. 2024)

For fixed degree d, we can decide Lorentzianity in time $O(n^{d+1})$

Lemma (Anari et al., 2024; Brändén and Huh, 2020)

- **1** For all $|\alpha| \le d-2$, the graph with edges $\{ij : \partial_{ij}^2 f \ne 0\}$ is connected
- **1** For all $|\alpha| = d 2$, $\nabla^2 \partial^{\alpha} f$ has one positive eigenvalue
 - $O(n^{d-2})$ derivatives to check
 - For $|\alpha| \leq d-2$, check connectivity of a graph $\rightarrow O(n^2 \cdot n^{d-2})$
 - For $|\alpha| = d 2$, diagonalize the quadratic form $\rightarrow O(n^3 \cdot n^{d-2})$

Future Directions

• There are obvious certificates that a polynomial is not real stable or that it is not log concave, so why not say coNP-complete?

- There are obvious certificates that a polynomial is not real stable or that it is not log concave, so why not say coNP-complete?
- Don't know that the "obvious" certificates are polynomial size

- There are obvious certificates that a polynomial is not real stable or that it is not log concave, so why not say coNP-complete?
- Don't know that the "obvious" certificates are polynomial size

Open Question

Are real stability and log-concavity in coNP?

- There are obvious certificates that a polynomial is not real stable or that it is not log concave, so why not say coNP-complete?
- Don't know that the "obvious" certificates are polynomial size

Open Question

Are real stability and log-concavity in coNP?

Open Question

Real stability and log concavity are in the complexity class $\forall \mathbb{R}$ (universal theory of the reals). Are they $\forall \mathbb{R}$ -complete?

Morals

• If you want log concavity, check Lorentzianity first

Morals

- If you want log concavity, check Lorentzianity first
- Only look for stability if you have a reason to suspect it might be there
 - Operations that look like derivatives or other "nice" linear operators

Morals

- If you want log concavity, check Lorentzianity first
- Only look for stability if you have a reason to suspect it might be there
 - Operations that look like derivatives or other "nice" linear operators
- My undergrad CS professor was right

Thank you!

arXiv:2405.00162

Theorem (C. 2024)

- Real stability is coNP-hard for degree $d \ge 3$.
- Log concavity is coNP-hard for degree $d \ge 4$.

Theorem (C. 2024)

- Real stability is coNP-hard for degree $d \ge 3$.
- Log concavity is coNP-hard for degree $d \ge 4$.

In degree d = 2, real stable = strongly log-concave = log-concave.

Theorem (C. 2024)

- Real stability is coNP-hard for degree $d \ge 3$.
- Log concavity is coNP-hard for degree $d \ge 4$.

In degree d = 2, real stable = strongly log-concave = log-concave.

Theorem (C. 2024)

If $f \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_n]$ is homogeneous of degree 3 such that the graph $\{ij: \partial_i \partial_j f \neq 0\}$ is connected, then f is log concave if and only if $\partial_1 f, \ldots, \partial_n f$ are log concave.

Theorem (C. 2024)

- Real stability is coNP-hard for degree $d \ge 3$.
- Log concavity is coNP-hard for degree $d \ge 4$.

In degree d = 2, real stable = strongly log-concave = log-concave.

Theorem (C. 2024)

If $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_n]$ is homogeneous of degree 3 such that the graph $\{ij: \partial_i \partial_j f \neq 0\}$ is connected, then f is log concave if and only if $\partial_1 f, \dots, \partial_n f$ are log concave.

- $\nabla^2 f(x) = \sum_{i=1}^n x_i \nabla^2 \partial_i f(x)$
- $\partial_i f$ is quadratic, so $\nabla^2 \partial_i f$ is constant
- f log-concave $\Rightarrow \sum x_i \nabla^2 \partial_i f$ has one positive eigenvalue for all $x \in \mathbb{R}^n_{>0} \Rightarrow \nabla^2 \partial_i f$ has one positive eigenvalue