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Two Theories

Number Theory <= Combinatorial Theory
Zeta functions Symmetric polynomials/functions
R —
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[Number Theory] Riemann zeta function

Definition

Riemann zeta function ((s) is defined by the series

where s € C is a complex variable. This converges absolutely for
R(s) > 1.

One of the interesting topics concerning the Riemann zeta function
is to evaluate so-called “special values", that is to study the values
of ((s) at s = k with k € N, "¢(k)".
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Euler's double zeta values

Definition(Euler)

The double zeta value ((ki, k2) is defined by

k)= Y

0<my<my M1 M2
where ki € Z~q and ky € Z~1.

For ki, ko € Z~1, Euler obtained

C(k1)C(k2) = C(k1, k2) + C(ka, k1) + (k1 + k2).
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Multiple zeta function of the Euler-Zagier type

Definition

Multiple zeta functions of the Euler-Zagier type are defined by the

series
1

S D D o
m<-<my L

where s1,...,s, € C. These series converge absolutely for
R(s1),..-,R(sp—1) > 1 and R(sp) > 1.

Multiple zeta values : For positive integers ki, ..., k, with
kn > 1, C(ki,..., kn) is called "multiple zeta values".
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Multiple zeta-star function of the Euler-Zagier type

Definition

Multiple zeta-star functions of the Euler-Zagier type are defined by

the series 1
* _
<(517~~-a5n)— E msl‘“msna
my<---<mp 1 n

where s1,...,s, € C. These series converge absolutely for
R(s1), .., R(sn—1) > 1 and R(s,) > 1.

Multiple zeta-star values : For positive integers ki, ..., k, with
kn > 1, C*(ki,. .., kn) is called "multiple zeta-star values".

Maki Nakasuji

On multiple zeta functions with combinatorial structure



[Combinatorial Theory] Symmetric polynomials

Basic symmetric polynomials/functions

® Elementary symmetric polynomial/function

e Complete symmetric polynomial/function

hp = E Xmy *** Xmp,

m1<---<mp
These are speacial cases of Schur polynomials/functions.
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Schur polynomial

® A= (A1,A2,---, Ap) : partition
st. \y€Z, M1 > >--->X>0
® x = (x1,X2, -+ ,Xn) : variables (n > ¢)
We define Schur polynomial associated with \ by
n—i+\;
B det(x; )

det(x""")

e det(x/"') = H (xj — xj) is Vandermonde determinant.
1<i<j<n
e Example. ) = (2,1) = (2,1,0),x = (x1,x2,x3),n = 3
4 4 4
X X22 Xg . X12X2 + X12X3 + x1x22 + 2x1X2X3
13 - +x1X2 + X3x3 + X0X5

1 1

1

SA(X) = T 3°0 det (X% X5
det(xj )

® Schur polynomials/functions have tableau expression

Maki Nakasuji
On multiple zeta functions with combinatorial structure




Young diagram/tableau of shape A

A= (A1, -+, \g): partition s.t. A\; > Ap > -
e \We identify a partition A with its Young diagram
Dy={(ij))€Z?|1<i<t 1<j< N}
Let \' be the conjugate of A, which is the partition whose
Young diagram is the transpose of that of \.

® Let X be aset. Young tableau T = (t;;) of shape X over X is a
filling of Dy obtained by putting t; € X into (/,) box of Dj.

Example. A = (4,3,2), tj € X.

Dy = ‘ T — |tin|ti2|t13 l“14‘_

to1|t22|t23

31|32

TA(X): the set of all X-valued Young tableaux of shape \.
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Semi-standard Young tableau

® Semi-standard Young tableau M = (m;;) of shape X is a filling
of D) obtained by putting m;; € N into (/, j) box of Dy such

that

® the entries in each row are weakly increasing from left to right
® the entries in each column are strictly increasing from top to

bottom.

We denote by SSYT, the set of all semi-standard Young

tableaux of shape \.

