On multiple zeta functions with combinatorial structure

Maki Nakasuji

Sophia University / Tohoku University / Kavli IPMU cross appointment affiliate member

July 21, 2025 at Hokkaido

Two Theories

[Number Theory] Riemann zeta function

Definition

Riemann zeta function $\zeta(s)$ is defined by the series

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s},$$

where $s \in \mathbb{C}$ is a complex variable. This converges absolutely for $\Re(s) > 1$.

One of the interesting topics concerning the Riemann zeta function is to evaluate so-called "special values", that is to study the values of $\zeta(s)$ at s=k with $k\in\mathbb{N}$, " $\zeta(k)$ ".

Euler's double zeta values

Definition(Euler)

The double zeta value $\zeta(k_1, k_2)$ is defined by

$$\zeta(k_1, k_2) = \sum_{0 < m_1 < m_2} \frac{1}{m_1^{k_1} m_2^{k_2}},$$

where $k_1 \in \mathbb{Z}_{>0}$ and $k_2 \in \mathbb{Z}_{>1}$.

For $k_1, k_2 \in \mathbb{Z}_{>1}$, Euler obtained

$$\zeta(k_1)\zeta(k_2) = \zeta(k_1, k_2) + \zeta(k_2, k_1) + \zeta(k_1 + k_2).$$

Multiple zeta function of the Euler-Zagier type

Definition

Multiple zeta functions of the Euler-Zagier type are defined by the series

$$\zeta(s_1,\ldots,s_n)=\sum_{m_1<\cdots< m_n}\frac{1}{m_1^{s_1}\cdots m_n^{s_n}},$$

where $s_1, \ldots, s_n \in \mathbb{C}$. These series converge absolutely for $\Re(s_1), \ldots, \Re(s_{n-1}) \geq 1$ and $\Re(s_n) > 1$.

Multiple zeta values: For positive integers k_1, \ldots, k_n with $k_n > 1$, $\zeta(k_1, \ldots, k_n)$ is called "multiple zeta values".

Multiple zeta-star function of the Euler-Zagier type

Definition

Multiple zeta-star functions of the Euler-Zagier type are defined by the series

$$\zeta^{\star}(s_1,\ldots,s_n)=\sum_{m_1\leq\cdots\leq m_n}\frac{1}{m_1^{s_1}\cdots m_n^{s_n}},$$

where $s_1, \ldots, s_n \in \mathbb{C}$. These series converge absolutely for $\Re(s_1), \ldots, \Re(s_{n-1}) \geq 1$ and $\Re(s_n) > 1$.

Multiple zeta-star values : For positive integers k_1, \ldots, k_n with $k_n > 1$, $\zeta^*(k_1, \ldots, k_n)$ is called "multiple zeta-star values".

[Combinatorial Theory] Symmetric polynomials

Basic symmetric polynomials/functions

• Elementary symmetric polynomial/function

$$e_n := \sum_{m_1 < \dots < m_n} x_{m_1} \cdots x_{m_n}$$

Complete symmetric polynomial/function

$$h_n:=\sum_{m_1\leq\cdots\leq m_n}x_{m_1}\cdots x_{m_n}$$

These are speacial cases of Schur polynomials/functions.

Schur polynomial

- $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_\ell)$: partition s.t. $\lambda_i \in \mathbb{Z}, \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell \ge 0$
- $\mathbf{x} = (x_1, x_2, \cdots, x_n)$: variables $(n \ge \ell)$

We define Schur polynomial associated with λ by

$$s_{\lambda} = s_{\lambda}(\mathbf{x}) = \frac{\det(x_j^{n-i+\lambda_i})}{\det(x_j^{n-i})}.$$

- $\det(x_j^{n-i}) = \prod_{1 \le i \le j \le n} (x_j x_i)$ is Vandermonde determinant.
- Example. $\lambda = (2,1) = (2,1,0), \mathbf{x} = (x_1, x_2, x_3), n = 3$

$$s_{\lambda}(\mathbf{x}) = \frac{1}{\det(x_{j}^{3-i})} \det \begin{pmatrix} x_{1}^{4} & x_{2}^{4} & x_{3}^{4} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \\ 1 & 1 & 1 \end{pmatrix} = \frac{x_{1}^{2}x_{2} + x_{1}^{2}x_{3} + x_{1}x_{2}^{2} + 2x_{1}x_{2}x_{3}}{+x_{1}x_{3}^{2} + x_{2}^{2}x_{3} + x_{2}x_{3}^{2}}$$

• Schur polynomials/functions have tableau expression

Young diagram/tableau of shape λ

$$\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_\ell)$$
: partition s.t. $\lambda_1 \ge \lambda_2 \ge \cdots$

- We identify a partition λ with its Young diagram $D_{\lambda} = \{(i,j) \in \mathbb{Z}^2 \mid 1 \leq i \leq \ell, \ 1 \leq j \leq \lambda_i\}.$ Let λ' be the conjugate of λ , which is the partition whose Young diagram is the transpose of that of λ .
- Let X be a set. Young tableau $T = (t_{ij})$ of shape λ over X is a filling of D_{λ} obtained by putting $t_{ij} \in X$ into (i,j) box of D_{λ} .

