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Scattering diagrams were originally developed in the context of mirror

symmetry. They have since been found to be deeply related to

• positivity in cluster algebras

• dual canonical bases

• Gromov–Witten invariants

• representation theory (quiver moduli)

Their construction is complex and recursive, so

computing them was notoriously difficult.

It turns out that scattering diagrams associated to cluster algebras have

beautiful, and rather elementary, combinatorics. In particular, we show

they can be computed using tight gradings on maximal Dyck paths.
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Motivation: Cluster Algebras and Positivity

A cluster algebra has a distinguished set of generators, called the

cluster variables {Xi}i∈I . In a rank-r cluster algebra, all cluster variables

can be obtained from r initial cluster variables via a combinatorial

process called mutation.

These satisfy two nice properties:

The Laurent Phenomenon (Fomin-Zelevinsky ’02)

Every cluster variable can be expressed as a Laurent polynomial with

integer coefficients in the initial cluster variables.

Laurent Positivity (LS ’15, GHKK ’18; conj. by FZ ’02)

This Laurent polynomial has positive coefficients.

• Proven for skew-symmetric cluster algebras by Lee–Schiffler

• Proven in full by Gross–Hacking–Keel–Kontsevich
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Cluster Algebras and Scattering Diagrams

Gross–Hacking–Keel–Kontsevich constructed an associated cluster

scattering diagram to every cluster algebra. This led to a manifestly

positive expansion formula for cluster variables & the theta basis.

Most of the complexity of positivity is captured in the rank-2 case.

Definition

The rank-2 cluster algebra A(b, c) has cluster variables {Xk}k∈Z

obtained from initial variables X1,X2 via the mutation relation

Xk+1Xk−1 =

{
1 + X b

k for k odd,

1 + X c
k for k even .

Warning: Even in rank 2, computing the scattering diagram was

difficult, as the recursive construction involves repeatedly solving systems

of equations.
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Scattering Diagrams in Rank 2

Definition

• A wall is a pair (d, fd), where d is a line or ray of slope p
q with a

wall-function fd ∈ ZJX q
1 X

p
2 K with constant term 1.

• A scattering diagram is a collection of walls.

If a path crosses (d, fd), we get the wall-crossing automorphism

ρd(X
m1
1 Xm2

2 ) = Xm1
1 Xm2

2 f
(m1,m2)·n
d , where n is a primitive normal to d.

Definition

A scattering diagram is consistent when the composition of wall-crossing

automorphisms along any closed loop is the identity.
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Generalized Cluster Scattering Diagrams

Fix polynomials P1, P2 ∈ Z≥0[x ] with constant term 1.

Definition (GHKK, Kontsevich-Soibelman)

The generalized cluster scattering diagram D(P1,P2) is the minimal

consistent completion of two walls

(x-axis,P1(X1)) and (y -axis,P2(X2))

obtained by adding only rays.

The usual cluster setting is when P1(x) = 1 + xb and P2(x) = 1 + xc .
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The Badlands

In almost all cases, there is a

full-dimensional cone called the Badlands that

contains walls of every rational slope.

• It is the complement of the g -fan.

• All coefficients of the wall-functions are

nonzero (Gräfnitz–Luo ‘23).

• There has been some work on the wall-functions of the limiting rays

(Reading ’20), the central ray (Reineke ’12), and rays of slope p
q

where min(p, q) ≤ 2 (Akagi ’23).

Other than this, very little was known about the wall-functions in the

Badlands. We can now study these using Dyck path

combinatorics.
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Maximal Dyck Paths

Definition

The maximal Dyck path P = P(m, n) is the sequence of unit north and

east steps from (0, 0) to (m, n) that is closest to the diagonal without

crossing above it.

P(5, 3)

A function from the set of edges on P to Z≥0 is called a grading.
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Compatible Gradings

Let ω be a grading on a Dyck path P. We associate a tiling as follows:

• Construct a tile of height ω(e)

at each horizontal edge e,

starting far from the ocean.

• If a new tile obstructs the ocean

view of an old tile,

build a copy of the old tile above.

Definition (Lee–Schiffler, Lee–Li–Zelevinsky)

A grading ω is compatible if and only if the tiles are non-overlapping.

*May need to work on a cyclic shift of the Dyck path
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Tight Gradings

Let ωV be the total value of ω on vertical edges, similarly for ωH.

Definition (B.–Lee–Mou)

A compatible grading ω : P(m, n) → Z≥0 is a tight grading if

n · ωV −m · ωH = ± gcd(ωV, ωH), and

(i) all blue tiles have a red tile directly above, or

(ii) all red tiles have a blue tile to the left.

1

1

1

3
3

3

Not a tight grading

1

1

3
3

3

A tight grading with

5 · 7− 9 · 4 = −1
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The Tight Grading Formula

Definition (tight grading weight)

Weight each edge e by the coefficient of xω(e) in

{
P1 if vertical,

P2 if horizontal.

The weight of ω is the product of edge weights.

We can now give a combinatorial interpretation for all wall-function

coefficients in a generalized cluster scattering diagram!

Let λk(p, q) be the k-th wall-function coefficient of the wall of slope q
p .

Choose m, n such that m ≥ kp, n ≥ kq, and np −mq = ±1.

Theorem (B–Lee–Mou ’24)

In D(P1,P2), the wall-function coefficient λk(p, q) is the weighted sum

of tight gradings ω : P(m, n) → Z≥0 with ωV = kp and ωH = kq.

10



Wall-Function Tight Grading Example

In D(1 + x3, 1 + x2), let’s calculate λ4(3, 2).

On the Dyck path P(14, 9), we want to count the tight gradings ω with

nonzero weight such that ωV = 12 and ωH = 8.

There are 14 tight gradings, hence λ4(3, 2) = 14.
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Catalan Combinatorics

In D(1 + x3, 1 + x2), the tight gradings corresponding to the central wall

are enumerated by the Catalan numbers. There is currently no known

bijection to other Catalan objects!

More generally, the tight gradings corresponding to the central wall in a

cluster scattering diagram are enumerated by Raney (aka two-parameter

Fuss-Catalan) numbers.
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Applications of the Tight Grading Formula

As a direct application of our tight grading formula, we obtain explicit

expressions for:

1. Euler characteristics of moduli spaces of framed stable

representations on complete bipartite quivers

2. relative Gromov–Witten invariants on weighted projective planes

Our formula is also manifestly positive, yielding the following:

Corollary (B.–Lee–Mou)

The wall-function coefficients in any rank 2 generalized cluster scattering

diagram are non-negative.
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Laurent Positivity of Generalized Cluster Algebras

In classical cluster algebras, mutation relations are binomial.

In generalized cluster algebras, mutation relations are polynomial.

• These were introduced by Chekhov and Shapiro in 2014, motivated

by Teichmüller theory of surfaces with orbifold points.

• The generalized cluster scattering diagram D(P1,P2) can be used to

study the rank-2 generalized cluster algebra A(P1,P2).

As a consequence of the scattering diagram positivity, we get

Theorem (B–Lee–Mou ’24, conjectured by Chekhov–Shapiro ’14)

Laurent positivity holds for generalized cluster algebras of any rank.
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