Example. A = (4,3,2), mj ¢ N, M € SSYT,

my1 < mpp < myz < myg

mi1 | M2 | M3

M =| mp1 | ma | mp3

m31 | m32

Maki Nakasuji
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Tableau expression

® A= (A1,A2,--, Ap) : partition

® x =(xy,xp,--) : variables

Schur function has tableau expression:

a)= > I[ xm

MESSYT, (i.j)eDa

Example. A = (2,1). Then

SSYT, = 4|1 1" 1 1‘7 1 2" 1 2‘7 1 3" 1 3‘7 2 2" 2 3‘

2 3 2 3 2 3 3 3

sa(x) = X12X2 + X12X3 + X1X22 + 2x1X0X3 + xlxg + X22X3 + xpx2 4 - -
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Symmetric polynomials

Special cases of Schur polynomials/functions
e A=(1,1,...,1).
N———

n
en := S(1n): elementary symmetric polynomial

(]

Xml...Xm

n

[ [m]
_ N .

Maki Nakasuji

On multiple zeta functions with combinatorial structure



[Definition] Schur multiple zeta function

® A= (A1,A2,---, Ag) : partition
s = (sjj) € TA(C) : variables

Schur multiple zeta function associated with A (introduced by
Nakasuji, Phukusuwan and Yamasaki (2018))

O} (S) = Z H SU

(mU)ESSYT,\ (I,_/)EDA

Example. A =(2,1). Then

SSYT, = 4|1 1‘7 1 1‘7 1 2‘7 1 2‘7 1 3‘7 1 3‘7 2 2‘7 2 3‘

2 3 2 3 2 3 3 3

_ 1 1 1 1
CA(S) — T51115122%21 + 15111512 3521 + 15112512 2521 + 151125123521 +oee
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Convergence

For a partition A = (A1, -, Ap),

C\ C D, : the set of all corners of . .

Example.

Clazz) = {(1,4), (3,2)}. (-e cA> o

W, ::{s = (s5) € TA(C)

%(SU) > 1 for v(l',j) € Dy \ Cy
R(s;) > 1 for V(i,j) € C\ '

(x(s) converges absolutely if s € W,.

S11

S12

513.| € T»\(C)

S21

531
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Skew type

® Let A and p be partitions satisfying A D p, that is A\; > pu; for
all 1.

® Skew Young diagram is the set difference between the two
partitions, and a skew semi-standard Young tableau of shape
A/pis a filling of the Young diagram \/u with positive
integers such that the rows are weakly increasing and the
columns are strictly increasing.
Example. For A = (6,3,2,2) and = (4,1,1),

® SSYT(A/p) : the set of all skew semi-standard Young
tableaux of shape A/p.
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Skew Schur multiple zeta function

Let s = (sjj) € T(A/p, C). We generalize the definition of the
Schur multiple zeta function to skew type as

C)\/,LL(S) = Z H isij,

(mi)€SSYT (50 (€D ) Mij . ‘
[ ]
C(\/u) € D(\/u) : set of all corners of \/p. ’ "

R(s;) > 1 for Y(i,j) € C(\/n)

R(sy) > 1 for *(i.j) € DO/ m) \ C(A/n) } |

Then, () /,(s) converges absolutely if s = (s;) € W) ,,.
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Special cases

e When A= (1) and u =10, s = (s) € T\(C)

oWhen)\:(l,l,...,l):(l" ,S:(S,']_)E T)\((C)
————

n mi1

C(ln)(511,~-‘7sn1) = Z ﬁ

= C(Sn ..... Srl)
e When \ = (n), s = (Slj) S T)\(C)’ mi1 ‘ mio ‘ ‘ min ‘
1
C(n)(slla"'vsln) = Z T = (*(s11, - -, S1n)-
1n
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Relation between SMZ and Schur function

For s € C with Re(s) > 1, we have

G{sI) =s\(17%,275,.0).