Example. $\lambda = (4, 3, 2), t_{ij} \in X$.

$$D_{\lambda} =$$

$$= \begin{bmatrix} t_{11} & t_{12} & t_{13} & t_{14} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} \end{bmatrix}.$$

 $T_{\lambda}(X)$: the set of all X-valued Young tableaux of shape λ .

Semi-standard Young tableau

- Semi-standard Young tableau $M=(m_{ij})$ of shape λ is a filling of D_{λ} obtained by putting $m_{ij} \in \mathbb{N}$ into (i,j) box of D_{λ} such that
 - the entries in each row are weakly increasing from left to right
 - the entries in each column are strictly increasing from top to bottom.

We denote by $SSYT_{\lambda}$ the set of all semi-standard Young tableaux of shape λ .

Example.
$$\lambda = (4,3,2), m_{ij} \in \mathbb{N}, M \in SSYT_{\lambda}$$

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} \end{bmatrix}$$

$$m_{11} \le m_{12} \le m_{13} \le m_{14}$$
 $\land \qquad \land \qquad \land$
 $m_{21} \le m_{22} \le m_{23}$
 $\land \qquad \land$
 $m_{31} \le m_{32}$

Tableau expression

- $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_\ell)$: partition
- $\mathbf{x} = (x_1, x_2, \cdots)$: variables

Schur function has tableau expression:

$$s_{\lambda}(\mathbf{x}) = \sum_{M \in SSYT_{\lambda}} \prod_{(i,j) \in D_{\lambda}} x_{m_{ij}},$$

Example. $\lambda = (2,1)$. Then

$$s_{\lambda}(\mathbf{x}) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \cdots$$

Symmetric polynomials

Special cases of Schur polynomials/functions

•
$$\lambda = (\underbrace{1,1,\ldots,1}_{n}).$$

 $e_n := s_{(1^n)}$: elementary symmetric polynomial

$$= \sum_{m_1 < \cdots < m_n} x_{m_1} \cdots x_{m_n}$$

•
$$\lambda = (n)$$
.

 $h_n := s_{(n)}$: complete symmetric polynomial

$$=\sum_{m_1<\dots< m_n}x_{m_1}\cdots x_{m_n}$$

$$m_1 \cdots m_n$$

[Definition] Schur multiple zeta function

- $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_\ell)$: partition
- ullet $oldsymbol{s}=(s_{ij})\in T_\lambda(\mathbb{C}):$ variables

$$\boldsymbol{s} = \begin{array}{|c|c|} \hline s_{11} & s_{12} \\ \hline s_{21} & \end{array}$$

Schur multiple zeta function associated with λ (introduced by Nakasuji, Phukusuwan and Yamasaki (2018))

$$\zeta_{\lambda}(\mathbf{s}) = \sum_{(m_{ij}) \in SSYT_{\lambda}} \prod_{(i,j) \in D_{\lambda}} \frac{1}{m_{ij}^{s_{ij}}},$$

Example. $\lambda = (2,1)$. Then

$$\zeta_{\lambda}(\boldsymbol{s}) = \frac{1}{1^{s_{11}} 1^{s_{12}} 2^{s_{21}}} + \frac{1}{1^{s_{11}} 1^{s_{12}} 3^{s_{21}}} + \frac{1}{1^{s_{11}} 2^{s_{12}} 2^{s_{21}}} + \frac{1}{1^{s_{11}} 2^{s_{12}} 3^{s_{21}}} + \cdots.$$

Convergence

For a partition $\lambda = (\lambda_1, \cdots, \lambda_\ell)$,

 $C_{\lambda} \subset D_{\lambda}$: the set of all corners of λ .

Example.

$$C_{(4,2,2)} = \{(1,4), (3,2)\}. \ \left(\bullet \in C_{\lambda} \right)$$

$$W_{\lambda} := \left\{ oldsymbol{s} = (s_{ij}) \in T_{\lambda}(\mathbb{C}) \;\middle|\; egin{array}{l} \Re(s_{ij}) \geq 1 \; ext{for} \; orall (i,j) \in D_{\lambda} \setminus C_{\lambda} \ \Re(s_{ij}) > 1 \; ext{for} \; orall (i,j) \in C_{\lambda} \end{array}
ight.$$

 $\zeta_{\lambda}(\mathbf{s})$ converges absolutely if $\mathbf{s} \in W_{\lambda}$.

Skew type

- Let λ and μ be partitions satisfying $\lambda \supset \mu$, that is $\lambda_i \ge \mu_i$ for all i.
- Skew Young diagram is the set difference between the two partitions, and a skew semi-standard Young tableau of shape λ/μ is a filling of the Young diagram λ/μ with positive integers such that the rows are weakly increasing and the columns are strictly increasing.

Example. For $\lambda = (6, 3, 2, 2)$ and $\mu = (4, 1, 1)$,

				2	3
	1	5			
	3		•		
6	6				

• SSYT(λ/μ): the set of all skew semi-standard Young tableaux of shape λ/μ .

