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Motivation

Cambrian quotients (Reading, Reading–Speyer) are a machine for
turning Coxeter group info into cluster algebra info

Coxeter groups ⇒ Cluster algebras

Permutahedra ⇒ Associahedra
Weak order ⇒ Cambrian lattice
Weak order Hasse diagram ⇒ Ordered exchange graph

123

213

231

321

312

132

⇒

{x1, x2}

{x1, 1+x1
x2

}

{1+x1+x2
x1x2

, 1+x1
x2

}

{1+x2
x1

, 1+x1+x2
x1x2

}

{1+x2
x2

, x2}
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Motivation

This machine works very well for finite Coxeter groups

But for infinite Coxeter groups...

Weak order Hasse diagram
?
=⇒ Ordered exchange graph

?
=⇒
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Motivation

This machine works very well for finite Coxeter groups
But for infinite Coxeter groups...

Weak order Hasse diagram ⇒ Part of ordered exchange graph

⇒
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Motivation

Problem (Speyer, OPAC 2022)

Find a combinatorial lattice extending weak order with a Cambrian
quotient giving the entire exchange graph.

Extended weak order for S̃n and the lattice of torsion classes Grant T. Barkley



Motivation

Two possible answers:
▶ Extended weak order of a Coxeter group W

▶ Combinatorial
▶ Explicit descriptions in affine type
▶ If |W | < ∞, then Cambrian lattices describe cluster algebras
▶ But not known to relate to cluster algebras if |W | = ∞

▶ Lattice of torsion classes for a preprojective algebra Π
▶ Known to have quotients describing cluster algebras
▶ But depends on a choice of field, not combinatorial
▶ Harder to describe than the ordered exchange graph

Main result: in affine type, extended weak order is a
“combinatorial skeleton” of torsion classes

Corollary: Coxeter-theoretic models for affine cluster algebra
exchange graphs
Corollary: Complete description of torsion classes in type Ã
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Extended weak order
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Weak order on Sn

Define αi ,j := αi +αi+1+ · · ·+αj−1. The positive roots of Sn are

Φ+ = {αi ,j | 1 ≤ i < j ≤ n}

Definition
An inversion of π is a positive root αi ,j so that π−1(i) > π−1(j).
Weak order puts π ≤ π′ if Inv(π) ⊆ Inv(π′).

123

213

231

321

312

132

∅

{α1,2}

{α1,2, α1,3}

{α1,2, α1,3, α2,3}

{α2,3, α1,3}

{α2,3}

∅
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Affine symmetric group

Definition
The affine symmetric group S̃n is the group of bijections
π̃ : Z → Z such that:

▶ π̃(i + n) = π̃(i) + n for all i ∈ Z
▶

∑n
i=1(π̃(i)− i) = 0

Let V have a basis α0, . . . , αn indexed by Z/nZ. Define
α̃i ,j := αi + αi+1 + · · ·+ αj−1. The positive roots of S̃n are

Φ+ = {α̃i ,j | i < j}

A positive root α̃i ,j is real if i ̸≡ j mod n.

Definition
An inversion of π̃ is a positive real root α̃i ,j ∈ Φ+

real so that
π̃−1(i) > π̃−1(j). Weak order puts π̃ ≤ π̃′ if Inv(π̃) ⊆ Inv(π̃′).

Extended weak order for S̃n and the lattice of torsion classes Grant T. Barkley



Weak order for S̃2

We represent an affine permutation π̃ via its window notation

[π̃(1), . . . , π̃(n)]

[1, 2]
[0, 3][2, 1]

[−1, 4] [3, 0]

∅
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Extended weak order

Let W be a Coxeter group with positive roots Φ+

Definition (Dyer)

A set B ⊆ Φ+ is biclosed if it satisfies the following two properties
for all α, β, γ ∈ Φ+ such that γ = aα+ bβ with a, b ≥ 0:

(Closed) If α ∈ B and β ∈ B, then γ ∈ B.

(Coclosed) If α ̸∈ B and β ̸∈ B, then γ ̸∈ B.

The extended weak order of W is the poset of biclosed sets,
ordered by containment.
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Extended weak order for S3

∅

Theorem (Dyer)

Finite biclosed sets are exactly the inversion sets of elements of W .
Hence the poset of finite biclosed sets is isomorphic to weak order
on W .
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Extended weak order for S̃2

∅

Conjecture (Dyer)

Extended weak order is a lattice for any Coxeter group.