Proposition
Let A n. Then, for s € C with R(s) > 1, we have

é(u

a({sh) ZX Hc( is).

uEn

Here, z, = [, i™ ™ m;(u)! and x (1) € Z is the value of the
character x* attached to the irreducible representation of the
symmetric group S, of degree n corresponding to A on the
conjugacy class of S, of the cycle type u - n.
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Application of combinatorial methods
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Assumption(content-parametrize)

For s € Wy C T»(C) being variables for {(s),

Wi« = {s € Whlsiynjsn = sij for "n € Z}

Notation

Assume that s = (s;) € W, ®8. Let s; = z;_; by a given sequence
(zic)kez.-

Example. A = (5,3,3,1)

S11 | S12 | S13 | S14 \ 515 ‘ 2 | 4 |2 | & \ 24 ‘
521 | S22 | S23 _|Z1] %D |4

531 | S32 | 533 Z2|Z-1| 2

541 Z-3
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1) Jacobi-Trudi formula for Schur function

Schur polynomials / functions have determinant formula called
Jacobi-Trudi fomula.

® hy = s(n): complete symmetric polynomial

® e, = 5(1n): elementary symmetric polynomial

Jacobi-Trudi formula

We have

SA = det(e,\jfiﬂ)sxs
S\ = det(h)\,-fH»j)rXr
(Method of Proof)
® using the generating function for h, and that for e,

® using the lattice path model (combinatorial approach)

Maki Nakasuji
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Jacobi-Trudi type formula for ¢,

Theorem(N.-Phuksuwan-Yamasaki, 2018)

Assume that s = (sj) € W/{hag. Put sj = zj_;.
(1) Assume that R(s; y;) > 1 forall 1 <7< A;. Then, we have

CA(S) = det [g(zj—la s 7Zj—()\f*f+j)))}

1<ij<ii’

where ¢(...) =1if X —i+j=0and 0if \; — i+, <O.
(2) Assume that R(s; ) > 1 forall 1 <i < X\;'. Then, we have

Q(s) =det [C*(z-ju1, -5 2w i) 1 jeny

where(*(...) =1if A\ =i+, j=0and 0if \; — i+, <O.

Maki Nakasuji
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New relation that results from this : Example 1

For A\ =(2,2,1), z1,z_1 > 1 and zy,z_5 > 1, we have

20 |z
O] z-1] 2
zo

C(ZO72717272) C(211207Z*17272)

((20) (21, 20)

(*(20,21) ¢*(z-1,20,21) (" (z—2,2-1,20,21)
= C*(ZO) C*(Z*bzo) C*(Z*27271>20)
0 1 C*(z-2)
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Example 2

For A\=(2), zz > 1 and z; > 1, we have

O (20|21 ]) = (20, 20)(= (20, 21) + { (20 + 21))

_ 'C(Zo) ¢(z1,20)
1 ({(z)

= ((20)¢(21) — (21, 20)-

Maki Nakasuji
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New relation - Algebraic relations -

Considering the case A = (n), we have the following

Corollary

For s1,...,s, € C with R(s1),...,R(ss) > 1, it holds that
(1) ¢*(s1,---,5n) =

C(s1) ¢(s2,91) s e C(Sny .-, 32,81)
1 ¢(s2) ¢(sn,---,52)
. . .

Maki Nakasuji
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New relation - Algebraic relations -

Considering the case A = (1"), we have the following

Corollary

For s1,...,s, € C with R(s1),...,R(ss) > 1, it holds that
(2) ¢(s1y.--,8n) =

C*(Sl) C*(52751) C*(Sna"'vs%sl)
1 C*(s2) C*(sny---,52)
1 ) )

-1 (*(sp-1) C*(sn, Sn—1)
0 1 ¢*(sn)
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2) Pieri formula for Schur polynomial

The Pieri formula expresses product of the Schur polynomials by
complete or elementary symmetric polynomials.

