STRONGLY NICE PROPERTY AND SCHUR POSITIVITY OF GRAPHS

Ethan Y.H. Li¹, Grace M.X. Li², Arthur L.B. Yang³ and Zhong-Xue Zhang⁴

¹ Shaanxi Normal University, P. R. China, ² Shaanxi University of Science and Technology, P. R. China, ^{3,4} Nankai University, P. R. China

Chromatic symmetric function

Definition 1 (Stanley, 1995)

Let G be a graph with vertex set $V(G) = \{v_1, \ldots, v_d\}$. Then the chromatic symmetric function of G is defined by Stanley as

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} \cdots x_{\kappa(v_d)},$$

where $\kappa:V(G)\to\{1,2,\ldots\}$ ranges over all proper colorings of G, i.e., $\kappa(u)\neq\kappa(v)$ for any edge $uv\in E(G)$.

• A graph G is Schur positive (or s-positive) if X_G is a nonnegative linear combination of Schur functions.

Schur positivity of claw-free graphs

Theorem 1 (Gasharov, 1996)

Incomparability graphs of (3+1)-free posets are Schur positive.

Conjecture 1 (Stanley, 1998)

All claw-free graphs (containing no induced subgraph isomorphic to the claw $K_{1,3}$) are Schur positive.

• Incomparability graphs of (3 + 1)-free posets are clawfree.

Non-Schur positivity of Squid graphs

• The squid graphs $Sq(2n-1;1^n)$ defined by attaching n leaves to one vertex of a cycle C_{2n-1} .

Conjecture 2 (Wang and Wang, 2020)

The squid graph $Sq(2n-1;1^n)$ is not Schur positive for $n \geq 3$.

Nice property

- A stable partition π of G = (V, E) is a set partition of V such that each block of π is a stable set.
- The type of π is a partition of |V| whose parts are the sizes of the blocks of π .
- A graph G is said to be nice if G has a stable partition of type λ , then G has a stable partition of type μ for each $\mu \leq \lambda$ (dominance order).

Theorem 2 (Stanley, 1998)

- Schur positive \Longrightarrow nice;
- ullet G is claw-free \iff G and all its induced subgraphs are nice.
- one can use the above result to prove the non-Schur positivity of certain chromatic symmetric functions by showing that they are not nice.

Strongly nice property

• A semi-ordered stable partition of G = (V, E) is a stable partition such that the parts of the same size are ordered.

Theorem 3 (Stanley, 1995)

Let \tilde{a}_{λ} be the number of semi-ordered stable partitions of G of type λ . Then

$$X_G = \sum_{\lambda} \tilde{a}_{\lambda} m_{\lambda}$$

- A symmetric function f is nice if for any pair of partitions $\mu \leq \lambda$ in dominance order with $[m_{\lambda}]f > 0$ we have $[m_{\mu}]f > 0$.
- ullet The definition coincides with the above one if f is a chromatic symmetric function.

Definition 2

A symmetric function f is said to be strongly nice if $[m_{\mu}]f \geq [m_{\lambda}]f$ whenever $\mu \leq \lambda$ in dominance order. A graph G is strongly nice if X_G is strongly nice.

• The following graph is strongly nice but is not Schur positive.

Proof of non-Schur positivity of squid graphs

Theorem 4

For $n \geq 3$, the squid graph $Sq(2n-1;1^n)$ is not strongly nice. Moreover, $Sq(2n-1;1^n)$ is not Schurpositive.

Proof(sketch).

• We show that

$$[m_{(n,n,n-1)}]X_{Sq(2n-1;1^n)} = 4\binom{2n-2}{n-1}$$

and

$$[m_{(n+1,n-1,n-1)}]X_{Sq(2n-1;1^n)} = 8\binom{2n-2}{n}.$$

• Thus for $n \geq 3$,

$$\frac{[m_{(n,n,n-1)}]X_{Sq(2n-1;1^n)}}{[m_{(n+1,n-1,n-1)}]X_{Sq(2n-1;1^n)}} = \frac{n}{2(n-1)} < 1.$$

• The following result shows that it is not enough to prove this result by means of the nice property.

Theorem 5

The squid graph $Sq(2n-1;1^n)$ is nice for $n \geq 3$.

Proof(sketch).

- $\lambda = (2n-1, n-1, 1)$ is maximum in the types of all stable partitions of $Sq(2n-1; 1^n)$.
- There exists a stable partition of $Sq(2n-1;1^n)$ with type μ for all $\mu \leq \lambda$.

Strongly nice property of claw-free graphs

Theorem 3

A graph G is claw-free if and only if G and all its induced subgraphs are strongly nice.

Proof(sketch).

- The sufficiency follows directly from Stanley's result.
- Any induced subgraph of a claw-free graph is also claw-free.
- The necessity can be deduced from the following claim.

Claim. If a graph G is claw-free, then it is strongly nice.

- To prove the strongly nice property of claw-free graphs, we only need to show that $\tilde{a}_{\lambda} \leq \tilde{a}_{\mu}$ for all partitions μ, λ with λ covering μ in dominance order.
- When restricting to two blocks of a stable partition, the induced graph is a bipartite graph.
- Any claw-free bipartite graph is composed by even cycles and odd paths.
- Let \tilde{A}_{λ} denote the set of semi-ordered stable partitions of type λ .
- We construct an injection ϕ from \tilde{A}_{λ} to \tilde{A}_{μ} by reversing one odd path.

Example 1

Let the semi-ordered stable partition B be shown as in the following figure (we only present B_i and B_j for convenience).

Then W(B)=1211 and its image $B=\phi(B)$ is exactly the semi-ordered stable partition shown in following figure. It follows that $W(\bar{B})=1212$ and $W(\hat{B})=1211=W(B)$, which implies $\varphi(\bar{B})=B$.

One open problem

• Let $inc(B_n)$ be the incomparability graph of the Boolean lattice B_n .

Conjecture 3 (Griggs, 1988)

 $\operatorname{inc}(B_n)$ is nice.

Conjecture 4 (Stanley, 1988)

 $inc(B_n)$ is Schur positive.

• Conjecture 3 is verified for $n \le 5$ and Conjecture 4 is vefiried for $n \le 4$ by computer.

Problem 1

Is $inc(B_n)$ strongly nice?