Skew Schur multiple zeta function

Let $\mathbf{s} = (s_{ij}) \in T(\lambda/\mu, \mathbb{C})$. We generalize the definition of the Schur multiple zeta function to skew type as

$$\zeta_{\lambda/\mu}(\mathbf{s}) = \sum_{(m_{ij}) \in \mathit{SSYT}_{(\lambda/\mu)}} \prod_{(i,j) \in D_{(\lambda/\mu)}} \frac{1}{m_{ij}^{s_{ij}}},$$

$$C(\lambda/\mu) \subset D(\lambda/\mu) : \text{ set of all corners of } \lambda/\mu.$$

Lemma

$$W_{\lambda/\mu} :=$$

$$\left\{(s_{ij}) \in \mathcal{T}(\lambda/\mu,\mathbb{C}) \;\middle|\; \begin{array}{l} \Re(s_{ij}) \geq 1 \; \text{for} \; ^\forall (i,j) \in D(\lambda/\mu) \setminus C(\lambda/\mu) \\ \Re(s_{ij}) > 1 \; \text{for} \; ^\forall (i,j) \in C(\lambda/\mu) \end{array}\right\}.$$

Then, $\zeta_{\lambda/\mu}(s)$ converges absolutely if $s=(s_{ij})\in W_{\lambda/\mu}$.

Special cases

ullet When $\lambda=(1)$ and $\mu=\emptyset$, $oldsymbol{s}=(s)\in \mathcal{T}_{\lambda}(\mathbb{C})$

$$\zeta_{(1)}(s) = \sum_{m=1}^{\infty} \frac{1}{m^s} = \zeta(s).$$

• When $\lambda = (\underbrace{1,1,\ldots,1}_n) = (1^n)$, $\boldsymbol{s} = (s_{i1}) \in \mathcal{T}_{\lambda}(\mathbb{C})$

$$\zeta_{(1^n)}(s_{11},\ldots,s_{n1}) = \sum_{\substack{m_{11} < \cdots < m_{r1} \\ = \zeta(s_{11},\ldots,s_{r1})}} \frac{1}{m_{11}^{s_{11}} \cdots m_{n1}^{s_{n1}}}$$

 m_{11} \vdots m_{n1}

• When $\lambda=(n)$, $\mathbf{s}=(s_{1j})\in T_{\lambda}(\mathbb{C})$ $\boxed{m_{11}\mid m_{12}\mid \cdots\mid m_{1n}}$

$$\zeta_{(n)}(s_{11},\ldots,s_{1n}) = \sum_{m_{11} < \cdots < m_{1n}} \frac{1}{m_{11}^{s_{11}} \cdots m_{1n}^{s_{1n}}} = \zeta^*(s_{11},\ldots,s_{1n}).$$

Relation between SMZ and Schur function

For $s \in \mathbb{C}$ with Re(s) > 1, we have

$$\zeta_{\lambda}(\lbrace s\rbrace^{\lambda}) = s_{\lambda}(1^{-s}, 2^{-s}, \ldots).$$

Proposition

Let $\lambda \vdash n$. Then, for $s \in \mathbb{C}$ with $\Re(s) > 1$, we have

$$\zeta_{\lambda}(\{s\}^{\lambda}) = \sum_{\mu \vdash n} \frac{\chi^{\lambda}(\mu)}{z_{\mu}} \prod_{i=1}^{\ell(\mu)} \zeta(\mu_{i}s).$$

Here, $z_{\mu} = \prod_{i \geq 1} i^{m_i(\mu)} m_i(\mu)!$ and $\chi^{\lambda}(\mu) \in \mathbb{Z}$ is the value of the character χ^{λ} attached to the irreducible representation of the symmetric group S_n of degree n corresponding to λ on the conjugacy class of S_n of the cycle type $\mu \vdash n$.

Application of combinatorial methods

Assumption(content-parametrize)

For $\mathbf{s} \in W_{\lambda} \subset T_{\lambda}(\mathbb{C})$ being variables for $\zeta_{\lambda}(\mathbf{s})$,

$$W_{\lambda}^{\mathrm{diag}} := \{ \boldsymbol{s} \in W_{\lambda} | s_{i+n,j+n} = s_{i,j} \text{ for } ^{\forall} n \in \mathbb{Z} \}$$

Notation

Assume that $\mathbf{s}=(s_{ij})\in W^{\mathrm{diag}}_{\lambda}$. Let $s_{ij}=z_{j-i}$ by a given sequence $(z_k)_{k\in\mathbb{Z}}$.

Example. $\lambda = (5, 3, 3, 1)$

<i>s</i> ₁₁	<i>s</i> ₁₂	<i>s</i> ₁₃	<i>s</i> ₁₄	<i>s</i> ₁₅		<i>z</i> ₀
<i>s</i> ₂₁	<i>S</i> ₂₂	<i>S</i> ₂₃			_	<i>z</i> ₋₁
<i>s</i> ₃₁	<i>\$</i> 32	<i>5</i> 33				<i>Z</i> _2
<i>S</i> 41						<i>Z</i> _3

1) Jacobi-Trudi formula for Schur function

Schur polynomials / functions have determinant formula called **Jacobi-Trudi fomula**.