Pieri formula

Let sy be the Schur polynomial associated with a partition A. Let
h; = sy and e, = s(;-) be the complete and symmetric
polynomials, respectively. Then we have

0h(x) =D su(x), s(¥)er(x) =D sux),
H M

where the sum is taken over all partitions i obtained by adding r
boxes to the diagram D, with no two boxes in the same column or
row, respectively.

Maki Nakasuji
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Example for Schur function

Example. When XA = (2,1), x = (x1, x2, x3), it holds that
s (o) = 5100+ 5109 + s g
L] B L]

where

2 2 2 2 2 2
S| ‘(x) = Xi X2 + X1 X3 + X1X5 + 2x1X2X3 + X1X3 + X5 + X3 + X2X3,

s.(x) =x1+x+x3 S ‘(X) = x1x2x3(x1 + x2 + x3),

22, 2 2 2 2 2, 2.2
SEQ(X) = X1 X3 + Xy X2X3 + XL X3 + X1X5 X3 + X1X2X3 + X5 X3,

3 2 2 2 3 2 2
s .(x) = X3X2 + X1 X5 + 2X1 XaX3 + X1X5 + 2X1X5 X3 + 2X1X2X3

Maki Nakasuji

On multiple zeta functions with combinatorial structure



Pieri type formula for hook type Schur MZFs

Theorem(N.—Takeda, 2022)

For a positive integer £ and non-negative integers k and m, we
further assume R(y;),R(t;) >1 (1 <i<¢,1<j<{¢—1). Then

we have Z Ce,1%)

Sym

Y1

Ty

X1

Xk

o (R
=3 Gulu),

Symu,eUy

where Sym means the summation over the permutation of
S={y,.--,ye t1,...,ti—1} as indeterminates and the inner sum
in the right-hand side is takes all the term u, € Uy obtained by the
pushing rule and 1 is the shape of uy,.

Maki Nakasuji
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Pushing rule H

As in the Pieri formula, the Schur multiple zeta function ( B

S11 S12‘
appears as the summand of ( ) However,
PP ‘BN o ‘S (1]
in general, o
S11(S12
G ] . #
e

Maki Nakasuji
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Pushing rule H

Fors € T\(C) and t € T(,y(C), we construct a new Young tableau
by inserting all the components in t into s. The insetion method
which we use here is called Pushing rule H.

Example.For ( | <21 S12 ‘) CD (.D

- o]
S11 S11 512.
Un =< s11 NG NG
| sz

[

Maki Nakasuji
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Pushing rule H

Example. When A = (3,2,1) and r =2

S11(512 513‘
(Dj (_D then

G ‘ S21|52

L | 531

N

S11

Un = S21 512|513,

531|522

S11 S11

S21 S21

531|522 S31 S31

Maki Nakasuji
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Pieri formula for hook type Schur MZFs

Theorem(N.—Takeda, 2022)

For a positive integer k and non-negative integers £ and m, we
further assume R(x;), R(tj)) > 1 (1 <i< k,1<j<k—1). Then

xi vy |y
we have Z <(2+1,1k71) : C(l’")
Sym X
= Z Z Culup),
Symu,eUg
where Sym means the summation over the permutation of
S={x1,..., Xk, t1,...,tx_1} as indeterminates and the inner sum

in the right-hand side is takes all the term u, € Ug obtained by the
pushing rule and f is the shape of u,.
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Pushing rule E

Example. When A = (3,2,1) and r =2
S11(S12 513‘
G | [921]52

G
L] 3
W )

, then

N

S11(S12 513‘ S11|512(513
Ue = s1|s22|  ,|S21|s22 , )
S31 531
S11|S12 513‘
S11(S512(S13| |S11|S12 513‘
S11|512(S513 521 (S22
S21 S22 |S21|S22
S21 (S22, s y 531 )
S31 S31
S31
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3) To Schur P or Q function

e We consider the shifted diagram of shape A

SDy={(i,J) € Z? |1 <i<ti<j<Ni+i-1}.

