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A combinatorial problem from an algebraic identity

Kostka matrix: K = (Kλ,µ)λ,µ⊢n , where
Kλ,µ = #{SSYT shape λ, content µ}.

Theorem (Eğecioğlu–Remmel ’90)

(K−1)µ,λ =
∑
T

sgn(T ),

where the sum is over the set of special rim hook tableaux of
content µ and shape λ.

ER’s proof is that their combinatorial interpretation satisfies the
same recurrence as K−1.

ER gave a combinatorial proof of KK−1 = I .

Problem (Eğecioğlu–Remmel ’90)

Show combinatorially that K−1K = I .
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Previous Work on K−1K = I

Sagan–Lee (2006): Overlapping rooted special rim-hook tableaux
(only for standard Young tableaux)

Loehr–Mendes (2006): Bijective matrix algebra method of
converting ER proof of KK−1 = I
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Our approach

Symmetric functions:
Sym =

⊕
n≥0 Symn = C[h1, h2, . . . ]

Symn bases (partitions): homogeneous hλ, Schur sλ
Sym identity: hµ =

∑
λ⊢n Kλ,µsλ

Sym problem: Prove K−1K = I combinatorially.
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Noncommutative symmetric functions:
NSym =

⊕
n≥0NSymn = C⟨H1,H2, . . . ⟩

NSymn bases (compositions): homogeneous Hα, Immaculate1 Sα

NSym identity: Hβ =
∑

α⊨n K̃α,βSα

NSym problem: Prove K̃−1K̃ = I combinatorially.

Approach: Solve the NSym problem. Use it for the Sym problem.

1Berg–Bergeron–Saliola–Serrano–Zabroki (FPSAC 2012 Nagoya, Japan)
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Jacobi–Trudi identities

Recall the Jacobi–Trudi identity : sλ = det(hλi−i+j)

(h0 = 1, h−k = 0)

s211 =

∣∣∣∣∣∣∣
h2 h3 h4
1 h1 h2
0 1 h1

∣∣∣∣∣∣∣ = h4 − h31 − h22 + h211

(BBSSZ 2014) Immaculate Function2 Sα := det(Hαi−i+j)

S121 =

∣∣∣∣∣∣∣
H1 H2 H3

H1 H2 H3

0 1 H1

∣∣∣∣∣∣∣ = H121 − H13 − H211 + H31

Note: If χ(Hi ) := hi , then χ(Sα) = sα (H0 = 1, H−k = 0)

2Their definition uses noncommuative Berenstein creation operators.
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Immaculate Tableaux (BBSSZ 2014)

Immaculate tableau (IT) of shape α: a fill-
ing of the diagram of α by positive integers
that has weakly increasing rows and strictly
increasing 1st column.

1 2 10

2 8 9 9 21

6 7

21
Note: A semistandard Young tableau is an immaculate tableau.

Noncommutative Kostka number K̃α,β: the number of immaculate
tableaux of shape α and content β.

Noncommutative Kostka matrix K̃ = (K̃α,β).

Theorem (BBSSZ 2014)

Hβ =
∑
β⊨n

K̃α,βSα
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NSym Kostka Matrix


3 21 12 111

3 1 1 1 1
21 0 1 1 2
12 0 0 1 1
111 0 0 0 1


K̃


3 21 12 111

3 1 −1 0 1
21 0 1 −1 −1
12 0 0 1 −1
111 0 0 0 1


K̃−1
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Tunnel Hook Coverings (Allen–Mason 2025)

Tunnel hook covering: a covering of a com-
position diagram by lattice paths (tunnel
hooks) going down and left such that

1 there is a tunnel hook starting in each
row (use next available cell if needed),

2 tunnel hooks may exit the diagram,

3 every time a tunnel hook covers a cell
not in the diagram nor its starting
row, it makes a negative cell later in
that row, and

4 all negative cells are covered by tunnel
hooks starting in that row.
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Tunnel Hook Coverings (Allen–Mason 2025)

γ1
γ2

γ3
γ4
γ5

Let γi be the tunnel hook starting in row i

shape: β shape of the diagram.
β = (4, 1, 6, 1, 4)

sign: sgn(T ) = (−1)k = (−1)9 = −1,
k = #{rows crossed} = 9

content α = (α1, α2, . . . ):
∆i := #{cells covered by γi} −
#{nondiagram cells covered in row i}
Ignore ∆i = 0 to make α
α = (7, 4, 6,−1)

THCα,β = {tunnel hook coverings of content α and shape β}

Theorem (Allen–Mason 2025)

K̃−1
α,β =

∑
T∈THCα,β

sgn(T ).
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)


1 −1 0 1

α=21 0 1 −1 −1
0 0 1 −1
0 0 0 1


K̃−1

·


β=12

1 1 1 1
0 1 1 2
0 0 1 1
0 0 0 1


K̃

=


1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


0 =

∑
δ

K̃−1
α,δK̃δ,β =

∑
(T ,S)

sgn(T ),

where the sum is over the set of (T , S) such that

T is a tunnel hook covering of content α,

S is an immaculate tableau of content β, and

T and S have the same shape.

Problem

Construct a sign-reversing involution on this set of pairs (T ,S).
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Permutations and Tunnel Hook Coverings (AM 2023)

γ1
γ2
γ3

γ4
γ5
γ6

γ7
γ8
γ9

1

3

4 2

9

5

8

The j-th diagonal of a com-
position diagram are the cells
(1, j), (2, j + 1), . . .

The permutation π = π(T ) of a
tunnel hook covering T is defined
by πi = j if γi ends on diagonal j .