- $h_n = s_{(n)}$: complete symmetric polynomial
- $e_n = s_{(1^n)}$: elementary symmetric polynomial

Jacobi-Trudi formula

We have

$$s_{\lambda} = \det(e_{\lambda'_i - i + j})_{s \times s}$$

$$s_{\lambda} = \det(h_{\lambda_i - i + j})_{r \times r}$$

(Method of Proof)

- using the generating function for h_k and that for e_k
- using the lattice path model (combinatorial approach)

Jacobi-Trudi type formula for ζ_{λ}

Theorem(N.-Phuksuwan-Yamasaki, 2018)

Assume that $\mathbf{s}=(s_{ij})\in W^{\mathrm{diag}}_{\lambda}$. Put $s_{ij}=z_{j-i}$.

(1) Assume that $\Re(s_{i,\lambda_i'}) > 1$ for all $1 \le i < \lambda_1$. Then, we have

$$\zeta_{\lambda}(\boldsymbol{s}) = \det \left[\zeta \big(z_{j-1}, \dots, z_{j-(\lambda'_i - i + j)} \big) \big) \right]_{1 \leq i, j \leq \lambda_1},$$

where $\zeta(...) = 1$ if $\lambda'_i - i + j = 0$ and 0 if $\lambda'_i - i + j < 0$.

(2) Assume that $\Re(s_{i,\lambda_i}) > 1$ for all $1 \leq i < {\lambda_1}'$. Then, we have

$$\zeta_{\lambda}(\boldsymbol{s}) = \det\left[\zeta^{\star}(\boldsymbol{z}_{-j+1}, \ldots, \boldsymbol{z}_{-j+(\lambda_{i}-i+j)})\right]_{1 \leq i,j \leq \lambda'_{1}}\,,$$

where $\zeta^*(...) = 1$ if $\lambda_i - i + j = 0$ and 0 if $\lambda_i - i + j < 0$.

New relation that results from this: Example 1

For $\lambda = (2, 2, 1)$, $z_1, z_{-1} \ge 1$ and $z_0, z_{-2} > 1$, we have

$$\zeta_{\lambda} \left(\begin{array}{c|c} z_0 & z_1 \\ \hline z_{-1} & z_0 \\ \hline z_{-2} \end{array} \right)$$

$$= \begin{vmatrix} \zeta(z_0, z_{-1}, z_{-2}) & \zeta(z_1, z_0, z_{-1}, z_{-2}) \\ \zeta(z_0) & \zeta(z_1, z_0) \end{vmatrix}$$

$$= \begin{vmatrix} \zeta^{\star}(z_0, z_1) & \zeta^{\star}(z_{-1}, z_0, z_1) & \zeta^{\star}(z_{-2}, z_{-1}, z_0, z_1) \\ \zeta^{\star}(z_0) & \zeta^{\star}(z_{-1}, z_0) & \zeta^{\star}(z_{-2}, z_{-1}, z_0) \\ 0 & 1 & \zeta^{\star}(z_{-2}) \end{vmatrix}.$$

Example 2

For
$$\lambda=(2)$$
, $z_1\geq 1$ and $z_1>1$, we have
$$\zeta_{\lambda}\left(\begin{array}{|c|c|c|c|}\hline z_0 & z_1\end{array}\right)=\zeta^{\star}(z_0,z_1)(=\zeta(z_0,z_1)+\zeta(z_0+z_1))$$

$$=\begin{vmatrix} \zeta(z_0) & \zeta(z_1,z_0) \\ 1 & \zeta(z_1) \end{vmatrix}$$

$$=\zeta(z_0)\zeta(z_1)-\zeta(z_1,z_0).$$

New relation - Algebraic relations -

Considering the case $\lambda = (n)$, we have the following

Corollary

For $s_1, \ldots, s_n \in \mathbb{C}$ with $\Re(s_1), \ldots, \Re(s_n) > 1$, it holds that

New relation - Algebraic relations -

Considering the case $\lambda = (1^n)$, we have the following

Corollary

For $s_1, \ldots, s_n \in \mathbb{C}$ with $\Re(s_1), \ldots, \Re(s_n) > 1$, it holds that

(2)
$$\zeta(s_1, ..., s_n) =$$

$$\begin{vmatrix} \zeta^*(s_1) & \zeta^*(s_2, s_1) & ... & ... & \zeta^*(s_n, ..., s_2, s_1) \\ 1 & \zeta^*(s_2) & ... & ... & \zeta^*(s_n, ..., s_2) \end{vmatrix}$$

$$1 \qquad ... \qquad ... \qquad ... \qquad ... \qquad ...$$

$$1 \qquad \zeta^*(s_{n-1}) \qquad \zeta^*(s_n, s_{n-1}) \qquad ... \qquad ...$$

$$0 \qquad 1 \qquad \zeta^*(s_n) \qquad ... \qquad ...$$

2) Pieri formula for Schur polynomial

The Pieri formula expresses product of the Schur polynomials by complete or elementary symmetric polynomials.