® Example. Let A = (4,3,1).

|

Dy =

e Shifted tableau T = (tj) of shape X over X is a filling of SD,
obtained by putting tj; € X into (/,/) box of SDy. ST,(X) is

|

SDy =

the set of all shifted tableaux of shape .

’tll

t13

ti4

Example. A =(4,3,1), T =

Maki Nakasuji
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Semi-standard marked shifted tableau

o N =1{1,1,2,2,3.,3,...}
with the total ordering 1’ <1 <2/ <2 < ---.

® Semi-standard marked shifted tableau T = (t;) of shape X is a
filling of SDy obtained by putting t;j € N into (7, ) box of

SD, such that

o 1]1]2]3
® the entries in each row are
weakly increasing from left to right. 2123
® the entries in each column are 3
weakly increasing from top to bottom. —
® cach row has at most one marked 7 for every i =1,2,.. ..
® cach column has at most one unmarked / for every i = 1,2, .. ..

® there are no marked entries on the main diagonal.

We denote by PSSYT) the set of all semi-standard marked

shifted tableaux of shape .

Maki Nakasuji
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Tableau expression for Schur P-function

Tableau expression

Px(x) = Z x"
TEPSSYTy,
where xT = H Xj¢;| with [i| = |i'] =i for i € N.
(iJ)eSD(XN)
Example. A = (3,1),x = (x1, x2). Then
v [a]a]2][1]1]2][1]2 2}

2 2 2

1
2
2

X1

PSSYT, = { =
Py(x) = x¢xa + x2x3 + x2x3 + x1%5.

Maki Nakasuji
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Semi-standard marked shifted tableau

o N =1{1,1,2,2,3.,3,...}
with the total ordering 1’ <1 <2/ <2 < ---.

® Semi-standard marked shifted tableau T = (t;) of shape X is a
filling of SDy obtained by putting t;j € N into (7, ) box of
SD, such that

- \ 11|23
® the entries in each row are ;
weakly increasing from left to right. 201213
® the entries in each column are 3

weakly increasing from top to bottom. —
® cach row has at most one marked 7 for every i =1,2,.. ..
® cach column has at most one unmarked / for every i = 1,2, .. ..

® _thereare-ne-marked-entries-on-the-main-diagonal.
We denote by QSSYT), the set of all semi-standard marked
shifted tableaux of shape .

Maki Nakasuji
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Tableau expression for Schur Q-function

Tableau expression

For A = (A1, A2, -+, Ap) and x = (x1,x2, -+ , Xn),
Q/\(X) = Z XT7
TEQSSYT,
where x” = [ = xq, with |i| = || =i for i € N,
(iJ)€SD(N)
Example. A = (3,1),x = (x1,x2). Then for i=i or /'

! !
assv, - {2 ] (=) (=)

Q(x) = 4(x3x2 + x2x3 + X253 + x153).

Maki Nakasuji
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Schur P-type and Q-type multiple zeta function

® A= (A1, A2, -+, Ap) : strict partition
® s =(sj) € STA(C) : variables
miy3am
‘511 S12(513|S14 " }’"11 12iM13Mmi4
= Mo 1jmoom
s= |sa|sx2|s3|€ STA(C), 2122123
m
531 31

Schur P or Schur Q multiple zeta function

We define Schur P or @ multiple zeta function associated with A by

Le)= Y am &= X

MePSSYT), MeQSSYT,

where M*® = H |mj; |0

Maki Nakasuji
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Example. A= (37 ]_)’5 = ‘511 S12 513‘ e ST)\(C).
s21
PSSYT/\:{111112'1121 2/2_“}
2 0 2 0 2| 2]

] a2 [ [a ]2 [ [2]2]
QSSYT)\ - { 5 ) i ) 5 ) 5 )
K(s) =

1 1 1 1

151115121513 D521 1511]51295139521 151115129813 9521 151195129513 9521
(X (s) = 4x

1 1 1 1

(

Maki Nakasuji
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Convergence

For a strict partition A = (A1, -+, \¢),
C\ C SD, : the set of all corners of A. ’

Example.