π =

(
1 2 3 4 5 6 7 8 9

1 3 4 2 9 5 8 6 7

)

If β = (β1, . . . , βℓ), T 7→ π(T ) is a bijection
⊔

α THCα,β → Sℓ s.t.

sgn(π(T )) = sgn(T )

Idea: sign-reversing involution ↔ multiplying by transposition.
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)

Let (T , S) be a pair of tunnel hook covering T and immaculate
tableau S of the same shape. Let π = π(T ).

π = 2431

T = S =

1 1 2

2 5 5

3 4 5

4 4 4
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)

π = 2431

T = S =

1 1 2

2 5 5

3 4 5

4 4 4

m = 5

r = 3

1 r : row with max(S) = m s.t. if m is in row i , then π(i) ≥ π(r)
2 If π(r) = r and m only appears in row r :

1 Remove final row of T ,S , induct, and reattach
3 Otherwise,

1 S ′: move m to row π−1(π(r) + 1) = 2.
2 T ′: π(T ′) = (π(r), π(r) + 1)π = 2341

T ′ = S ′ =

1 1 2

2 5 5 5

3 4

4 4 4

aaaaaaaa
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)

Since π(T ′) = (π(r), π(r) + 1)π, we have sgn(T ′) = − sgn(T ).

Theorem (Allen–C–Mason ’25+)

The map ψ :
⊔

δ THCα,δ × ITδ,β →
⊔

δ THCα,δ × ITδ,β defined by
ψ(T , S) = (T ′,S ′) is a sign-reversing involution for any α ̸= β.

When α = β,
⊔

δ THCα,δ × ITδ,α has exactly one element and is of
of positive sign.

We will use our involution for K̃−1K̃ = I to construct an involution
for K−1K = I .

In the full paper, we have a combinatorial proof of K̃ K̃−1 = I that
likewise can be used to construct a combinatorial proof of
KK−1 = I .
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Reduction to Sym–Two important notes

We will use our involution for K̃−1K̃ = I to construct an involution
for K−1K = I .

Note 1

Every semistandard Young tableau is an immaculate tableau.

Let dec(α) denote the weakly decreasing rearrangement of α

Note 2

Since χ(Hα) = hdec(α), we have

K−1
λ,µ =

∑
α⊨n

dec(α)=λ

∑
T∈THCα,µ

sgn(T ).

Thus, tunnel hook covering provide a combinatorial interpretation
of the (Sym) inverse Kostka matrix K−1.
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

For fix λ, µ, consider the collection of all pairs (T ,S) where T is
THC of content λ, S is immaculate tableau content µ, and S and
T have the same shape (NSym pairs).

NSym pairs = (THC , Immac)
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

For fix λ, µ, consider the collection of all pairs (T ,S) where T is
THC of content λ, S is immaculate tableau content µ, and S and
T have the same shape (NSym pairs).

The set of (THC ,SSYT ) pairs (Sym pairs) is contained in the set
of NSym pairs.

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

Our involution on NSym pairs is in red.

Note that this does not always take Sym pairs to Sym pairs.

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

We introduce a new sign-reversing involution in blue on the set of
NSym pairs that are not Sym pairs distinct from our involution

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

Thus, the set of NSym pairs forms a (finite) graph.

Sym pairs have degree 1 and the rest have degree 2.
Thus, any component with Sym pair is a path starting and
ending in Sym. This defines an involution on the Sym pairs.
Since only the red involution applies to Sym pairs, these path
have odd length, so it is sign-reversing.

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)

K. Celano A new proof of an inverse Kostka matrix problem



Blue involution

Let Eλ,µ = NSym pairs \ Sym pairs
For (T , S) ∈ Eλ,µ, say cell c of S is bad if either

The cell above c is empty and c is not in the first row

The cell above c contains a weakly larger element than in c

Since (T , S) has S immaculate, but not SSYT, it has a bad cell.

Let j be the leftmost column of S containing a bad cell and let i
be the largest value such that row i contains a bad cell in column
j . Swap the following cells to create S ′ where c = (i , j).

... ...

... c ...

−→ ... ...

... c ...

Define T ′ to be THC with permutation
π(T ′) = π(T )(π(i)− 1, π(i))
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Blue involution - Inspiration

Abstract version of blue involution

A cell c of S is bad if either

The cell above c is empty and c is not in the first row

The cell above c contains a “larger” element than in c

Let j be the leftmost column of S containing a bad cell and let i
be the largest value such that row i contains a bad cell in column
j . Swap the following cells to create S ′ where c = (i , j).

... ...

... c ...

−→ ... ...

... c ...

Spiritually the same involution that appears in work of
Gessel–Viennot on combinatorial determinants (1989), Gasharov on
chromatic symmetric functions (1996), and Shareshian–Wachs on
chromatic quasisymmetric functions (2016), among other places.
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Sign-reversing involution for K−1K = I

Theorem (Allen–C.–Mason (2025+))

The described map on the Sym pairs is a sign–reversing involution.

1 1 4 4

2 2

3 3

−−→−−→−−→
1 1 4

2 2

3 3 4○

−−→−−→−−→
1 1 4

2 2

3 3 4

−−→−−→−−→
1 1 4

2 2 4○
3 3

−−→−−→−−→
1 1

2 2 4 4

3 3

−−→−−→−−→
1 1

2 2 4○
3 3

4

−−→−−→−−→
1 1

2 2 4

3 3

4

−−→−−→−−→
1 1

2 2

3 3 4○
4

−−→−−→−−→
1 1

2 2

3 3 4

4

−−→−−→−−→
1 1

2 2

3 3

4 4
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Future Directions

1 Determine a “1 step” proof of K−1K = I
2 Lift Schur function results to immaculate functions

Kostka polynomials
Littlewood–Richardson rule

3 Lift other Sym problems to NSym (where maybe the problem
is easier)
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Thanks!
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