Pieri formula

Let s_{λ} be the Schur polynomial associated with a partition λ . Let $h_r = s_{(r)}$ and $e_r = s_{(1^r)}$ be the complete and symmetric polynomials, respectively. Then we have

$$s_{\lambda}(\mathsf{x}) h_r(\mathsf{x}) = \sum_{\mu} s_{\mu}(\mathsf{x}), \quad s_{\lambda}(\mathsf{x}) e_r(\mathsf{x}) = \sum_{\mu} s_{\mu}(\mathsf{x}),$$

where the sum is taken over all partitions μ obtained by adding r boxes to the diagram D_{λ} with no two boxes in the same column or row, respectively.

Example for Schur function

Example. When $\lambda = (2,1)$, $\mathbf{x} = (x_1, x_2, x_3)$, it holds that

where

$$s = (x) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 + x_3 + x_2 x_3^2,$$

$$s = (x) = x_1 + x_2 + x_3, \quad s = (x) = x_1 x_2 x_3 (x_1 + x_2 + x_3),$$

$$s = (x) = x_1^2 x_2^2 + x_1^2 x_2 x_3 + x_1^2 x_3^2 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2 + x_2^2 x_3^2,$$

$$s = (x) = x_2^3 x_2 + x_1^2 x_2^2 + 2x_1^2 x_2 x_3 + x_1 x_2^3 + 2x_1 x_2^2 x_3 + 2x_1 x_2 x_3^2$$

$$s = (x) = x_1^2 x_2^2 + x_1^2 x_2 x_3 + x_1^2 x_2^2 + 2x_1^2 x_2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + 2x_1 x_2 x_3^2$$

Pieri type formula for hook type Schur MZFs

Theorem(N.-Takeda, 2022)

For a positive integer ℓ and non-negative integers k and m, we further assume $\Re(y_i), \Re(t_i) > 1$ $(1 \le i \le \ell, 1 \le j \le \ell - 1)$. Then

further assume
$$\Re(y_i), \Re(t_j) > 1$$
 $(1 \le i \le \ell, 1 \le j \le \ell - 1)$. Then we have $\sum_{Sym} \zeta_{(\ell,1^k)} \begin{pmatrix} y_1 & \cdots & y_\ell \\ \hline x_1 & & \\ \vdots & & \\ \hline x_k & & \end{pmatrix} \cdot \zeta_{(m)} \begin{pmatrix} t_1 & t_2 & \cdots & t_m \\ \hline t_1 & t_2 & \cdots & t_m \end{pmatrix} = \sum_{Sym} \sum_{u_\mu \in U_H} \zeta_\mu(u_\mu),$

where Sym means the summation over the permutation of $S = \{y_1, \dots, y_\ell, t_1, \dots, t_{\ell-1}\}$ as indeterminates and the inner sum in the right-hand side is takes all the term $u_{\mu} \in U_H$ obtained by the pushing rule and μ is the shape of u_{μ} .

Pushing rule H

As in the Pieri formula, the Schur multiple zeta function $\zeta_{\rm I}$

appears as the summand of ζ $\left(\begin{array}{c} s_{11} & s_{12} \\ s_{21} \end{array}\right) \zeta$ $\left(\begin{array}{c} t_1 \\ \end{array}\right)$. However,

in general,

Pushing rule H

For $s \in T_{\lambda}(C)$ and $t \in T_{(r)}(C)$, we construct a new Young tableau by inserting all the components in t into s. The insertion method which we use here is called Pushing rule H.

Example. For
$$\zeta$$
 $\begin{pmatrix} s_{11} & s_{12} \\ s_{21} \end{pmatrix} \zeta$ $\begin{pmatrix} t_1 \\ s_{21} \end{pmatrix}$, ζ $\begin{pmatrix} s_{11} & t_1 \\ s_{21} \\ s_{21} \end{pmatrix}$, ζ $\begin{pmatrix} s_{11} & t_1 \\ s_{21} \\ s_{21} \\ s_{21} \end{pmatrix}$, ζ $\begin{pmatrix} s_{11} & t_1 \\ s_{21} \\ s_{21}$

Pushing rule H

Example. When
$$\lambda = (3, 2, 1)$$
 and $r = 2$

$$\zeta = \begin{cases} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} \end{cases} \qquad \zeta = \begin{cases} t_1 & t_2 \\ t_1 & t_2 \end{cases}$$
, then

s ₁₁	t_1	<i>s</i> ₁₃	t ₂	s ₁₁	<i>s</i> ₁₂	t_1	t ₂		s ₁₁	s ₁₂	<i>S</i> ₁₃	t_1	t ₂	
S ₂₁	<i>S</i> ₁₂			, s ₂₁	<i>S</i> ₂₂	<i>s</i> ₁₃		,[<i>s</i> ₂₁	S ₂₂				, {
s ₃₁	522			<i>s</i> ₃₁					<i>5</i> 31					j

Pieri formula for hook type Schur MZFs

Theorem(N.-Takeda, 2022)