Cuzn = {(19). 3.3) (S

Lemma
Q ._
wQ =

{S = (S,J) € ST,\((C)

R(sy) > 1 for "(i,j) € SDx \ Ca
R(sy) > 1 for ¥(i.j) € G '

Then, ¢£(s) and (S(s) converge absolutely if s € W)\Q.

Maki Nakasuji
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Pfaffian expression for QS

Let A = (A1,...,Ar) be a strict partition.

diag
WX = (s € WPlsiskjpi = 51, for Yk € Z}

Theorem(N.—Takeda, 2025)

Let A = (\1,...,Ar) be a strict partition with an even integer ¢

and \; > 0. Then for s = (s;j) € W)f»?,diag’

(2 () = pt(Un),
where Uy = (ujj) is an £ x ¢ upper triangular matrix with
sii DECERN PP I SI.I
uj = C((‘/?\N\j)(s(,\“)\j)) and S() :‘ - : ‘ ‘ where
SJJ ce S:Itj

ti=i+X—1.

Maki Nakasuji
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Example. A\ = (3,2,1). Assume that s = (s;) € WAQ’diag. Let
sij = zj_j by a given sequence (zx)kez. Then

‘zo 71 |22
CS(S) = C872,1)< 20 |21

Z0

0 8y (CERE) @0 (BEF) @ Grm)

—pf | O 0 Gy < ) (%) (=[]

0 0 0 C(% (=)
0 0 0 0

Maki Nakasuji
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4) Application of Jacobi-Trudi formula for Schur Multiple Zeta Funct.

For an admissible piece A(a, b) = (1,...,1, b+ 1), the dual index
1
a
set A(a, b)' is defined A(b,a) = (1,...,1,a+1).
b-1

When we write an index set k as
k = (A17 A27 o 7Am)7
we define the dual index set of k:

k= (Al Al

m»?‘ tm—1y-"

L AD.

Theorem (Duality formula for Multiple zeta values)

Maki Nakasuji
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Duality formula for Schur multiple zeta values

Use an admissible piece A= (1,...,1,b+ 1)t Let
~———

a—1

1P ={se Wédiag|write s in tems of Ajj, Ajj = Apq if j—i = q—p}.

A11A12A13‘ Z;,:
Example. k = |Ay|A»| < ki=  |al]al
Asyl ‘AI3AJ{2A11

Theorem(N.—Ohno)
For k € I5D, there exists k' such that
Co(k) = Gt (D),

where &' is a shape of k'

Maki Nakasuji
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Example. Let A = (3,2,1).

Ca

’-b-hl\)
I
o

Maki Nakasuji
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The proof strategy for the example

Example. Let A = (3,2,1)
23|
2

and k =

NG N Y

Then, we have

BENN

3]

2]

2]

4 |

4 |

h 3]

We write shortly for 2]
H 5

CA() = ¢(ao, - --). 0 1

/

NN

Maki Nakasuji
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The proof strategy for the example

Applying the Duality formulafor
multiple zeta values, we have

a _ R A B C
I Y 2
1 - - 2| [ 2]
- 2 12 . L=
2] T k= 1]
A=|1| B=+— C=—, 2
R 2 —
[ o] o] 1
> 20 12 0 1 —
- 2 1 2
2 | | L

L 2 2

Maki Nakasuji
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The proof strategy for the example

From the property of determinant of matrix and the Jacobi-Trudi
formula for skew type, we have

O

’-b-bl\.)
1

o o] =] =] o] =] =]

Maki Nakasuji

On multiple zeta functions with combinatorial structure



Examples related to Schur functions
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Thank you
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