Theorem (B.–Speyer)

Extended weak order is a lattice for affine Coxeter groups.
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A combinatorial model for extended weak order

Definition (B.–Speyer)

Fix n ∈ N. A translation invariant total order (TITO) is a total
order (≺) on Z so that

▶ For all i , j ∈ Z, we have i ≺ j if and only if i + n ≺ j + n, and

▶ For all i ∈ Z, if i + n ≺ i then there exists a k with
i + n ≺ k ≺ i .

Write TTotn for the set of TITOs.
An inversion of (≺) is a positive root α̃i ,j so that j ≺ i .

Some TITOs in TTot3:

· · · ≺ 9 ≺ 8 ≺ 7 ≺ 6 ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 1 ≺ 0 ≺ · · ·

· · · ≺ −2 ≺ 1 ≺ 4 ≺ 7 ≺ · · · ≺ · · · ≺ 0 ≺ −1 ≺ 3 ≺ 2 ≺ 6 ≺ 5 ≺ · · ·

· · · ≺ 0 ≺ 3 ≺ 6 ≺ · · · ≺ · · · ≺ 7 ≺ 4 ≺ 1 ≺ · · · ≺ · · · ≺ 8 ≺ 5 ≺ 2 ≺ · · ·
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A combinatorial model for extended weak order

TITOs can be encoded with window notation: e.g. in TTot3 the
notation [1][3, 2] encodes

· · · ≺ −2 ≺ 1 ≺ 4 ≺ 7 ≺ · · · ≺ · · · ≺ 0 ≺ −1 ≺ 3 ≺ 2 ≺ 6 ≺ 5 ≺ · · ·

We write [1][3, 2] to instead encode

· · · ≺ −2 ≺ 1 ≺ 4 ≺ 7 ≺ · · · ≺ · · · ≺ 6 ≺ 5 ≺ 3 ≺ 2 ≺ 0 ≺ −1 ≺ · · ·
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A combinatorial model for extended weak order

Theorem (B.–Speyer)

The map (≺) 7→ Inv(≺) is a bijection from TTotn to the extended
weak order of S̃n.

[1, 2]
[0, 3][2, 1]

[−1, 4] [3, 0]

[2][1] [1][2]

[0, 3]
[3, 0]

[2, 1]

[4,−1]
[1, 2

∅
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Torsion classes for preprojective algebras
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Preprojective algebras

Q = quiver
Q = doubled quiver
k = algebraically closed
k[Q] = path algebra of doubled quiver

Q

•
•

•
•

•

Q

•
•

•
•

•

The preprojective algebra of Q is

ΠQ = k[Q]/
∑
a∈Q1

(aa∗ − a∗a)
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Bricks

We represent modules via a vector space Vi on each node i of Q.
The dimension vector is dimM =

∑
i∈Q0

(dimM i )αi .

Definition
A brick for Π is a module M so that EndΠ(M) = k .

Example: the A2 quiver Q = • •a
.

Π = k[ • •
a

a∗
]/⟨aa∗, a∗a⟩

S1 = k 0 dimS1 = α1,2

S2 = 0 k dimS2 = α2,3

P1 = k k dimP1 = α1,3

P2 = k k dimP2 = α1,3
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Bricks

Theorem (Iyama–Reading–Reiten–Thomas,
Dana–Speyer–Thomas, B., ...)

Interpret Q as a (generalized) Dynkin diagram for a root system Φ.
Then any brick of ΠQ has dimM ∈ Φ+.

Definition
If M is a brick with dimM is a real root, then M is real.
Otherwise, M is imaginary.
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Example: Ã1

Q = • •
a

b

Π = k[ • •

a∗

b∗

a

b

]/⟨aa∗ − a∗a+ bb∗ − b∗b⟩

δ = α1 + α2

Imaginary roots of ΦQ are multiples of δ
Example of an imaginary brick:

k k
λ
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Torsion classes

Definition
A torsion class for Π is a collection of (finite-dimensional)
modules closed under isomorphisms, quotients, and extensions.