For a positive integer k and non-negative integers ℓ and m, we further assume $\Re(x_i), \Re(t_j) > 1$ $(1 \le i \le k, 1 \le j \le k-1)$. Then

we have
$$\sum_{Sym} \zeta_{(\ell+1,1^{k-1})} \begin{pmatrix} x_1 & y_1 & \cdots & y_\ell \\ \vdots & & & \\ x_k & & & \end{pmatrix} \cdot \zeta_{(1^m)} \begin{pmatrix} t_1 \\ \vdots \\ t_m \end{pmatrix} = \sum_{Sym} \sum_{u_n \in U_E} \zeta_{\mu}(u_{\mu}),$$

where Sym means the summation over the permutation of $S = \{x_1, \ldots, x_k, t_1, \ldots, t_{k-1}\}$ as indeterminates and the inner sum in the right-hand side is takes all the term $u_{\mu} \in U_E$ obtained by the pushing rule and μ is the shape of u_{μ} .

Pushing rule E

Example. When
$$\lambda = (3,2,1)$$
 and $r=2$

$$\begin{cases} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} \\ s_{31} & s_{22} \\ s_{32} & s_{22} \\ s_{31} & s_{22} \\ s_{32} & s_{22} \\ s_{31} & s_{22} \\ s_{31} & s_{22} \\ s_{32} & s_{22} \\ s_{33} & s_{22} & s_{22} \\ s_{33} & s_{23} & s_{22} & s_{22} \\ s_{33} & s_{22} & s_{22} \\ s_{33} & s_{23$$

3) To Schur P or Q function

- We consider the shifted diagram of shape λ $SD_{\lambda} = \{(i,j) \in \mathbb{Z}^2 \mid 1 \leq i \leq \ell, i \leq j \leq \lambda_i + i 1\}.$
- **Example.** Let $\lambda = (4, 3, 1)$.

• Shifted tableau $T=(t_{ij})$ of shape λ over X is a filling of SD_{λ} obtained by putting $t_{ij} \in X$ into (i,j) box of SD_{λ} . $ST_{\lambda}(X)$ is the set of all shifted tableaux of shape λ .

Example.
$$\lambda = (4,3,1), \ T = \begin{bmatrix} t_{11} & t_{12} & t_{13} & t_{14} \\ t_{22} & t_{23} & t_{24} \\ t_{33} \end{bmatrix}$$

Semi-standard marked shifted tableau

- $\mathbb{N}' = \{1', 1, 2', 2, 3', 3, \ldots\}$ with the total ordering $1' < 1 < 2' < 2 < \cdots$.
- Semi-standard marked shifted tableau $T=(t_{ij})$ of shape λ is a filling of SD_{λ} obtained by putting $t_{ij} \in \mathbb{N}'$ into (i,j) box of SD_{λ} such that $\boxed{1 \mid 1 \mid 2' \mid 3'}$
 - the entries in each row are weakly increasing from left to right.
 - the entries in each column are weakly increasing from top to bottom.
 - each row has at most one marked i for every i = 1, 2, ...
 - each column has at most one unmarked i for every i = 1, 2, ...
 - there are no marked entries on the main diagonal.

We denote by $PSSYT_{\lambda}$ the set of all semi-standard marked shifted tableaux of shape λ .

3

3

Tableau expression for Schur P-function

Tableau expression

$$P_{\lambda}(\mathbf{x}) = \sum_{T \in PSSYT_{\lambda}} \mathbf{x}^{T},$$

where
$$\mathbf{x}^T = \prod_{(i,j) \in SD(\lambda)} x_{|t_{ij}|}$$
 with $|i| = |i'| = i$ for $i \in \mathbb{N}$.

Example.
$$\lambda = (3, 1), x = (x_1, x_2)$$
. Then

$$P_{\lambda}(\mathbf{x}) = x_1^3 x_2 + x_1^2 x_2^2 + x_1^2 x_2^2 + x_1 x_2^3.$$

Semi-standard marked shifted tableau

- $\mathbb{N}' = \{1', 1, 2', 2, 3', 3, ...\}$ with the total ordering $1' < 1 < 2' < 2 < \cdots$.
- Semi-standard marked shifted tableau $T=(t_{ij})$ of shape λ is a filling of SD_{λ} obtained by putting $t_{ij} \in \mathbb{N}'$ into (i,j) box of SD_{λ} such that $\boxed{1 \mid 1 \mid 2' \mid 3'}$
 - the entries in each row are weakly increasing from left to right.
 - the entries in each column are weakly increasing from top to bottom.
 - each row has at most one marked i for every i = 1, 2, ...
 - each column has at most one unmarked i for every i = 1, 2, ...
 - there are no marked entries on the main diagonal.

We denote by $QSSYT_{\lambda}$ the set of all semi-standard marked shifted tableaux of shape λ .

