Indecomposable polytopes & Rays of the submodular cone

Arnau Padrol¹, Germain Poullot²

Departament de Matemàtiques i Informàtica, Universitat de Barcelona & CRM, Spain arnau.padrol@ub.edu
Institut für Mathematik, Universität Osnabrück, Germany germain.poullot@uni-osnabrueck.de

(In)decomposability of polytopes

Minkowski sum: $Q + R = \{q + r ; q \in Q, r \in R\}$

Indecomposable: If P = Q + R, then $Q = \lambda P + t$ for some $\lambda > 0$, t

Question A: How to check if P is indecomposable?

Parameterizing deformations of P

Deformations of P: any Q s.t. $\lambda P = Q + R$ for some $\lambda > 0$ and R

→ edges of Q parallel to edges of P, but not same length

 \longleftrightarrow edge-length vector: λ_{e} for each edge e of P, $\lambda_{e}(Q) = \frac{\text{length}(e \in Q)}{\text{length}(e \in P)}$

Cycle eqn.: if cycle e_1, \ldots, e_r , then for all Q: $\lambda_{e_1}(Q)\vec{e}_1 + \cdots + \lambda_{e_r}(Q)\vec{e}_r = 0$

Edge-length dependencies graph: new criteria for indecomposability

Dependent edges e, f: for all deformations Q of P, $\lambda_e(Q) = \lambda_f(Q)$ informally: "the length of e can be deduced from the length of f" Examples of dependent edges: edges of a triangle; edges of a cycle whose convex hull is a simplex; edges opposite in a parallelogram or a trapezoid...

Graph of edge-length dependencies ED(P): nodes = edges of P; arcs ef if e and f dependent edges

THM. ED(P) is a clique $\iff ED(P)$ is connected \iff P is indecomposable

 $\dim \mathbb{DC}(P) \le |cc(ED(P))|$

THM. \exists subset S of dependent edges, forming a connected sub-graph of the graph of P, such that S touches every facet \Longrightarrow P indecomposable **Application**: Re-deduce almost all previous indecomposability criteria **Application**: Study decomposability products of polytopes $P \times P'$

Edmonds's problem

Deformed permutahedron: all edge directions $e_i - e_j$ Edmonds '70 problem: Find (all) indecompos-

able deformed permutahedra!

Nguyen '86: give $2^{2^{n-3/2 \log n + O(1)}}$ indecomposable deform. permutahedra via connected matroids

Question B: How to create indecomposable deformed permutahedra, not matroid polytopes? *Idea*: use *graphical zonotope* of graph *G*:

$$Z_G := \sum_{i j \in E} [e_i, e_j] \qquad K_{2,2} =$$

Vertices $Z_G \longleftrightarrow$ acyclic orientations of G

Truncating zonotopes

Application: Pick a zonotope Z + remove vertices = Z' \rightarrow easy to tell if Z' is indecomposable Idem for stacking vertices

New rays of the submodular cone: truncated graphical zonotopes of complete bipartite graphs

Works *only* when $G = K_{n,m}$ complete bipartite graph

 $Z_{n,m}^{-\circ}$, $Z_{n,m}^{\circ-\circ}$: graphical zonotope $Z_{K_{n,m}}$, remove 1 or 2 specific vertices

THM. $Z_{n,m}^{-\infty}$ and $Z_{n,m}^{\infty}$ are indecomposable deformed (n+m)-permutahedra, not matroid polytope

except 5 cases

THM. There are $\geq 2 \left| \frac{d-1}{2} \right|$ such indecomposable deformed d-permutahedra

Soon on ArXiv: $\geq 2^{2^n}$ (Loho–Padrol–Poullot, other method)