Fact
A torsion class is determined by the bricks it contains.
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Example: A2

Q = • •a

Π = k[ • •
a

a∗
]/⟨aa∗, a∗a⟩

S1 = k 0

S2 = 0 k

P1 = k k

P2 = k k

Tors(Π)

∅

{S1}

{S1,P1}

{S1,S2,P1,P2}

{S2,P2}

{S2}

Theorem (Mizuno)

Let Q be a Dynkin quiver with (finite) Weyl group W . Then
Tors(Π) is isomorphic to the weak order of W .
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The isomorphism

∅

{S1}

{S1,P1}

{S1,S2,P1,P2}

{S2,P2}

{S2}

∅
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Real torsion classes

Theorem (Demonet–Iyama–Reading–Reiten–Thomas)

Tors(Π) is a completely semidistributive lattice

Given a torsion class T , define

dim T := {dimB | B ∈ T is a real brick}

Conjecture (Dana–Speyer–Thomas)

The map sending a torsion class T to dim T ⊆ Φ+
real is a complete

lattice quotient onto extended weak order.
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Example: Tors(ΠÃ1
)

2P
1

2P
1
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Example: Tors(ΠÃ1
)

2P
1

2P
1
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Main result

Theorem (B.)

If Q is an orientation of the extended Dynkin diagram of an affine
Coxeter group W , then T 7→ dim T is a complete lattice quotient
from torsion classes to extended weak order of W .

Corollary (B.)

There is a bijection between real bricks and completely
join-irreducible elements of extended weak order.

Corollary (B.)

In type Ã, there is an explicit parametrization of all torsion classes
in terms of TITOs.
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Application to cluster algebras
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Quivers and cluster algebras

Associated to each (loopless 2-acyclic) quiver Q is a cluster
algebra AQ .

Q = • •

Each node has a variable xi attached
Clusters are sets of Laurent polynomials in x1, . . . , xn built from
{x1, . . . , xn} using mutation

The exchange graph has
vertices the clusters and
edges the mutations

{x1, x2}

{1+x2
x1

, x2}

{1+x2
x1

, 1+x1+x2
x1x2

}

{1+x1+x2
x1x2

, 1+x1
x2

}

{x1, 1+x1
x2

}
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Extended weak order and exchange graphs

Theorem (B.)

Let Q be an orientation of an affine Dynkin diagram with Coxeter
group W . Then there is a complete lattice quotient of extended
weak order which contains the exchange graph of AQ in its Hasse
diagram.
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Example: the oriented cycle

Consider the oriented cycle:

Q =

•
•

•
•

•

Then AQ is a cluster algebra of type D; its clusters are counted by
type D Catalan numbers. Its exchange graph is the edge graph
of a type D associahedron.

Q is associated to the Coxeter group S̃n. The theorem says that
the exchange graph is contained in the Hasse diagram of some
quotient of extended weak order.
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The affine Tamari lattice

Definition (B.–Defant)

A TITO (≺) is 312-avoiding if there are no integers a < b < c
with c ≺ a ≺ b.
The affine Tamari lattice ATamn is the poset of 312-avoiding
TITOs, ordered by containment of inversion sets.

Theorem (B.–Defant)

ATamn is a quotient of the extended weak order of S̃n. The Hasse
diagram of ATamn is the exchange graph of AQ .
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ATamn for n = 1, 2

ATam1

[1]

ATam2

[1, 2]

[2, 1] [3, 2]

[2, 1]
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ATam3

[1, 2, 3]

[2, 1, 3] [3, 2, 4] [1, 0, 2]

[2, 3, 1]

[3, 4, 2]

[1, 2, 0]

[3, 2, 1]

[4, 3, 2]

[2, 1, 0]

[3][4, 2] [1][2, 0][2][3, 1]

[3, 2, 1]
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More to do!

Extended weak order is the source of many open conjectures. The
results here are all special cases of the following:

Conjecture

Anything that works for weak order also works for extended weak
order. Often it works better!

Can you find more examples?
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Thank you!
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TITOs to bricks

Each completely join-irreducible TITO has an arc diagram
E.g. with [1][7, 8, 2]

· · · ≺ 1 ≺ 5 ≺ 9 ≺ · · · ≺ 6 ≺ 7 ≺ 8 ≺ 2 ≺ 3 ≺ 4 ≺ · · ·

14

3 2 k

k

k

k

k

k

⊕

⊕
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