2'

3

3

Tableau expression for Schur Q-function

Tableau expression

For
$$\lambda=(\lambda_1,\lambda_2,\cdots,\lambda_\ell)$$
 and $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$,

$$Q_{\lambda}(\mathbf{x}) = \sum_{T \in QSSYT_{\lambda}} \mathbf{x}^{T},$$

where
$$\mathbf{x}^T = \prod_{(i,j) \in SD(\lambda)} x_{|t_{ij}|}$$
 with $|i| = |i'| = i$ for $i \in \mathbb{N}$.

Example. $\lambda = (3,1), \mathbf{x} = (x_1, x_2)$. Then for i=i or i'

$$Q_{\lambda}(\mathbf{x}) = 4(x_1^3x_2 + x_1^2x_2^2 + x_1^2x_2^2 + x_1x_2^3).$$

$$Q_{\lambda}(\mathbf{x}) = 2^{\ell} P_{\lambda}(\mathbf{x}).$$

Schur P-type and Q-type multiple zeta function

- $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_\ell)$: strict partition
- $\mathbf{s} = (s_{ij}) \in ST_{\lambda}(\mathbb{C})$: variables

Schur P or Schur Q multiple zeta function

We define Schur P or Q multiple zeta function associated with λ by

$$\zeta_{\lambda}^{P}(\mathbf{s}) = \sum_{M \in PSSYT_{\lambda}} \frac{1}{M^{\mathbf{s}}}, \quad \zeta_{\lambda}^{Q}(\mathbf{s}) = \sum_{M \in QSSYT_{\lambda}} \frac{1}{M^{\mathbf{s}}},$$

where
$$M^{\mathbf{s}} = \prod_{(i,j) \in SD_{\lambda}} |m_{ij}|^{\mathbf{s}_{ij}}$$

Example

$$\begin{aligned} & \mathsf{Example.} \ \ \lambda = (3,1), \boldsymbol{s} = \frac{|s_{11}|s_{12}|s_{13}}{|s_{21}|} \in ST_{\lambda}(\mathbb{C}). \\ & PSSYT_{\lambda} = \left\{ \begin{array}{c|cccc} 1 & 1 & 1 & 2' & 1 & 1 & 2' & 2 \\ \hline 2 & 2 & 2 & 2 & 2 & 1 \\ \hline 2 & 2 & 2 & 2 & 2 & 1 \\ \hline 2 & 2 & 2 & 2 & 2 & 1 \\ \hline 2 & 2 & 2 & 2 & 2 & 2 \\ \hline 2 & 2 & 2 & 2 & 2 & 1 \\ \hline 2 & 2 & 2 & 2 & 2 & 2 \\ \hline 2 & 2 & 2 & 2 & 2 & 1 \\ \hline 2 & 2 & 2 & 2 & 2 & 2 \\ \hline 2 & 2 & 2 & 2 & 2 & 2 \\ \hline 2 & 2 & 2 & 2 & 2 & 2 \\ \hline 2 & 2 & 2 & 2 \\ \hline 2 & 2 & 2 & 2 \\$$

Convergence

For a strict partition $\lambda = (\lambda_1, \dots, \lambda_\ell)$, $C_{\lambda} \subset SD_{\lambda}$: the set of all corners of λ .

Example.

$$C_{(4,2,1)} = \{(1,4), (3,3)\}. \ \left(\bullet \in C_{\lambda} \right)$$

Lemma

$$W_{\lambda}^{Q} :=$$

$$\left\{ \mathbf{s} = (s_{ij}) \in ST_{\lambda}(\mathbb{C}) \; \middle| \; \; \Re(s_{ij}) \geq 1 \; \text{for} \; \forall (i,j) \in SD_{\lambda} \setminus C_{\lambda} \\ \; \Re(s_{ij}) > 1 \; \text{for} \; \forall (i,j) \in C_{\lambda} \end{array} \right\}.$$

Then, $\zeta_{\lambda}^{P}(\mathbf{s})$ and $\zeta_{\lambda}^{Q}(\mathbf{s})$ converge absolutely if $\mathbf{s} \in W_{\lambda}^{Q}$.

Pfaffian expression for ζ_{λ}^{Q}

Let $\lambda = (\lambda_1, \dots, \lambda_\ell)$ be a strict partition.

$$W^{Q,\mathrm{diag}}_{\lambda} := \{ \boldsymbol{s} \in W^Q_{\lambda} | s_{i+k,j+k} = s_{i,j} \text{ for } ^\forall k \in \mathbb{Z} \}$$

Theorem(N.-Takeda, 2025)

Let $\lambda = (\lambda_1, \dots, \lambda_\ell)$ be a strict partition with an even integer ℓ and $\lambda_i \geq 0$. Then for $\mathbf{s} = (s_{ij}) \in W_{\lambda}^{Q, \operatorname{diag}}$,

$$\zeta_{\lambda}^{Q}(\mathbf{s}) = \operatorname{pf}(U_{\lambda}),$$

where $U_{\lambda}=(u_{ij})$ is an $\ell \times \ell$ upper triangular matrix with

$$u_{ij} = \zeta_{(\lambda_i, \lambda_j)}^Q(\mathbf{s}_{(\lambda_i, \lambda_j)})$$
 and $\mathbf{s}_{(\lambda_i, \lambda_j)} = \frac{\begin{bmatrix} s_{ii} & \cdots & \cdots & s_{it_i} \\ s_{jj} & \cdots & s_{jt_j} \end{bmatrix}}{\begin{bmatrix} s_{ij} & \cdots & s_{jt_j} \end{bmatrix}}$ where $t_i = i + \lambda_i - 1$.

