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Chromatic symmetric function

Definition 1 (Stanley, 1995)

Let G be a graph with vertex set V (G) = {v1, . . . , vd}.
Then the chromatic symmetric function of G is defined

by Stanley as

XG =
∑
κ

xκ(v1) · · · xκ(vd),

where κ : V (G) → {1, 2, . . .} ranges over all proper

colorings of G, i.e., κ(u) ̸= κ(v) for any edge uv ∈
E(G).

•A graph G is Schur positive (or s-positive) if XG is a

nonnegative linear combination of Schur functions.

Schur positivity of claw-free graphs

Theorem 1 (Gasharov, 1996)

Incomparability graphs of (3 + 1)-free posets are Schur

positive.

Conjecture 1 (Stanley, 1998)

All claw-free graphs (containing no induced subgraph

isomorphic to the claw K1,3) are Schur positive.

• Incomparability graphs of (3 + 1)-free posets are claw-

free.

Non-Schur positivity of Squid

graphs

•The squid graphs Sq(2n − 1; 1n) defined by attaching

n leaves to one vertex of a cycle C2n−1.
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Conjecture 2 (Wang and Wang, 2020)

The squid graph Sq(2n − 1; 1n) is not Schur positive

for n ≥ 3.

Nice property

•A stable partition π of G = (V,E) is a set partition of

V such that each block of π is a stable set.

•The type of π is a partition of |V | whose parts are the
sizes of the blocks of π.

•A graph G is said to be nice if G has a stable partition

of type λ, then G has a stable partition of type µ for

each µ ≤ λ (dominance order).

Theorem 2 (Stanley, 1998)

• Schur positive =⇒ nice;

•G is claw-free ⇐⇒ G and all its induced subgraphs

are nice.

• one can use the above result to prove the non-Schur

positivity of certain chromatic symmetric functions by

showing that they are not nice.

Strongly nice property

•A semi-ordered stable partition of G = (V,E) is a

stable partition such that the parts of the same size are

ordered.

Theorem 3 (Stanley, 1995)

Let ãλ be the number of semi-ordered stable partitions

of G of type λ. Then

XG =
∑
λ

ãλmλ.

•A symmetric function f is nice if for any pair of par-

titions µ ≤ λ in dominance order with [mλ]f > 0 we

have [mµ]f > 0.

•The definition coincides with the above one if f is a

chromatic symmetric function.

Definition 2

A symmetric function f is said to be strongly nice if

[mµ]f ≥ [mλ]f whenever µ ≤ λ in dominance order.

A graph G is strongly nice if XG is strongly nice.

•The following graph is strongly nice but is not Schur

positive.

Proof of non-Schur positivity of

squid graphs

Theorem 4

For n ≥ 3, the squid graph Sq(2n − 1; 1n) is not

strongly nice. Moreover, Sq(2n − 1; 1n) is not Schur-

positive.

Proof(sketch).

•We show that

[m(n,n,n−1)]XSq(2n−1;1n) = 4

(
2n− 2

n− 1

)
and

[m(n+1,n−1,n−1)]XSq(2n−1;1n) = 8

(
2n− 2

n

)
.

•Thus for n ≥ 3,

[m(n,n,n−1)]XSq(2n−1;1n)

[m(n+1,n−1,n−1)]XSq(2n−1;1n)
=

n

2(n− 1)
< 1.

•The following result shows that it is not enough to prove
this result by means of the nice property.

Theorem 5

The squid graph Sq(2n− 1; 1n) is nice for n ≥ 3.

Proof(sketch).

•λ = (2n − 1, n − 1, 1) is maximum in the types of all

stable partitions of Sq(2n− 1; 1n).

•There exists a stable partition of Sq(2n − 1; 1n) with

type µ for all µ ≤ λ.

Strongly nice property of claw-free

graphs

Theorem 3

A graph G is claw-free if and only if G and all its in-

duced subgraphs are strongly nice.

Proof(sketch).

•The sufficiency follows directly from Stanley’s result.

•Any induced subgraph of a claw-free graph is also claw-

free.

•The necessity can be deduced from the following claim.

Claim. If a graph G is claw-free, then it is strongly

nice.

•To prove the strongly nice property of claw-free graphs,
we only need to show that ãλ ≤ ãµ for all partitions

µ, λ with λ covering µ in dominance order.

•When restricting to two blocks of a stable partition, the

induced graph is a bipartite graph.

•Any claw-free bipartite graph is composed by even cy-

cles and odd paths.

•Let Ãλ denote the set of semi-ordered stable partitions

of type λ.

•We construct an injection ϕ from Ãλ to Ãµ by reversing

one odd path.

Example 1

Let the semi-ordered stable partition B be shown as

in the following figure (we only present Bi and Bj for

convenience).
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Then W (B) = 1211 and its image B̄ = ϕ(B) is ex-

actly the semi-ordered stable partition shown in fol-

lowing figure. It follows that W (B̄) = 1212 and

W (B̂) = 1211 = W (B), which implies φ(B̄) = B.
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One open problem

•Let inc(Bn) be the incomparability graph of the

Boolean lattice Bn.

Conjecture 3 (Griggs, 1988)

inc(Bn) is nice.

Conjecture 4 (Stanley, 1988)

inc(Bn) is Schur positive.

•Conjecture 3 is verified for n ≤ 5 and Conjecture 4 is

vefiried for n ≤ 4 by computer.

Problem 1

Is inc(Bn) strongly nice?