Example

Example. $\lambda = (3, 2, 1)$. Assume that $\mathbf{s} = (s_{ij}) \in W_{\lambda}^{Q, \text{diag}}$. Let $s_{ij} = z_{j-i}$ by a given sequence $(z_k)_{k \in \mathbb{Z}}$. Then

$$\begin{split} \zeta_{\lambda}^{Q}(\boldsymbol{s}) &= \zeta_{(3,2,1)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} & z_{2} \\ z_{0} & z_{1} \\ z_{0} \end{bmatrix} \end{pmatrix} \\ &= \operatorname{pf} \begin{pmatrix} 0 & \zeta_{(3,2)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} & z_{2} \\ z_{0} & z_{1} \end{bmatrix} \end{pmatrix} & \zeta_{(3,1)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} & z_{2} \\ z_{0} \end{bmatrix} \end{pmatrix} & \zeta_{(3)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} & z_{2} \\ z_{0} \end{bmatrix} \end{pmatrix} \\ & 0 & 0 & \zeta_{(2,1)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} \\ z_{0} \end{pmatrix} \end{pmatrix} & \zeta_{(2)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} \\ z_{0} \end{bmatrix} \end{pmatrix} \\ & 0 & 0 & 0 & \zeta_{(1)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} \\ z_{0} \end{pmatrix} \end{pmatrix} & \zeta_{(2)}^{Q} \begin{pmatrix} \begin{bmatrix} z_{0} & z_{1} \\ z_{0} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{split}$$

4) Application of Jacobi-Trudi formula for Schur Multiple Zeta Funct.

For an admissible piece $A(a,b) = \underbrace{(1,\ldots,1,b+1)}_{a-1}$, the dual index

set $A(a,b)^\dagger$ is defined $A(b,a) = (\underbrace{1,\ldots,1}_{b-1},a+1)$.

When we write an index set k as

$$k = (A_1, A_2, \dots, A_m),$$

we define the dual index set of k:

$$\mathsf{k}^\dagger = (A_m^\dagger, A_{m-1}^\dagger, \dots, A_1^\dagger).$$

Theorem (Duality formula for Multiple zeta values)

$$\zeta(\mathsf{k}) = \zeta(\mathsf{k}^\dagger).$$

Duality formula for Schur multiple zeta values

Use an admissible piece
$$A = (\underbrace{1, \dots, 1}_{a-1}, b+1)^t$$
. Let

$$I^D_\delta = \{ \boldsymbol{s} \in W^{diag}_\delta | \text{write } \boldsymbol{s} \text{ in tems of } A_{ij}, A_{ij} = A_{pq} \text{ if } j-i = q-p \}.$$

Example.
$$k = A_{11}A_{12}A_{13}$$
 $\leftrightarrow k^{\dagger} = A_{22}A_{21}^{\dagger}A_{11}^{\dagger}$ $A_{13}^{\dagger}A_{12}^{\dagger}A_{11}^{\dagger}$

Theorem(N.-Ohno)

For ${\pmb k} \in I^D_\delta$, there exists ${\pmb k}^\dagger$ such that

$$\zeta_{\delta}(\mathbf{k}) = \zeta_{\delta^{\dagger}}(\mathbf{k}^{\dagger}),$$

where δ^{\dagger} is a shape of \mathbf{k}^{\dagger}

Example

Example. Let $\lambda = (3, 2, 1)$.

$$\zeta_{\lambda} \begin{pmatrix} 2 & 2 & 3 \\ 4 & 2 & \\ 4 & & \end{pmatrix} = \zeta_{\lambda} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 & \\ 2 & & \\ 2 & & \end{pmatrix}$$

The proof strategy for the example

Example. Let
$$\lambda = (3, 2, 1)$$
 and $k = \begin{bmatrix} 2 & 2 & 3 \\ 4 & 2 & . \\ 4 & 1 & . \end{bmatrix}$

Then, we have

We write
$$\overline{\begin{vmatrix} a_0 \\ \vdots \end{vmatrix}}$$
 shortly for $\zeta_{\lambda}(\overline{\begin{vmatrix} a_0 \\ \vdots \end{vmatrix}}) = \zeta(a_0, \ldots).$

The proof strategy for the example

Applying the Duality formula for multiple zeta values, we have

The proof strategy for the example

From the property of determinant of matrix and the Jacobi-Trudi formula for skew type, we have

$$\zeta_{\lambda} \begin{pmatrix} 2 & 2 & 3 \\ 4 & 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 2 \\ 1 & 2 \\ 2 & B \\ 0 & 2 & A \end{pmatrix} = \zeta_{\lambda} \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \\ 2 & 2 \\ 1 & 2 & 2 \\ 2 & 2 \end{pmatrix}$$

Examples related to Schur functions

Thank you